More on the Growth Curve model

Martin Singull
Department of Mathematics
Linköping university，Sweden

Example - Potthoff \& Roy (1964)

Dental measurements on eleven girls and sixteen boys at four different ages $(8,10,12,14)$ were taken. Each measurement is the distance, in millimeters, from the center of pituitary (hypophysis) to pterygo-maxillary fissure.

$$
\begin{aligned}
& \boldsymbol{X}=\left(x_{1}, \ldots, x_{27}\right) \\
& =\left(\begin{array}{cccccccccc}
21 & 21 & 20.5 & 23.5 & 21.5 & 20 & 21.5 & 23 & 20 & \ldots \\
16.5 & 24.5 & 26 & 21.5 & 23 & 20 & 25.5 & 24.5 & 22 & \ldots \\
\ldots & 24 & 23 & 27.5 & 23 & 21.5 & 17 & 22.5 & 23 & 22 \\
20 & 21.5 & 24 & 24.5 & 23 & 21 & 22.5 & 23 & 21 & \ldots \\
19 & 25 & 25 & 22.5 & 22.5 & 23.5 & 27.5 & 25.5 & 22 & \ldots \\
\ldots & 21.5 & 20.5 & 28 & 23 & 23.5 & 24.5 & 25.5 & 24.5 & 21.5 \\
21.5 & 24 & 24.5 & 25 & 22.5 & 21 & 23 & 23.5 & 22 & \ldots \\
19 & 28 & 29 & 23 & 24 & 22.5 & 26.5 & 27 & 24.5 & \ldots \\
\ldots & 24.5 & 31 & 31 & 23.5 & 24 & 26 & 25.5 & 26 & 23.5 \\
23 & 25.5 & 26 & 26.5 & 23.5 & 22.5 & 25 & 24 & 21.5 & \ldots \\
19.5 & 28 & 31 & 26.5 & 27.5 & 26 & 27 & 28.5 & 26.5 & \ldots \\
\ldots & 25.5 & 26 & 31.5 & 25 & 28 & 29.5 & 26 & 30 & 25
\end{array}\right) .
\end{aligned}
$$

Growth Curve Model (Potthoff and Roy, 1964)

Definition. Let $\boldsymbol{X}: p \times n$ and $\boldsymbol{B}: q \times k$ be the observation and parameter matrices, respectively, and let $\boldsymbol{A}: p \times q$ and $\boldsymbol{C}: k \times n$ be the within and between individual design matrices, respectively. Suppose that $q \leq p$ and $p \leq n-\mathrm{r}(\boldsymbol{C})$.

The Growth Curve model (GCM) is given by

$$
\boldsymbol{X}=\boldsymbol{A B C}+\boldsymbol{E},
$$

where $\boldsymbol{E} \sim N_{p, n}\left(\mathbf{0}, \boldsymbol{\Sigma}, \boldsymbol{I}_{n}\right)$.

Example, cont.

Assume that we want to model linear growth, i.e.,

$$
\boldsymbol{\mu}_{i}=\left(\begin{array}{c}
b_{0 i}+8 b_{1 i} \\
b_{0 i}+10 b_{1 i} \\
b_{0 i}+12 b_{1 i} \\
b_{0 i}+14 b_{1 i}
\end{array}\right), \quad \text { for } i=1,2 .
$$

For this we may use the parameter and design matrices

$$
\begin{gathered}
\boldsymbol{B}=\left(\begin{array}{ll}
b_{01} & b_{02} \\
b_{11} & b_{12}
\end{array}\right), \\
\boldsymbol{A}=\left(\begin{array}{cc}
1 & 8 \\
1 & 10 \\
1 & 12 \\
1 & 14
\end{array}\right) \quad \text { and } \quad \boldsymbol{C}=\left(\begin{array}{ll}
\mathbf{1}_{11}^{\prime} & \mathbf{0}_{16}^{\prime} \\
\mathbf{0}_{11}^{\prime} & \mathbf{1}_{16}^{\prime}
\end{array}\right) .
\end{gathered}
$$

Growth Curve Model - MLEs

The MLEs for the parameters \boldsymbol{B} and $\boldsymbol{\Sigma}$ are given by

$$
\widehat{\boldsymbol{B}}_{M L E}=\left(\boldsymbol{A}^{\prime} \boldsymbol{S}^{-1} \boldsymbol{A}\right)^{-} \boldsymbol{A}^{\prime} \boldsymbol{S}^{-1} \boldsymbol{X} \boldsymbol{C}^{\prime}\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-}+\left(\boldsymbol{A}^{\prime}\right)^{\circ} \boldsymbol{Z}_{1}+\boldsymbol{A}^{\prime} \boldsymbol{Z}_{2} \boldsymbol{C}^{\circ \prime} \text {, i.e., }
$$

