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Introduction – Two sample tests
Let x ij be independent and identically distributed vectors with p-variate
normal distribution Np(µi ,Σi ), where i = 1, 2 and j = 1, ...,Ni .

The sample mean vectors are, respectively, given by

x̄ i =
1

Ni

Ni∑
j=1

x ij , i = 1, 2,

and the sample covariance matrices are, respectively, given by

S i =
1

ni
X i (I − 1(1′1)−11′)X ′i , ni = Ni − 1, i = 1, 2,

where X i = (x i1, ..., x iNi ) : p × Ni .

When Σ1 = Σ2 = Σ, an unbiased estimator of Σ is given by

S =
n1S1 + n2S2

n
, n = n1 + n2 = N1 + N2 − 2.
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Hotelling’s T 2-test

We wish to test the hypothesis

H : µ1 = µ2 vs. A : µ1 6= µ2.

As generalization of the Student’s t-test statistic in the univariate case,
we get Hotelling’s T 2-test statistic, given as

T 2 =

(
1

N1
+

1

N2

)−1
(x̄1 − x̄2)′S−1(x̄1 − x̄2)

The null hypothesis H is rejected at level α, if

n − p + 1

np
T 2 ≥ Fα(p, n − p + 1).

Here we must have n ≥ p.
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An 100(1− α)% confidence region will be an ellipsoidal region given by

Rµ =
{
µ :

N1N2

N1 + N2

(
x̄ − ȳ − (µ1 − µ2)

)′
S−1

(
x̄ − ȳ − (µ1 − µ2)

)
≤ np

n − p + 1
F1−α(p, n − p)

}
Example: p = 2

What happens if n < p?

Then the sample covariance
matrix S is singular.

We can not use S−1,

but, trS , S+ or DS , ...
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In many applications, high dimensional data, when the dimension is often
comparable to or even (much) larger than the sample size, are given.

Examples include

I genomics,

I Electroencephalograph (EEG)

I medical imaging,

I risk management,

I web search problems,

to mention a few.

In such high dimensional settings, classical methods designed for the
low-dimensional case either perform poorly or are no longer applicable.

For example, the performance of Hotelling’s T 2 test is unsatisfactory
when the dimension is high relative to the sample sizes.
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Dempster’s test

When n < p, a test if two mean vectors are equal, H : µ1 = µ2 has been
proposed by Dempster (1958), under the assumption that the two
distributions have the same covariance matrix.

Dempster’s test statistic is given by

TD =

(
1

N1
+

1

N2

)−1
(x̄1 − x̄2)′(x̄1 − x̄2)

trS

If Σ = γ2I p one can show that under the null hypothesis

TD ∼
H
F (p, np).

It may be noted that when Σ = γ2I p, and under the assumption of
normality Dempster’s test TD is uniformly most powerful among all tests
whose power depends on µ′µ/γ2.
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For a general Σ, under the assumption of normality and assuming

(?) 0 < limp→∞ ai <∞, i = 1, ..., 4, where ai =
trΣi

p

one can show that, under the null hypothesis,

TD ≈ F ([r̂ ], [nr̂ ]),

where [a] denotes the largest integer value ≤ a, r̂ = pb̂, b̂ =
â21
â2
,

â1 =
trS
p
, and â2 =

1

p

(
trS2 − 1

n
(trS)2

)
.
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Bai and Saranadasa’s test

Bai and Saranadasa (1996) proposed another asymptotically equivalent
test which does not require the assumption of normality but have
asymptotically the same power as the one proposed by Dempster (1958).

The statistic testing the hypothesis about equal means given by Bai
and Saranadasa is

TBS =

(
1
N1

+ 1
N2

)−1
(x̄1 − x̄2)′(x̄1 − x̄2)− trS√

2
(
trS2 − 1

n (trS)2
) ∼

H
N(0, 1)

Martin Singull 8/90



Srivastavas’ test

Srivastava (2007) proposed a Hotelling’s T 2 type test, by using
Moore-Penrose inverse of the sample covariance matrix S+ instead of the
inverse when N is smaller than p.

The test statistic given by Srivastava (2007) is

T+2
=

(
1

N1
+

1

N2

)−1
(x̄1 − x̄2)′S+(x̄1 − x̄2)

and the asymptotic distribution, assuming (?), is proved to be

b̂p

n
T+2 ≈ χ2(n).
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Srivastava and Du’s test

It may be noted that all the above discussed tests are invariant under the
group of orthogonal matrices.

A test that is invariant under the group of non-singular diagonal matrices
has recently been proposed by Srivastava and Du (2008) under the
normal distribution and Srivastava (2009) under non-normality.

It may be noted that this test is not invariant under the transformation
by orthogonal matrices.
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The test statistic given by Srivastava and Du is

TSD =

(
1
N1

+ 1
N2

)−1
(x̄1 − x̄2)′D−1S (x̄1 − x̄2)− p√

2
(
trR̂

2
− p2

n

)
cp,n

where R̂ = D−1/2S SD−1/2S , DS = diag(s11, ..., spp), S = (sij) and

cp,n = 1 +
trR̂

2

p3/2
p→ 1 as (n, p)→∞.

Assuming some conditions, similar to (?) on the correlation matrix R,
and under the hypothesis of equality of two mean vectors, TSD has
asymptotically standard normal distribution.
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Introduction – Multivariate Linear Model

Definition. Let B : p×m be an unknown parameter matrix, C : m×N
known design matrix such that r = rank(C ) and r + p ≤ N. The
Multivariate Linear Model (MLM) is given by

X = BC + E ,

where the columns of E are assumed to be independently p−variate
normally distributed with mean zero and an unknown positive definite
covariance matrix Σ, i.e.,

E ∼ Np,N (0,Σ, IN) ⇔ vec E ∼ NpN (0, IN ⊗Σ)

where E = (e1, ..., eN) : p × N and vec E = (e ′1, ..., e ′N)′ : pN × 1.
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Multivariate Linear model – MLEs
If C has full rank, the MLEs for the MLM is given by

B̂ = XC ′(CC ′)−1,

NΣ̂ = X (IN − PC ′) X ′ = R̂R̂
′

= V ,

where PC ′ = C ′(CC ′)−1C , i.e., the projection on the space C(C ′) and
the estimated mean structure and residual are

B̂C = XPC ′ ,

R̂ = X (IN − PC ′) .

The whole space can now be decomposed as C(C ′) � C(C ′)⊥,

B̂C R̂

C(C ′) C(C ′)⊥
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The general linear hypothesis

The general linear hypothesis is expressed as H : KB ′ = 0, where K
is a known q ×m matrix of rank q ≤ m.

Let the error sum of squares and products be given by the matrix

V = X (IN − PC ′) X ′ and S =
1

n
V , n = N −m,

and the sum of squares and products due to regression under the
hypothesis H is

W = B̂K ′(K (CC ′)−1K ′)−1KB̂
′
.
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The LRT of size α of the hypothesis H : KB ′ = 0, rejects H if Λ ≤ cα,
where

Λ =
|V |

|V + W |

and cα is chosen such that the size of the test is α.

The asymptotic expansion for this LRT is given by

P

[
−
(
f − 1

2
(p −m + 1)

)
ln Λ ≥ z

]
≈

≈ P[χ2
l ≥ z ] +

γ

f 2
(P[χ2

l+4 ≥ z ]− P[χ2
l ≥ z ]),

where f = n − q, l = pm and γ =
l(p2 + m2 − 5)

48
.
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Test given by Fujikoshi et al.

Fujikoshi et al. (2004) generalize the two-sample test given by Dempster
(1958) to the MANOVA problem, under the assumption that

(p/n)→ c ∈ (0,∞).

The statistic given by Fujikoshi et al. is

T̃D =
√
p

(
trW
trS

− q

)
and

T̃D

σ̂D
→ N(0, 1),

where σ̂D = 2q
â2
â1

, â1 =
trS
p
, and â2 =

1

p

(
trS2 − 1

n
(trS)2

)
.
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Srivastava and Fujikoshi’s test

Other tests that do not require the assumption

(p/n)→ c ∈ (0,∞)

have been proposed by Srivastava and Fujikoshi (2006) with the test
statistic

TSF =

√
p(trW − qtrS)
√

2qâ2
∼
H
N(0, 1).

Schott (2007) proposed the same test as proposed by Srivastava and
Fujikoshi (2006) but required the assumption above to obtain the
asymptotic distribution of the test statistic.
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Yamada and Srivastava’s test

The above tests are, however, not invariant under the transformation by
non-singular diagonal matrices. A test that has this property for the
MANOVA problem has been recently proposed by Yamada and Srivastava
(2012) under normality.

The test statistic given by Yamada and Srivastava (2012) is

TYS =
trWD−1S − n

n−2pq√
2q
(
trR̂

2
− p2

n

)
cp,n

,

where R̂ = D−1/2S SD−1/2S and cp,n = 1 +
trR̂

2

p3/2

Assuming certain conditions on the correlation matrix R the asymptotic
distribution, when n, p →∞, under the null hypothesis is standard
normal.
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Growth Curve Model (Potthoff and Roy, 1964)

Definition. Let X : p × N and B : q × m be the observation and
parameter matrices, respectively, and let A : p × q and C : m × N
be the within and between individual design matrices, respectively.
Suppose that q ≤ p and p ≤ N − r = n, where r = rank(C ).

The Growth Curve model (GCM) is given by

X = ABC + E ,

where E ∼ Np,N (0,Σ, IN).

We will assume that r = rank(C ) = m, i.e., n = N −m.

For the GCM, the mean parameter space is independent of p and n,
whereas the covariance matrix Σ increases in size with p.
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Growth Curve Model – MLEs

If A and C has full rank, the MLEs for the GCM is given

B̂MLE =
(
A′V−1A

)−1
A′V−1XC ′

(
CC ′

)−1
, i.e.,

AB̂MLEC = PV
A XPC ′ ,

NΣ̂MLE =
(
X − AB̂MLEC

)(
X − AB̂MLEC

)′
= R̂R̂

′︸︷︷︸
=V

+R̂1R̂
′
1,

where

R̂1 =
(
I p − PV

A

)
XPC ′ ,

R̂ = X (IN − PC ′) ,

V = R̂R̂
′

= X (IN − PC ′) X ′,

PC ′ = C ′(CC ′)−1C = projection on C(C ′),

PV
A = A

(
A′V−1A

)−1
A′V−1 = projection on CV (A).
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Growth Curve Model – MLEs

If A and C has full rank, the MLEs for the GCM is given

B̂MLE =
(
A′V−1A

)−1
A′V−1XC ′

(
CC ′

)−1
, i.e.,

AB̂MLEC = PV
A XPC ′ ,

NΣ̂MLE =
(
X − AB̂MLEC

)(
X − AB̂MLEC

)′
= R̂R̂

′︸︷︷︸
=V

+R̂1R̂
′
1,

where

R̂1 =
(
I p − PV

A

)
XPC ′ ,

R̂ = X (IN − PC ′) ,

V = R̂R̂
′

= X (IN − PC ′) X ′,

PC ′ = C ′(CC ′)−1C = projection on C(C ′),

PV
A = A

(
A′V−1A

)−1
A′V−1 = projection on CV (A).
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CV (A)⊗ C(C ′) � (CV (A)⊗ C(C ′))⊥

= (CV (A)⊗ C(C ′)) � hcalCV (A)⊥ ⊗ C(C ′) � V ⊗ C(C ′)⊥

CV (A)⊥ R̂1 R̂ = X (IN − PC ′)

R̂
R̂1 =

(
I p − PV

A

)
XPC ′

CV (A) AB̂MLEC

C(C ′) C(C ′)⊥

AB̂MLEC = PV
A XPC ′ ,

NΣ̂MLE = R̂R̂
′

+ R̂1R̂
′
1.
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Properties of the estimators
Mean and covariance for B̂MLE are (Kollo and von Rosen, 2005)

E
(
B̂MLE

)
= B, and

cov
(
B̂MLE

)
=

n − 1

n − 1− (p − q)
(CC ′)−1 ⊗ (A′Σ−1A)−1,

if n − 1− (p − q) > 0, where n = N −m.

Since q ≤ p ≤ n we have
n − 1

n − 1− (p − q)
≥ 1.

von Rosen (1991) show that the estimator Σ̂MLE is a biased, as

E
(

Σ̂MLE

)
= Σ− m

N

n − 1− 2(p − q)

n − 1− (p − q)
A(A′Σ−1A)−1A′.

The bias depends on the design A and thus it could be significant.
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Example - p time points and N observations
In a small simulation example we may use the parameters and designs

B =


b01 b02
b11 b12
b21 b22
b31 b32

 =


−0.0134 −0.0017
0.0098 0.0027
−0.0021 −0.0011
0.0001 0.0001

 ,

A =


1 t1 t21 t31
1 t2 t22 t32
...

...
...

...
1 tp t2p t3p

 and C =

(
1′N1

0′N2

0′N1
1′N2

)
,

where we have used q = 4 (i.e., cubic growth) and m = 2 groups for
simplicity with N1 = N2 = N/2. Furthermore, we put t1 = 0 and

ti = i
10

p − 1
, for i = 1, ..., p − 1.
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N1 = N2 = 25 (n = 48) and p = 12

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1
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N1 = N2 = 25 (n = 48) and p = 24

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1
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N1 = N2 = 25 (n = 48) and p = 48

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1
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N1 = N2 = 25 (n = 48) and p = 96

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1
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Unweighted estimator of B

A natural alternative to the MLE would be an unweighted estimator of B
given by

B̂ = (A′A)−1A′XC ′(CC ′)−1.

This estimator is simpler than the MLE, since we do not need to
calculate the inverse of the sum of squares matrix V−1.

This unweighted estimator is obtained by considering the model

XC ′(CC ′)−1 = AB + Ẽ ,

where Ẽ = EC ′(CC ′)−1 ∼ Np,m

(
0,Σ, (CC ′)−1

)
.
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The distribution of the estimator is given by

B̂ ∼ Nq,m(B, (A′A)−1A′ΣA(A′A)−1, (CC ′)−1),

i.e., we have

E
(
B̂
)

= B,

and

cov
(
B̂
)

= (CC ′)−1 ⊗ (A′A)−1A′ΣA(A′A)−1.