$\boldsymbol{A} \widehat{\boldsymbol{B}}_{M L E} \boldsymbol{C}=\boldsymbol{P}_{\mathrm{A}, \boldsymbol{S}} \boldsymbol{X} \boldsymbol{P}_{\boldsymbol{C}^{\prime}}$,

$$
n \widehat{\boldsymbol{\Sigma}}_{M L E}=\left(\boldsymbol{X}-\boldsymbol{A} \widehat{\boldsymbol{B}}_{M L E} \boldsymbol{C}\right)\left(\boldsymbol{X}-\boldsymbol{A} \widehat{\boldsymbol{B}}_{M L E} \boldsymbol{C}\right)^{\prime}=\underbrace{\widehat{\boldsymbol{R}}_{1} \widehat{\boldsymbol{R}}_{1}^{\prime}}_{=\boldsymbol{S}}+\widehat{\boldsymbol{R}}_{2} \widehat{\boldsymbol{R}}_{2}^{\prime},
$$

where

$$
\begin{aligned}
\widehat{\boldsymbol{R}}_{1} & =\boldsymbol{X}\left(\boldsymbol{I}_{n}-\boldsymbol{P}_{\boldsymbol{C}^{\prime}}\right) \\
\widehat{\boldsymbol{R}}_{2} & =\left(\boldsymbol{I}_{P}-\boldsymbol{P}_{\mathbf{A}, \boldsymbol{S}}\right) \boldsymbol{X} \boldsymbol{P}_{\boldsymbol{C}^{\prime}}, \\
\boldsymbol{S} & =\widehat{\boldsymbol{R}}_{1} \widehat{\boldsymbol{R}}_{1}^{\prime}=\boldsymbol{X}\left(\boldsymbol{I}_{n}-\boldsymbol{P}_{\boldsymbol{C}^{\prime}}\right) \boldsymbol{X}^{\prime}, \\
\boldsymbol{P}_{\boldsymbol{C}^{\prime}} & =\boldsymbol{C}^{\prime}\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-} \boldsymbol{C}=\text { projection on } \mathcal{C}\left(\boldsymbol{C}^{\prime}\right), \\
\boldsymbol{P}_{\mathbf{A}, \boldsymbol{S}} & =\boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{S}^{-1} \boldsymbol{A}\right)^{-} \boldsymbol{A}^{\prime} \boldsymbol{S}^{-1}=\text { projection on } \mathcal{C}_{\boldsymbol{S}}(\boldsymbol{A}) .
\end{aligned}
$$

Growth Curve Model - MLEs

The MLEs for the parameters \boldsymbol{B} and $\boldsymbol{\Sigma}$ are given by

$$
\widehat{\boldsymbol{B}}_{M L E}=\left(\boldsymbol{A}^{\prime} \boldsymbol{S}^{-1} \boldsymbol{A}\right)^{-} \boldsymbol{A}^{\prime} \boldsymbol{S}^{-1} \boldsymbol{X} \boldsymbol{C}^{\prime}\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-}+\left(\boldsymbol{A}^{\prime}\right)^{\circ} \boldsymbol{Z}_{1}+\boldsymbol{A}^{\prime} \boldsymbol{Z}_{2} \boldsymbol{C}^{\circ \prime}, \text { i.e., }
$$

$\boldsymbol{A} \widehat{\boldsymbol{B}}_{M L E} \boldsymbol{C}=\boldsymbol{P}_{\mathrm{A}, S} \boldsymbol{X} \boldsymbol{P}_{\boldsymbol{C}^{\prime}}$,

$$
n \widehat{\boldsymbol{\Sigma}}_{M L E}=\left(\boldsymbol{X}-\boldsymbol{A} \widehat{\boldsymbol{B}}_{M L E} \boldsymbol{C}\right)\left(\boldsymbol{X}-\boldsymbol{A} \widehat{\boldsymbol{B}}_{M L E} \boldsymbol{C}\right)^{\prime}=\underbrace{\widehat{\boldsymbol{R}}_{1} \widehat{\boldsymbol{R}}_{1}^{\prime}}_{=\boldsymbol{S}}+\widehat{\boldsymbol{R}}_{2} \widehat{\boldsymbol{R}}_{2}^{\prime}
$$