Again the bias for estimating Σ could be significant with

E(Σ̂UW ) = Σ +
m

N

(
Σ + (I p − PA) Σ (I p − PA)′

)
.
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Estimator based on an asymptotic likelihood function
Due to the normality assumption, i.e., since the distribution is symmetric
around the mean, in order to estimate the mean parameters it is natural
to consider

1

p
tr{Σ−1(X − ABC )()′} =

=
1

p
tr{Σ−1(XPC ′ − ABC )()′}+

1

p
tr{Σ−1V }

Kollo et al. (2011) showed that

1
p tr{Σ

−1V } − n√
(n − r(C ))/p

∼
asymp.

N(0, 2) as p,N →∞ and
p

N
→ c > 0,

where n = N − rank(C ) = N − r , and

1√
p tr{Σ

−1(XPC ′ − ABC )()′} − r
√
p

√
r

∼
asymp.

N(0, 2) as p,N →∞.
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Based on these two asymptotic distributions one can find the asymptotic
likelihood function for the GCM.

Using an approach similar to the restricted maximum likelihood method
Kollo et al. (2011) found an likelihood based estimator for the mean B as

B̂AL = (A′V+A)−A′V+XC ′(CC ′)− + (A′V+A)oZ 1 + A′V+AZ 2C o′,

where Z 1 and Z 2 are arbitrary matrices.

The estimator B̂AL is unique and with probability 1 equals

B̂AL = (A′V+A)−1A′V+XC ′(CC ′)−1,

if and only if rank(A) = q < min{p, n}, where n = N − r , r = rank(C )
and

C(A) ∩ C(V )⊥ = {0}.
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Furthermore, one can show that

E(B̂AL) = B,

cov
(
B̂AL

)
≈ (p − q − 1)(p − 1)

(n − q − 1)(p − n + q − 1)
(CC ′)−1 ⊗ (A′Σ−1A)−1,

where n = N − rank(C ) = N − r .
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Example, cont.
N1 = N2 = 25 (n = 48) and p = 12 (q ≤ p ≤ n)
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MLE (group 1)
MLE (group 2)
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unweighted (group 2)
asymp. likelihood (group 1)
asymp. likelihood (group 2)
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N1 = N2 = 25 (n = 48) and p = 24 (q ≤ p ≤ n)
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N1 = N2 = 25 (n = 48) and p = 48 (q ≤ p ≤ n)

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

MLE (group 1)
MLE (group 2)
unweighted (group 1)
unweighted (group 2)
asymp. likelihood (group 1)
asymp. likelihood (group 2)

Martin Singull 36/90



N1 = N2 = 25 (n = 48) and p = 96 (q ≤ p ≤ n)
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Compare the estimators B̂MLE and B̂
All three estimators B̂MLE , B̂ and B̂AL are unbiased.

The covariances for B̂MLE , B̂ and B̂AL respectively are given by

cov
(
B̂MLE

)
=

n − 1

n − 1− (p − q)
(CC ′)−1 ⊗ (A′Σ−1A)−1,

cov
(
B̂
)

= (CC ′)−1 ⊗ (A′A)−1A′ΣA(A′A)−1.

cov
(
B̂AL

)
≈ (p − q − 1)(p − 1)

(n − q − 1)(p − n + q − 1)
(CC ′)−1 ⊗ (A′Σ−1A)−1.

To compare the estimators we must compare their covariances, i.e., we
want to compare

(A′Σ−1A)−1 and (A′A)−1A′ΣA(A′A)−1.
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Following Rao (1967) (Lemma 2.c) or Baksalary and Puntanen (1991)
one can show that

(A′Σ−1A)−1 ≤ (A′A)−1A′ΣA(A′A)−1

with equality if and only if C(Σ−1A) = C(A).

The inequality is with respect to the Loewner partial ordering, i.e.,
C ≤ A if A− C is nonnegative definite.

For large n, the unweighted unbiased estimator of B has a larger
covariance than the weighted one, as expected since the weighted
estimator is the MLE.
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Note when C(Σ−1A) = C(A)

Under the restriction C(Σ−1A) = C(A), the MLE for the GCM is given
by the unweighted estimator.

This condition is fulfilled, for example when

I sphericity Σ = σ2I p, or

I intraclass covariance matrix Σ = σ2((1− ρ)I p + ρ11′) and A
includes a column vector of ones, e.g., A = [1 : A1].
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Testing the mean

Model: X = ABC + E , where E ∼ Np,N (0,Σ, IN).

Srivastava and Singull (2017a) tested the hypothesis

H : B = 0 vs. A : B 6= 0.

Four proposed tests

I p < N - two statistics based on the MLE and the unweighted
estimator, respectively (T1 and T2).

I p > N - two new statistics based on the trace of the variation
matrices due to the hypothesis (between sum of squares) and the
error (within sum of squares) (T3 and T4).
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LRT T1 based on MLEs

Given the MLEs the LRT is given as

λ
2/N
MLE =

|V + R̂1R̂
′
1|

|V + V 1|
,

where R̂1, V are given above, and V 1 = XC ′(CC ′)−1CX ′.
Using Box’s method for approximate the distribution of

T1 = −r log λ
2/N
MLE ,

one can show that for large N,

P0 (T1 > c) = P
(
χ2
f > c

)
,

where r = n − p + q − (q −m + 1)/2 and f = qm.

See Srivastava and Khatri (1979) for more details.
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Equivalently testing the hypothesis H : B = 0 one can test

H : η = 0 vs. A : η 6= 0,

where η = (A′A)1/2B(CC ′)1/2.

Using the unweighted estimator B̂ given above we have

η̂ = (A′A)1/2B̂(CC ′)1/2 ∼ Nq,m(η,∆, Im),

where

∆ = (A′A)−1/2A′ΣA(A′A)−1/2.

Based on the distribution of η̂ another LRT is given by

λ2/N =
|V ∗|

|V ∗ + W |
,

where V ∗ = n∆̂ ∼Wq(∆,N −m) and W = η̂η̂′ ∼
H
Wq(∆,m).
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LRT T2

Again using Box’s method to approximate the distribution, one can
shown that for large N the distribution of

T2 = −r log λ2/N

is given by

P0 (T2 > c) = P
(
χ2
f > c

)
,

where r = n − (q −m + 1)/2 and f = qm.

See Srivastava and Khatri (1979) for more details.
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Large p and small N - Test statistic T3, based on trW

For high dimensions, when N −m < p, then V is singular and none of
the tests given in above are applicable.

We will propose two new tests.

Again consider the variabel

η̂ ∼ Nq,m(η,∆, Im),

Under the hypothesis H : B = 0 (i.e., η = 0) we have

W = η̂η̂′ ∼Wq(∆,m).

We also see that W and Σ̂ are independently distributed.
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Test statistic based on trW

The mean and variance of the statistic trW , under the hypothesis
H : B = 0, are given by

E(trW ) = m tr∆,

var(trW ) = 2m tr∆2.

Under the assumption of normality, unbiased and consistent estimators of
tr∆ and tr∆2 are given by

t̂r∆ =
1

n
trV ∗,

t̂r∆2 =
1

(n − 1)(n + 2)

(
trV ∗2 − 1

n
(trV ∗)2

)
,

respectively. See Srivastava (2005) for details.
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Test statistic T3

One can show

T̃3 =
1√
m

trW −m tr∆√
2 tr∆2

→
H

N(0, 1).

Substituting unbiased and consistent estimators of tr∆ and tr∆2 we get
a test statistic, proposed by Srivastava and Fujikoshi (2006) and
Srivastava (2007), which is given by

T3 =
trW − m

n
trV ∗√

2m

(n − 1)(n + 2)

(
trV ∗2 − 1

n
(trV ∗)2

) →H N(0, 1).
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The test statistic T3 is invariant under the group of orthogonal
transformations, but not invariant under the units of measurements,
which is an undesirable feature.

That is, the test is not invariant under a diagonal transformation and the
test statistic T3 changes.

We will now propose a test that is invariant under diagonal
transformation.

We will also show that this new test performs better than the test above.
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Test statistic based on trWD−1

∆̂

The test statistic will be based on the quantity trWD−1
∆̂

, where D∆̂ is

the diagonal matrix with the diagonal elements of ∆̂.

More precise the test statistic is based on trWD−1V ∗ as

T4 =
ntrWD−1V ∗ − nqm/(n − 2)√

2m(trR̂
2
− q2/n)cq,n

,

where R̂ = D−1/2V ∗ V ∗D−1/2V ∗ and cq,n = 1 + trR̂
2
/q3/2 is an adjustment

factor converging to 1 in probability as (n, q)→∞, n = O(qδ), δ > 1/2
proposed by Srivastava and Du (2008).
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Test statistic T4

Define the population correlation matrix as

R = D−1/2∆ ∆D−1/2∆ .

It has been shown by Srivastava and Du (2008) that a consistent
estimator of trR2/q is given by

1

q

(
trR̂

2
− q2

n

)
.

Hence, for large n and q we have

T4
d
=

(ntr(WD−1V ∗)− qm)/
√
q√

2mtrR2/q
→
H

N(0, 1),

when (n, q)→∞ and under the assumptions n = O(qδ) for δ > 1/2,
1
q trR

2 = O(1) and 1
q2 trR4 = o(1) as q →∞.
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Compare the performance – ASL and power

To compare the four tests we can compute the attained significance level
(ASL) and the empirical power.

Let c be the critical value from the distribution considered for the test
statistics. With 10000 simulated replications under the null hypothesis,
the ASL is computed as

α̂ =
(# of tH ≥ c)

(# simulated replications)
,

where tH is the values of the test statistics derived from the simulated
data under the null hypothesis.

We set the nominal significance level to α = 5%.
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For the simulations let

A = (aij), aij ∼ U(0, 1), i = 1, ..., p, j = 1, ..., q

and C =

(
1′N1

0′N2

0′N1
1′N2

)
,

i.e., with m = 2.

For simplicity we will put N even and N1 = N2 = N/2.

Furthermore, N, p and q will vary depending on which asymptotic is
considered.
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Since the covariances for the estimators depending on Σ, we will use
three different covariance matrices for the simulation study.

(I): The first one is identity, i.e., Σ1 = I p.

Furthermore, let D j = diag(σ
(j)
1 , . . . , σ

(j)
p ), for j = 2, 3, be two different

diagonal matrices. Define σ
(2)
i = 2 + (p − i + 1)/p, for i = 1, . . . , p, and

σ
(3)
i , for i = 1, . . . , p, are independent observ- ations from

√
U [0, 2],

respectively.

Also, let R = (ρij), where ρij = (−1)i+j r |i−j|
f

.

(II)-(III): The other two covariance matrices that we will use are given as

Σj = D jRD j , with r = 0.2, f = 0.1, for j = 2, 3.
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To compute the empirical power we can either use the critical value c
from the asymptotic distribution, or we can use the estimated critical
value ĉ calculated from the simulated data under the null hypothesis, i.e.,
the critical value calculated from the empirical null distribution.

We will use the estimated critical value since the ASL is greatly affected
for some tests.

The empirical power is calculated from 10000 new replications simulated
under the alternative hypothesis when B = (bij) and bij = 0.1 if i + j is
even and zero otherwise.

Let tA be the value of the test statistic derived from the simulated data
under the alternative hypothesis.

The empirical power are given as

β̂ =
(# of tA ≥ ĉ)

(# simulated replications)
.
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ASL and empirical power for T1, T2, T3 and T4

p = 30 and N = 50

ASL Power ASL Power
q T1 T2 T1 T2 T3 T4 T3 T4

(I) 4 5.43 5.42 36.83 82.06 8.01 5.69 86.83 85.35
6 5.20 5.29 61.02 96.70 7.72 6.00 98.59 98.45
10 5.51 5.37 95.23 100.00 6.86 5.44 100.00 100.00
14 6.34 5.36 99.84 100.00 6.68 5.58 100.00 100.00
18 6.86 5.95 100.00 100.00 6.23 4.98 100.00 100.00
24 9.82 8.21 100.00 100.00 6.54 5.62 100.00 100.00

(II) 4 4.81 4.81 24.91 51.81 7.40 4.92 38.00 39.13
6 5.17 4.65 39.86 75.92 7.41 5.43 65.52 67.01
10 5.87 5.03 77.23 98.71 6.89 5.58 98.60 98.48
14 6.83 5.60 95.66 99.97 6.69 5.17 99.99 100.00
18 7.42 6.05 99.81 100.00 7.55 5.96 100.00 100.00
24 9.37 7.77 100.00 100.00 7.61 5.91 100.00 100.00

(III) 4 5.09 5.23 53.61 91.99 7.73 5.39 85.18 87.24
6 5.15 5.08 77.53 99.39 7.35 5.38 99.30 99.33
10 5.84 5.15 99.00 100.00 7.22 5.58 100.00 100.00
14 6.79 5.45 100.00 100.00 6.90 5.22 100.00 100.00
18 7.61 6.04 100.00 100.00 6.70 5.45 100.00 100.00
24 9.52 7.77 100.00 100.00 7.70 5.87 100.00 100.00
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One can see that for larger q, the significance level of test T1 and T2 are
greatly affected, while the ASL of T3 is affected for smaller q and slightly
larger than the true level for the rest.

The ASL of test T4 follows the true level.

From the empirical power we see that T2 performs much better than T1,
i.e., the unweighted estimator is preferred compared to the weighted
estimator given by the MLE.

Comparing the empirical power of all four tests, we see that T2, T3 and
T4 are comparable and perform much better than T1.