where

$$
\begin{aligned}
\widehat{\boldsymbol{R}}_{1} & =\boldsymbol{X}\left(\boldsymbol{I}_{n}-\boldsymbol{P}_{\boldsymbol{C}^{\prime}}\right), \\
\widehat{\boldsymbol{R}}_{2} & =\left(\boldsymbol{I}_{P}-\boldsymbol{P}_{\mathbf{A}, S}\right) \boldsymbol{X} \boldsymbol{P}_{\boldsymbol{C}^{\prime}}, \\
\boldsymbol{S} & =\widehat{\boldsymbol{R}}_{1} \widehat{\boldsymbol{R}}_{1}^{\prime}=\boldsymbol{X}\left(\boldsymbol{I}_{n}-\boldsymbol{P}_{\boldsymbol{C}^{\prime}}\right) \boldsymbol{X}^{\prime}, \\
\boldsymbol{P}_{\boldsymbol{C}^{\prime}} & =\boldsymbol{C}^{\prime}\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-} \boldsymbol{C}=\text { projection on } \mathcal{C}\left(\boldsymbol{C}^{\prime}\right), \\
\boldsymbol{P}_{\mathbf{A}, \boldsymbol{S}} & =\boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{S}^{-1} \boldsymbol{A}\right)^{-} \boldsymbol{A}^{\prime} \boldsymbol{S}^{-1}=\text { projection on } \mathcal{C}_{S}(\boldsymbol{A}) .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{C}_{\boldsymbol{S}}(\boldsymbol{A}) \otimes \mathcal{C}\left(\boldsymbol{C}^{\prime}\right) \boxplus\left(\mathcal{C}_{\boldsymbol{s}}(\boldsymbol{A}) \otimes \mathcal{C}\left(\boldsymbol{C}^{\prime}\right)\right)^{\perp} \\
& \quad=\left(\mathcal{C}_{\boldsymbol{S}}(\boldsymbol{A}) \otimes \mathcal{C}\left(\boldsymbol{C}^{\prime}\right)\right) \boxplus \mathcal{C}_{\boldsymbol{S}}(\boldsymbol{A})^{\perp} \otimes \mathcal{C}\left(\boldsymbol{C}^{\prime}\right) \boxplus \mathcal{V} \otimes \mathcal{C}\left(\boldsymbol{C}^{\prime}\right)^{\perp}
\end{aligned}
$$

$$
\mathcal{C}\left(\boldsymbol{C}^{\prime}\right) \quad \mathcal{C}\left(\boldsymbol{C}^{\prime}\right)^{\perp}
$$

$$
\begin{aligned}
& \widehat{\boldsymbol{R}}_{1}=\boldsymbol{X}\left(\boldsymbol{I}_{n}-\boldsymbol{P}_{\boldsymbol{C}^{\prime}}\right) \\
& \widehat{\boldsymbol{R}}_{2}=\left(\boldsymbol{I}_{p}-\boldsymbol{P}_{\mathbf{A}, \boldsymbol{S}}\right) \boldsymbol{X} \boldsymbol{P}_{\boldsymbol{C}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{A} \widehat{\boldsymbol{B}}_{M L E} \boldsymbol{C} & =\boldsymbol{P}_{\boldsymbol{A}, \mathbf{S}} \boldsymbol{X} \boldsymbol{P}_{\boldsymbol{C}^{\prime}}, \\
n \widehat{\boldsymbol{\Sigma}}_{M L E} & =\widehat{\boldsymbol{R}}_{1} \widehat{\boldsymbol{R}}_{1}^{\prime}+\widehat{\boldsymbol{R}}_{2} \widehat{\boldsymbol{R}}_{2}^{\prime} .
\end{aligned}
$$

Example - Potthoff \& Roy (1964), cont.