Since the test T4 has both good ASL and power that test should be
preferred.
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ASL and empirical power of T1 and T2 – (I)

q = 4 ASL Power q = 10 ASL Power
p, N T1 T2 T1 T2 p, N T1 T2 T1 T2

5, 8 9.60 7.74 4.96 5.36 10, 12 44.11 44.11 6.79 6.79
5, 12 5.54 5.31 6.58 6.73 10, 16 11.44 11.44 12.67 12.67
5, 16 5.30 5.21 7.59 7.68 10, 20 7.21 7.21 21.22 21.22
5, 32 5.21 5.06 11.03 11.65 10, 30 5.11 5.11 46.89 46.89
10, 12 16.76 5.49 5.67 8.14 20, 22 44.07 6.98 8.23 56.05
10, 16 5.99 5.35 6.89 9.15 20, 26 10.97 5.88 25.21 74.46
10, 20 5.60 5.16 8.36 11.90 20, 32 7.07 5.66 55.95 90.41
10, 30 5.16 4.91 14.09 18.52 20, 40 5.49 5.11 85.42 98.01
20, 22 16.63 5.19 5.12 25.50 30, 32 45.42 5.86 8.63 98.71
20, 26 6.51 4.85 8.99 33.18 30, 36 11.34 5.54 35.46 99.68
20, 32 5.67 5.22 15.65 40.71 30, 40 7.16 5.47 66.10 99.94
20, 40 5.11 5.35 28.55 52.59 30, 50 5.60 5.06 97.19 100.00
50, 52 17.45 5.13 7.28 98.40 50, 52 44.97 5.40 10.96 100.00
50, 56 5.89 5.03 16.34 99.08 50, 56 10.76 5.04 52.40 100.00
50, 70 5.12 5.17 62.91 99.87 50, 70 5.76 5.10 99.65 100.00
50, 100 4.91 5.50 98.30 100.00 50, 100 5.01 5.16 100.00 100.00
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ASL and empirical power of T1 and T2 – (II)

q = 4 ASL Power q = 10 ASL Power
p, N T1 T2 T1 T2 p, N T1 T2 T1 T2

5, 8 9.53 7.44 5.39 5.37 10, 12 44.66 44.66 6.06 6.06
5, 12 5.60 5.43 5.98 5.94 10, 16 11.22 11.22 9.08 9.08
5, 16 5.56 5.29 5.83 6.21 10, 20 7.40 7.40 12.42 12.42
5, 32 4.82 4.57 8.98 9.25 10, 30 5.92 5.92 22.26 22.26
10, 12 17.36 6.20 5.20 5.62 20, 22 46.44 6.95 6.68 33.22
10, 16 6.31 5.13 5.80 7.26 20, 26 11.38 6.19 15.19 45.01
10, 20 5.76 5.21 6.81 7.67 20, 32 6.56 6.01 36.27 62.33
10, 30 4.86 4.95 9.97 10.78 20, 40 5.97 5.25 60.09 82.00
20, 22 16.80 5.16 5.05 14.19 30, 32 44.73 6.24 7.92 81.63
20, 26 6.34 4.77 7.01 17.73 30, 36 11.07 5.80 24.67 90.41
20, 32 4.88 5.19 12.03 20.39 30, 40 7.50 5.77 43.44 94.57
20, 40 4.80 5.03 18.28 27.11 30, 50 5.64 5.28 82.46 99.33
50, 52 17.24 4.66 6.23 81.24 50, 52 44.86 5.29 9.02 99.99
50, 56 5.70 4.96 12.15 85.12 50, 56 11.25 5.25 33.78 100.00
50, 70 5.27 5.05 41.07 93.37 50, 70 5.67 4.84 95.07 100.00
50, 100 5.28 4.82 88.23 99.22 50, 100 5.23 5.35 100.00 100.00
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ASL and empirical power of T1 and T2 – (III)

q = 4 ASL Power q = 10 ASL Power
p, N T1 T2 T1 T2 p, N T1 T2 T1 T2

5, 8 9.36 7.25 5.72 5.57 10, 12 43.89 43.89 7.03 7.03
5, 12 5.72 5.70 6.57 6.65 10, 16 10.59 10.59 16.36 16.36
5, 16 5.67 5.40 7.01 7.27 10, 20 7.55 7.55 23.36 23.36
5, 32 4.72 4.71 11.43 11.12 10, 30 5.30 5.30 53.32 53.32
10, 12 16.17 5.63 5.97 8.80 20, 22 44.41 6.57 8.68 68.94
10, 16 6.18 5.54 7.45 10.77 20, 26 11.09 5.95 34.18 86.22
10, 20 5.49 5.33 10.50 14.40 20, 32 6.41 5.35 74.80 97.34
10, 30 5.44 5.46 18.65 22.01 20, 40 5.11 5.12 96.34 99.73
20, 22 16.07 5.04 6.82 27.38 30, 32 44.64 5.82 9.81 99.81
20, 26 6.09 5.09 10.10 33.79 30, 36 11.03 5.17 45.58 99.96
20, 32 5.52 4.96 19.29 43.59 30, 40 7.13 4.83 78.61 100.00
20, 40 5.38 5.02 32.80 56.44 30, 50 6.04 5.19 99.46 100.00
50, 52 16.40 5.01 6.79 99.60 50, 52 44.58 5.41 12.55 100.00
50, 56 5.81 5.10 22.03 99.87 50, 56 11.22 4.78 68.40 100.00
50, 70 5.44 5.39 76.21 99.98 50, 70 5.82 4.93 99.99 100.00
50, 100 4.95 5.44 99.78 100.00 50, 100 5.19 5.09 100.00 100.00
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Comparing test T1 and T2 for q = 4 and q = 10 one can see that the
ASL of T1 is greatly affected when p is close to N while the ASL of T2 is
affected just when p is close to N for smaller N and larger q, i.e., when
q = 10.

One can also see that the empirical power of the test T2 is similar or
better than T1. The test T1 has poor power for the cases when p is close
to N while T2 has good power in these cases. It is worth to note that the
empirical power of the test T1 is almost never greater then the empirical
power of T2.

Hence, again the unweighted estimator is preferred compared to the
weighted estimator given by the MLE.
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ASL and empirical power of T3 and T4 – (I)

q = 4 ASL Power q = 10 ASL Power
p, N T3 T4 T3 T4 p, N T3 T4 T3 T4

5, 8 13.30 13.75 6.49 6.66 10, 12 9.84 10.97 22.81 18.86
5, 16 9.92 7.95 9.47 8.88 10, 20 8.32 7.93 41.63 36.91
5, 32 8.06 5.93 16.95 16.00 10, 30 7.54 6.38 65.02 62.63
10, 12 10.88 9.85 8.47 7.86 20, 22 7.76 7.27 93.66 91.20
10, 20 9.05 6.91 11.27 10.93 20, 32 7.35 6.18 99.55 99.34
10, 30 8.56 6.36 16.34 15.24 20, 40 6.94 5.75 99.97 99.96
20, 22 8.42 6.74 28.00 26.19 30, 32 7.28 6.31 99.97 99.94
20, 32 8.05 5.87 41.60 40.64 30, 40 6.83 5.53 100.00 100.00
20, 40 8.04 5.64 52.21 51.33 30, 50 6.84 5.26 100.00 100.00
50, 52 7.32 5.01 98.66 98.39 50, 52 7.05 5.86 100.00 100.00
50, 70 7.50 4.90 99.83 99.84 50, 70 6.71 5.16 100.00 100.00
50, 100 6.92 4.53 100.00 100.00 50, 100 6.92 5.10 100.00 100.00
100, 50 7.84 5.37 100.00 100.00 100, 50 7.43 6.10 100.00 100.00
100, 70 7.70 5.16 100.00 100.00 100, 70 6.99 5.39 100.00 100.00
200, 100 7.13 4.34 100.00 100.00 200, 100 6.99 5.00 100.00 100.00
200, 150 7.29 4.58 100.00 100.00 200, 150 6.86 5.10 100.00 100.00