The MLEs for the Example are given by

$$
\widehat{\boldsymbol{B}}_{M L E}=\left(\begin{array}{cc}
17.4254 & 15.8423 \\
0.4764 & 0.8268
\end{array}\right)
$$

and

$$
\widehat{\boldsymbol{\Sigma}}=\left(\begin{array}{llll}
5.1192 & 2.4409 & 3.6105 & 2.5222 \\
2.4409 & 3.9279 & 2.7175 & 3.0623 \\
3.6105 & 2.7175 & 5.9798 & 3.8235 \\
2.5222 & 3.0623 & 3.8235 & 4.6180
\end{array}\right)
$$

Properties of the Estimators

Let $\mathrm{r}(A)=q$ and $\mathrm{r}(C)=k$, the mean and covariance for $\widehat{\boldsymbol{B}}_{M L E}$ are (Kollo and von Rosen, 2005)

$$
\begin{aligned}
& \mathrm{E}\left(\widehat{\boldsymbol{B}}_{M L E}\right)=\boldsymbol{B}, \quad \text { and } \\
& \mathrm{D}\left(\widehat{\boldsymbol{B}}_{M L E}\right)=\frac{n-k-1}{n-k-1-(p-q)}\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1} \otimes\left(\boldsymbol{A}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)^{-1}
\end{aligned}
$$

if $n-k-1-(p-q)>0$, and

$$
\mathrm{E}\left(\widehat{\boldsymbol{\Sigma}}_{M L E}\right)=\boldsymbol{\Sigma}-\frac{k}{n} \frac{n-k-1-2(p-q)}{n-k-1-(p-q)} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime} .
$$

The bias depends on the design \boldsymbol{A} and thus it could be significant.
Also, note that since $q \leq p \leq n$ we have $\frac{n-k-1}{n-k-1-(p-q)} \geq 1$.

Example - p Time Points and n Observations

In a small simulation example we may use the parameters and designs

$$
\begin{gathered}
\boldsymbol{B}=\left(\begin{array}{cc}
b_{01} & b_{02} \\
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right)=\left(\begin{array}{cc}
-0.0134 & -0.0017 \\
0.0098 & 0.0027 \\
-0.0021 & -0.0011 \\
0.0001 & 0.0001
\end{array}\right), \\
\boldsymbol{A}=\left(\begin{array}{cccc}
1 & t_{1} & t_{1}^{2} & t_{1}^{3} \\
1 & t_{2} & t_{2}^{2} & t_{2}^{3} \\
\vdots & \vdots & \vdots & \vdots \\
1 & t_{p} & t_{p}^{2} & t_{p}^{3}
\end{array}\right) \quad \text { and } \quad \boldsymbol{C}=\left(\begin{array}{cc}
\mathbf{1}_{n_{1}}^{\prime} & \mathbf{0}_{n_{2}}^{\prime} \\
\mathbf{0}_{n_{1}}^{\prime} & \mathbf{1}_{n_{2}}^{\prime}
\end{array}\right),
\end{gathered}
$$

where we have used $q=4$ (i.e., cubic growth) and $k=2$ groups for simplicity with $n_{1}=n_{2}=n / 2$. Furthermore, we put $t_{1}=0$ and

$$
t_{i}=i \frac{10}{p-1}, \quad \text { for } i=1, \ldots, p-1
$$

$$
n_{1}=n_{2}=25 \text { with } p=12 \leq n-k=48
$$

$$
n_{1}=n_{2}=25 \text { with } p=24 \leq n-k=48
$$

$$
n_{1}=n_{2}=25 \text { with } p=48 \leq n-k=48
$$

Unweighted Estimator of B

A natural alternative, proposed by Srivastava \& Singull (2017a,b), to the MLE would be an unweighted estimator of \boldsymbol{B} given by

$$
\widehat{B}=\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime} \boldsymbol{X} C^{\prime}\left(\boldsymbol{C} C^{\prime}\right)^{-1} .
$$

This estimator is simpler than the MLE, since we do not need to calculate the inverse of the sum of squares matrix \boldsymbol{S}^{-1}.

The distribution of the estimator is given by

$$
\widehat{\boldsymbol{B}} \sim N_{q, m}\left(\boldsymbol{B},\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1},\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1}\right)
$$

i.e., we have

$$
\mathrm{E}(\widehat{\boldsymbol{B}})=\boldsymbol{B}, \quad \text { and } \quad \mathrm{D}(\widehat{\boldsymbol{B}})=\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1} \otimes\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1}
$$

Example, cont.

$N_{1}=N_{2}=25$ with $p=12 \leq n-k=48$
(— real growth, - - - weighted est. (MLE) and \cdots unweighted est.)

Example, cont.

$N_{1}=N_{2}=25$ with $p=24 \leq n-k=48$
(- real growth, - - - weighted est. (MLE) and ... unweighted est.)

Example, cont.

$N_{1}=N_{2}=25$ with $p=48 \leq n-k=48$
(- real growth, - - - weighted est. (MLE) and ... unweighted est.)

Example - Potthoff \& Roy (1964), cont.