Martin Singull 61/90



ASL and empirical power of T3 and T4 – (II)

q = 4 ASL Power q = 10 ASL Power
p, N T3 T4 T3 T4 p, N T3 T4 T3 T4

5, 8 14.70 14.09 5.02 4.99 10, 12 10.93 10.68 8.58 8.83
5, 16 10.51 8.59 5.83 5.87 10, 20 8.74 7.25 13.04 14.54
5, 32 8.48 5.64 7.64 8.00 10, 30 7.71 6.08 18.77 23.06
10, 12 10.65 9.80 6.10 5.78 20, 22 8.22 7.12 47.07 47.20
10, 20 9.30 7.11 6.60 7.13 20, 32 7.93 6.46 70.65 71.38
10, 30 8.19 5.66 8.28 8.87 20, 40 7.47 5.82 84.82 84.95
20, 22 9.14 7.13 12.53 12.70 30, 32 6.78 6.03 90.79 89.65
20, 32 7.62 5.62 19.41 19.37 30, 40 6.99 5.75 96.96 96.54
20, 40 7.77 5.38 22.85 23.12 30, 50 7.33 5.76 99.40 99.40
50, 52 7.55 5.41 67.50 66.56 50, 52 7.17 5.74 100.00 100.00
50, 70 7.11 4.50 85.17 85.42 50, 70 7.20 5.47 100.00 100.00
50, 100 7.33 4.71 96.42 96.51 50, 100 6.72 4.88 100.00 100.00
100, 50 7.56 5.12 97.82 97.57 100, 50 7.20 5.34 100.00 100.00
100, 70 7.58 4.94 99.79 99.80 100, 70 6.75 4.94 100.00 100.00
200, 100 6.79 4.29 100.00 100.00 200, 100 6.86 4.94 100.00 100.00
200, 150 6.98 4.59 100.00 100.00 200, 150 6.79 4.72 100.00 100.00
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ASL and empirical power of T3 and T4 – (III)

q = 4 ASL Power q = 10 ASL Power
p, N T3 T4 T3 T4 p, N T3 T4 T3 T4

5, 8 14.26 13.61 6.81 5.88 10, 12 10.22 10.33 19.61 19.59
5, 16 9.98 8.38 8.29 8.41 10, 20 8.65 7.69 35.87 38.91
5, 32 8.40 6.01 13.11 14.44 10, 30 8.14 6.37 60.29 64.69
10, 12 11.40 9.67 7.79 8.02 20, 22 8.41 7.09 92.87 92.49
10, 20 9.36 7.20 9.82 10.33 20, 32 7.86 6.29 99.48 99.55
10, 30 8.74 6.06 13.13 14.62 20, 40 7.14 5.45 99.98 99.99
20, 22 8.76 6.86 28.05 26.93 30, 32 7.83 6.47 99.99 99.98
20, 32 7.96 5.67 46.67 45.95 30, 40 7.30 5.58 100.00 100.00
20, 40 7.66 5.43 58.70 58.21 30, 50 7.00 5.42 100.00 100.00
50, 52 7.94 5.42 99.46 99.35 50, 52 6.96 5.26 100.00 100.00
50, 70 7.30 4.75 99.97 99.96 50, 70 6.99 5.29 100.00 100.00
50, 100 6.75 4.55 100.00 100.00 50, 100 6.34 4.68 100.00 100.00
100, 50 8.31 5.56 100.00 100.00 100, 50 6.78 5.12 100.00 100.00
100, 70 7.10 4.65 100.00 100.00 100, 70 6.30 4.65 100.00 100.00
200, 100 6.88 4.41 100.00 100.00 200, 100 7.01 5.11 100.00 100.00
200, 150 7.05 4.20 100.00 100.00 200, 150 6.72 4.80 100.00 100.00
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If we compare T3 and T4 we see that the ASL for both the tests are
similar meanwhile the ASL for T4 seems to follow the true level slightly
better.

The empirical power of the two test are similar, even if the power for test
T3 is marginally better.

Observe that these two test also work and behave good when the
dimension p is larger than N.

Comparing all four tests we see that the test T2 and T4 have best ASL.
All four test are greatly affected when p is close to N for smaller N and
larger q but T3 and T4 not as much as T1 and T2.

The empirical power of T2, T3 and T4 are similar and all better than T1.
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Concluding Remarks - Mean testing

I The MLE for the mean for a Growth Curve model is a weighted
estimator with the inverse of the sample covariance matrix, which is
very unstable for p close to N and singular for N less than p. This
fact makes the LRT and MLE not suitable for ’large p and small N’.

I We have modified the MLE to an unbiased and unweighted
estimator, just by removing the inverse of the sample covariance
matrix.

I We have proposed three new test statistic, which is based on the
unweighted estimator.

I We have shown by simulation that these three test statistics, based
on the unweighted estimator, are preferred compared to the LRT
based on the MLE, i.e., the weighted estimator.

Martin Singull 65/90



Testing Sphericity

An unbiased and consistent estimator of the covariance matrix Σ is given
by

nΣ̂ = V = X (IN − PC ′) X ′ ∼Wp (Σ, n) ,

where n = N −m, irrespective of which estimator of B is used.

We will now test the hypothesis about sphericity, i.e.,

H : Σ = σ2I p vs. A : Σ > 0.

We will give four different test statistics with corresponding asymptotic
null distribution.

Martin Singull 66/90



Standard Likelihood Ratio Test for sphericity

The standard LRT testing the hypothesis H is based on the MLEs.

This test should not be preferred since it is based on a biased estimator
of Σ, and the bias depending on the design matrix A.

Anyway, the standard LRT as given by

λ1 =
|V + (I − PV

A )V 1(I − PV
A )′|(

trV + tr(I − PV
A )V 1

p

)p ,

where V , V 1 and PV
A are given above.
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One can show that for large N,

PH (−κ1 log λ1 > c) = P
(
χ2
f1 > c

)
,

where

κ1 = n − 2

(
2p2 + p + 2

12p
− m(p − q)

2p
+

qm(p − q)(p + m)

2p(p2 + p − 2)

)

and f1 =
p(p + 1)

2
− 1.

Martin Singull 68/90



LRT for sphericity based on the unweighted est. of B

Using the estimator for Σ based on the unweighted estimator for B, i.e.,
Σ̂UW , we can propose another LR test statistic.

This will be a modified LRT and not exact. The test statistic is based on(
X − AB̂C

)(
X − AB̂C

)
= V + (I − PA)V 1(I − PA).

where PA = A
(
A′A

)−1 A′, and is given by

λ2 =
|V + (I − PA)V 1(I − PA)′|(

trV + tr(I − PA)V 1

p

)p .

Given this modified LRT we will assume the same asymptotic distribution
and correction factor κ1 as for λ1.
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LRT for sphericity based only on the matrix V

We can also derive a LRT using the fact that the sum of squares matrix
is Wishart distributed as V ∼Wp (Σ, n).

This test statistic will be the same as under a linear model assumption
and is given by

λ3 =
|V |(
trV
p

)p .

One can show that for large N,

PH (−κ3 log λ3 > c) = P
(
χ2
f1 > c

)
,

where κ3 = n − 2p2 + p + 2

6p
.
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Test for sphericity based on trV and trV 2

Following Srivastava (2005) we will give a test statistic based on trV and
trV 2. Let a1 and a2 be defined as

a1 =
trΣ

p
and a2 =

trΣ2

p
,

and let σi , i = 1, ..., p be the eigenvalues of Σ.