The two different estimates are

$$
\widehat{\boldsymbol{B}}_{M L E}=\left(\begin{array}{cc}
17.4254 & 15.8423 \\
0.4764 & 0.8268
\end{array}\right)
$$

and

$$
\widehat{\boldsymbol{B}}=\left(\begin{array}{cc}
17.3727 & 16.3406 \\
0.4795 & 0.7844
\end{array}\right) .
$$

Compare the Estimators $\widehat{B}_{\text {MLE }}$ and \widehat{B}

Both $\widehat{\boldsymbol{B}}_{\text {MLE }}$ and $\widehat{\boldsymbol{B}}$ are unbiased and

$$
\begin{aligned}
\mathrm{D}\left(\widehat{\boldsymbol{B}}_{M L E}\right) & =\frac{n-k-1}{n-k-1-(p-q)}\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1} \otimes\left(\boldsymbol{A}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)^{-1} \\
\mathrm{D}(\widehat{\boldsymbol{B}}) & =\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1} \otimes\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1}
\end{aligned}
$$

Compare the Estimators $\widehat{B}_{\text {MLE }}$ and \widehat{B}

Both $\widehat{\boldsymbol{B}}_{\text {MLE }}$ and $\widehat{\boldsymbol{B}}$ are unbiased and

$$
\begin{aligned}
\mathrm{D}\left(\widehat{\boldsymbol{B}}_{M L E}\right) & =\frac{n-k-1}{n-k-1-(p-q)}\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1} \otimes\left(\boldsymbol{A}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)^{-1} \\
\mathrm{D}(\widehat{\boldsymbol{B}}) & =\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1} \otimes\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1}
\end{aligned}
$$

Hence, we need to study

$$
\left(\boldsymbol{A}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)^{-1} \text { versus } \quad\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} .
$$

Following Rao (1967) (Lemma 2.c) or Baksalary and Puntanen (1991) one can show that

$$
\left(A^{\prime} \Sigma^{-1} A\right)^{-1} \leq\left(A^{\prime} A\right)^{-1} A^{\prime} \Sigma A\left(A^{\prime} A\right)^{-1}
$$

with equality if and only if $\mathcal{C}\left(\boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)=\mathcal{C}(\boldsymbol{A})$ (MLE $=$ unweighted).
The inequality is with respect to the Loewner partial ordering, i.e., $\boldsymbol{A} \leq \boldsymbol{B}$ if $\boldsymbol{B}-\boldsymbol{A}$ is nonnegative definite.

Following Rao (1967) (Lemma 2.c) or Baksalary and Puntanen (1991) one can show that

$$
\left(A^{\prime} \Sigma^{-1} A\right)^{-1} \leq\left(A^{\prime} A\right)^{-1} A^{\prime} \Sigma A\left(A^{\prime} A\right)^{-1}
$$

with equality if and only if $\mathcal{C}\left(\boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)=\mathcal{C}(\boldsymbol{A})$ (MLE $=$ unweighted).
The inequality is with respect to the Loewner partial ordering, i.e., $\boldsymbol{A} \leq \boldsymbol{B}$ if $\boldsymbol{B}-\boldsymbol{A}$ is nonnegative definite.

For large n, the unweighted unbiased estimator of \boldsymbol{B} has a larger covariance than the weighted one, as expected since the weighted estimator is the MLE.

But, when also p is large, but still less than n, the factor

$$
1 \ll(n-1) /(n-1-(p-q)) \Rightarrow \mathrm{D}(\widehat{\boldsymbol{B}})<\mathrm{D}\left(\widehat{\boldsymbol{B}}_{M L E}\right)
$$

$\mathcal{C}\left(\boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)=\mathcal{C}(\boldsymbol{A})$

Under the restriction $\mathcal{C}\left(\boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)=\mathcal{C}(\boldsymbol{A})$, the MLE for the GCM is given by the unweighted estimator.

This condition is fulfilled, for example when

- sphericity $\boldsymbol{\Sigma}=\sigma^{2} \boldsymbol{I}_{p}$, or
- intraclass covariance matrix $\boldsymbol{\Sigma}=\sigma^{2}\left((1-\rho) \boldsymbol{I}_{p}+\rho \mathbf{1 1}^{\prime}\right)$ and \boldsymbol{A} includes a column vector of ones, e.g., $\boldsymbol{A}=\left[\mathbf{1}: \boldsymbol{A}_{1}\right]$.

Linköping University - Research that makes a difference