From the Cauchy-Schwarz inequality, it follows that

a21 =
(
∑p

i=1 σi )
2

p
≤
∑p

i=1 σ
2
i

p
= a2,

with equality if and only if σ1 = ... = σp = σ2, i.e., if and only if
Σ = σ2I p.
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Srivastava (2005) defined a measure of sphericity given by

λ4 =
a2
a21
− 1,

which is ≥ 0 and takes the value 0 if and only if Σ = σ2I p. Srivastava
(2005) proposed a test based on unbiased and consistent estimators of a1
and a2, given as

â1 =
trV
np

,

â2 =
1

p(n − 1)(n + 2)

(
trV 2 − 1

n
(trV )2

)
,

respectively. Furthermore, the asymptotic distribution for â1 is given by
Srivastava (2005) and using this we can get an unbiased estimator of a21
as

â21 − 2
â2
np
,

since E(â21) = var(â1) + (E(â1))2 = 2
a2
np

+ a21.
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The test statistic that we propose for sphericity is

λ̂4 =
â2

â21 − cf
â2
np
,

− 1,

where cf is a correction factor.

The correction factor should be cf = 2 to make the denominator
unbiased, but this will not with certainty make the statistic λ̂4 unbiased.

We have observed through simulation that cf = 1 is a better choice.
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Under the null hypothesis that Σ = σ2I p, and n = O(pδ), δ > 1/2,
asymptotically as (n, p)→∞

n

2
λ̂4 ∼ N(0, 1).

Note that it is a one-sided test for testing the hypothesis that λ4 = 0 vs.
λ4 > 0.

Also, note that the test statistic based on λ̂4 can be performed for all
values of n and p as opposed to the test based on the likelihood ratio
test which requires that n ≥ p.
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Compare the performance

To compare the performance for the different tests we can compute the
attained significance level (ASL) and the empirical power.

Let c be the critical value from the distribution considered for the test
statistics.

With 10, 000 simulated replications under the null hypothesis, the ASL is
computed as

α̂ =
(# of tH ≥ c)

(# simulated replications)
,

where tH is the values of the test statistics derived from the simulated
data under the null hypothesis. We set the nominal significance level to
α = 5%.
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For the simulations let

A1 =

(
1 1 · · · 1
1 2 · · · p

)′
or A2 = (aij), where aij ∼ U(0, 2), i = 1, ..., p, j = 1, 2 and

C =

(
1′N1

0′N2

0′N1
1′N2

)
,

i.e., with q = 2 and m = 2. For simplicity we will choose N even and
N1 = N2 = N/2.

For the power simulations let D = diag(σ1, . . . , σp) and define
σi = 2 + (p − i + 1)/p, for i = 1, . . . , p, Also, let R = (ρij), where

ρij = (−1)i+j r |i−j|
f

. Under the alternatives we will assume the covariance
matrix

ΣA = DRD, with r = 0.2 and f = 0.1.

Martin Singull 76/90



The empirical power is calculated from 10, 000 new replications simulated
under the alternative hypothesis when Σ = ΣA.

Let tA be the value of the test statistic derived from the simulated data
under the alternative hypothesis. The empirical power is given as

β̂ =
(# of tA ≥ ĉ)

(# simulated replications)
,

where ĉ is the estimated critical value calculated from the simulated data
under the null hypothesis, i.e., the critical value calculated from the
empirical null distribution.
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A1

ASL Power
N p λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

8 4 8.17 2.01 6.90 3.99 10.67 12.90 9.92 14.11
8 6 33.15 2.45 25.18 4.55 7.22 13.32 6.67 17.24
8 16 - - - 4.90 - - - 33.03
12 3 4.96 3.24 4.91 4.20 19.76 20.86 16.89 17.86
12 6 7.80 2.92 6.63 4.66 23.16 26.86 20.68 29.73
12 9 27.43 5.34 22.52 5.19 17.21 25.97 15.90 38.13
12 24 - - - 4.98 - - - 63.47
20 5 4.90 3.44 4.88 5.22 49.04 50.25 43.69 47.77
20 10 8.30 4.14 7.37 5.23 56.61 60.42 51.24 70.82
20 15 27.21 11.71 26.10 5.62 48.19 55.88 43.05 80.65
20 40 - - - 5.19 - - - 96.49
60 15 5.71 4.93 5.59 5.88 99.99 99.99 99.98 99.99
60 45 57.03 49.96 61.70 5.83 100.00 100.00 99.99 100.00
60 120 - - - 5.03 - - - 100.00
100 25 5.89 5.45 5.84 5.31 100.00 100.00 100.00 100.00
100 50 15.77 14.45 16.03 5.50 100.00 100.00 100.00 100.00
100 75 88.51 86.06 90.46 5.50 100.00 100.00 100.00 100.00
100 200 - - - 5.15 - - - 100.00
200 50 6.23 5.87 6.31 5.02 100.00 100.00 100.00 100.00
200 100 31.76 30.42 32.32 4.96 100.00 100.00 100.00 100.00
200 400 - - - 4.80 - - - 100.00
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A2

ASL Power
N p λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

8 4 8.02 1.85 6.52 4.01 13.15 16.95 10.61 13.20
8 6 33.25 2.64 25.12 4.59 7.06 12.09 6.95 18.11
8 16 - - - 5.10 - - - 32.13
12 3 5.09 3.43 5.32 4.23 16.27 15.18 15.88 17.68
12 6 8.16 2.77 6.96 4.73 22.06 26.52 19.32 29.77
12 9 27.77 5.58 22.86 5.36 17.44 24.67 15.43 37.57
12 24 - - - 4.94 - - - 63.77
20 5 5.48 3.63 5.29 5.34 45.67 46.68 42.25 47.94
20 10 8.33 4.43 7.34 5.65 57.70 60.23 52.83 69.89
20 15 26.94 11.52 25.42 5.94 48.73 55.91 44.15 80.95
20 40 - - - 5.21 - - - 96.31
60 15 5.83 5.08 5.77 6.29 99.99 99.99 99.99 100.00
60 45 56.71 49.43 60.46 5.82 99.99 100.00 99.97 100.00
60 120 - - - 5.71 - - - 100.00
100 25 5.51 5.04 5.68 5.16 100.00 100.00 100.00 100.00
100 50 15.29 13.90 15.55 5.19 100.00 100.00 100.00 100.00
100 75 88.02 85.74 90.23 5.26 100.00 100.00 100.00 100.00
100 200 - - - 5.08 - - - 100.00
200 50 6.62 6.34 6.49 5.58 100.00 100.00 100.00 100.00
200 100 32.20 31.06 32.90 5.23 100.00 100.00 100.00 100.00
200 400 - - - 5.51 - - - 100.00
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Concluding Remarks – Sphericity

We see that when testing sphericity, λ4 seems to be the best.

For small p compared to N there is no really difference, but when p is
larger, λ4 is definitely better with controlled ASL and good power.

Observe also that the test statistic λ4 works fine for high dimensions, i.e.,
when p > N.
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Testing intraclass covariance structure

Now we consider the hypothesis testing intraclass (IC) covariance
structure, i.e.,

H : Σ = ΣIC ≡ σ2((1− ρ)I p + ρ11′) vs. A : Σ > 0,

with − 1

p − 1
< ρ < 1.

We will give four different test statistics with corresponding asymptotic
null distribution.
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Standard LRT for IC covariance structure

The standard LRT, testing the hypothesis H is based on the MLEs, given
above. This test should not be preferred, since it is not based on a
unbiased estimator of Σ.

Anyway, the standard LRT is given by Khatri (1973) as

γ1 =
|V + (I − PV

A )V 1(I − PV
A )′|(

1′V 1

p

)(
trP1′V + tr(I − PA)V 1

p − 1

)p−1 .

As usual, one can show that for large N that

PH (−n log γ1 > c) = P
(
χ2
f2 > c

)
,

where f2 =
p(p + 1)

2
− 2.
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LRT for IC covariance structure based on the unweighted
estimator of B

Again we can use the estimator of Σ based on the unweighted estimator
for B, i.e., the estimator Σ̂UW .

The modified LRT statistic is given by

γ2 =
|V + (I − PA)V 1(I − PA)′|(

1′V 1

p

)(
trP1′V + tr(I − PA)V 1

p − 1

)p−1 .

We assume the same asymptotic distribution for γ2 as for γ1 above.

Martin Singull 83/90



LRT for IC structure based only on the matrix V

We can also derive a LRT using the fact that V ∼Wp (Σ, n).

This test statistic will be the same as under a linear model assumption
and is given by

γ3 =
|V |(

1′V 1

p

)(
ptrV − 1′V 1

p(p − 1)

)p−1 .

For large N, one can shown that

PH (−ν3 log γ3 > c) = P
(
χ2
f2 > c

)
,

where ν3 = n − p(p + 1)2(2p − 3)

6(p − 1)(p2 + p − 4)
.
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Test for intraclass covariance structure based on a measure
of sphericity

Let the matrix Q be an orthogonal matrix of order p and let the first
column be a normalized column of ones, i.e.,

Q =
(
p−1/21p Q2

)
: p × p.

Given the transformation X ∗ = Q ′X we have the following model

X ∗ ∼ Np,N (A∗BC ,Σ∗, IN) ,

where

A∗ = Q ′A,

Σ∗ = Q ′ΣQ =

(
σ∗11 σ∗12
σ∗21 Σ∗22

)
,

and σ∗12 = (σ∗21)′ : 1× (p − 1), Σ∗22 : (p − 1)× (p − 1).

Martin Singull 85/90



However, under the null hypothesis H2 we have

Σ∗ = Q ′ΣICQ =

(
σ2(1 + (p − 1)ρ) 0′

0 σ2(1− ρ)I p−1

)
.

Thus, instead of direct test H we will test the hypothesis

H : Σ∗22 = σ̃2I p−1 vs. A : Σ∗22 > 0,

for some σ̃2.

Hypothesis H is tested using the same procedure as for testing sphericity
above.
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Compare the performance
Again, for the simulations let

A1 =

(
1 1 · · · 1
1 2 · · · p

)′
or A2 = (aij), where aij ∼ U(0, 2), i = 1, ..., p, j = 1, 2 and

C =

(
1′N1

0′N2

0′N1
1′N2

)
,

i.e., with q = 2 and m = 2. For simplicity we will choose N even and
N1 = N2 = N/2.

For the power simulations let D = diag(σ1, . . . , σp) and define
σi = 2 + (p − i + 1)/p, for i = 1, . . . , p, Also, let R = (ρij), where

ρij = (−1)i+j r |i−j|
f

. Under the alternatives we will assume the covariance
matrix

ΣA = DRD, with r = 0.2 and f = 0.1.
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A1

ASL Power
N p γ1 γ2 γ3 γ4 γ1 γ2 γ3 γ4
12 3 9.13 6.26 5.03 3.12 18.38 28.13 16.10 11.35
12 4 10.66 5.93 5.17 3.93 19.93 29.44 18.98 20.40
12 6 19.13 9.01 6.91 4.83 20.52 18.60 19.19 28.11
12 24 - - - 5.04 - - - 63.87
24 6 8.36 6.18 5.23 5.27 60.53 53.58 57.87 61.42
24 8 12.36 8.63 5.50 5.36 67.69 46.71 63.59 73.10
24 12 30.56 22.41 7.98 5.46 71.88 33.11 67.12 84.05
24 48 - - - 4.90 - - - 99.25
48 12 11.92 10.01 5.26 5.72 99.59 82.08 99.43 99.71
48 16 22.64 19.64 6.13 5.99 99.83 79.91 99.74 99.95
48 24 71.34 66.74 9.69 5.38 99.90 80.45 99.85 99.99
48 96 - - - 5.12 - - - 100.00
96 24 24.46 23.14 5.55 5.26 100.00 99.84 100.00 100.00
96 32 57.37 55.46 7.15 5.67 100.00 99.99 100.00 100.00
96 48 99.84 99.78 15.03 5.30 100.00 100.00 100.00 100.00
96 192 - - - 5.56 - - - 100.00
192 48 64.78 63.99 6.22 5.37 100.00 100.00 100.00 100.00
192 64 98.47 98.35 8.42 5.49 100.00 100.00 100.00 100.00
192 96 100.00 100.00 31.05 5.36 100.00 100.00 100.00 100.00
192 384 - - - 5.09 - - - 100.00
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A2

ASL Power
N p γ1 γ2 γ3 γ4 γ1 γ2 γ3 γ4
12 3 11.40 6.53 5.19 3.19 16.72 23.28 16.46 11.25
12 4 12.25 6.29 5.15 4.01 14.82 22.95 18.36 19.69
12 6 22.35 9.06 7.02 4.48 18.76 31.58 19.29 28.40
12 24 - - - 5.12 - - - 63.79
24 6 10.39 6.80 5.62 5.65 56.51 60.33 56.47 59.62
24 8 15.75 8.64 5.35 5.15 61.58 68.80 63.60 72.86
24 12 33.49 22.85 7.91 5.77 69.61 71.31 68.42 84.62
24 48 - - - 5.62 - - - 99.15
48 12 15.32 10.66 5.42 5.79 99.39 99.24 99.41 99.62
48 16 28.67 20.44 5.88 5.73 99.73 99.56 99.74 99.90
48 24 77.86 68.51 9.77 5.15 99.77 99.75 99.80 99.99
48 96 - - - 5.53 - - - 100.00
96 24 36.44 25.51 5.73 5.45 100.00 100.00 100.00 100.00
96 32 64.05 56.28 7.05 5.60 100.00 100.00 100.00 100.00
96 48 99.87 99.80 14.97 5.21 100.00 100.00 100.00 100.00
96 192 - - - 4.90 - - - 100.00
192 48 76.61 68.33 6.58 5.23 100.00 100.00 100.00 100.00
192 64 99.05 98.43 8.56 5.28 100.00 100.00 100.00 100.00
192 96 100.00 100.00 31.90 5.42 100.00 100.00 100.00 100.00
192 384 - - - 5.18 - - - 100.00
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Concluding Remarks – IC covariance structure

For testing the intraclass covariance structure we see that test statistic γ4
controls the ASL better then the others.

Also the power is better with γ4 for most of the cases.

Note also that γ3 seems to behave pretty well with controlled ASL and
good power.

Observe again that test statistic γ4 works fine for high dimensions.
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