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Example - Potthoff & Roy (1964)

Dental measurements on eleven girls and sixteen boys at four different
ages (8, 10, 12, 14) were taken. Each measurement is the distance, in
millimeters, from the center of pituitary (hypophysis) to
pterygo-maxillary fissure.
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X = (x1, . . . , x27)

=



21 21 20.5 23.5 21.5 20 21.5 23 20 . . .
16.5 24.5 26 21.5 23 20 25.5 24.5 22 . . .
. . . 24 23 27.5 23 21.5 17 22.5 23 22
20 21.5 24 24.5 23 21 22.5 23 21 . . .
19 25 25 22.5 22.5 23.5 27.5 25.5 22 . . .
. . . 21.5 20.5 28 23 23.5 24.5 25.5 24.5 21.5
21.5 24 24.5 25 22.5 21 23 23.5 22 . . .
19 28 29 23 24 22.5 26.5 27 24.5 . . .
. . . 24.5 31 31 23.5 24 26 25.5 26 23.5
23 25.5 26 26.5 23.5 22.5 25 24 21.5 . . .
19.5 28 31 26.5 27.5 26 27 28.5 26.5 . . .
. . . 25.5 26 31.5 25 28 29.5 26 30 25



.
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Growth Curve Model (Potthoff and Roy, 1964)

Definition. Let X : p × n and B : q × k be the observation and
parameter matrices, respectively, and let A : p × q and C : k × n
be the within and between individual design matrices, respectively.
Suppose that q ≤ p and p ≤ n − r(C ).

The Growth Curve model (GCM) is given by

X = ABC + E ,

where E ∼ Np,n (0,Σ, I n).
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Example, cont.

Assume that we want to model linear growth, i.e.,

µi =


b0i + 8b1i
b0i + 10b1i
b0i + 12b1i
b0i + 14b1i

 , for i = 1, 2.

For this we may use the parameter and design matrices

B =

(
b01 b02
b11 b12

)
,

A =


1 8
1 10
1 12
1 14

 and C =

(
1′11 0′16
0′11 1′16

)
.
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Growth Curve Model – MLEs

The MLEs for the parameters B and Σ are given by

B̂MLE =
(
A′S−1A

)−
A′S−1XC ′

(
CC ′

)−
+ (A′)oZ 1 + A′Z 2C o′, i.e.,

AB̂MLEC = PA,SXPC ′ ,

nΣ̂MLE =
(
X − AB̂MLEC

)(
X − AB̂MLEC

)′
= R̂1R̂

′
1︸ ︷︷ ︸

=S

+R̂2R̂
′
2,

where

R̂1 = X (I n − PC ′) ,

R̂2 = (I p − PA,S) XPC ′ ,

S = R̂1R̂
′
1 = X (I n − PC ′) X ′,

PC ′ = C ′(CC ′)−C = projection on C(C ′),

PA,S = A
(
A′S−1A

)−
A′S−1 = projection on CS(A).

Martin Singull 6/18



Growth Curve Model – MLEs

The MLEs for the parameters B and Σ are given by

B̂MLE =
(
A′S−1A

)−
A′S−1XC ′

(
CC ′

)−
+ (A′)oZ 1 + A′Z 2C o′, i.e.,

AB̂MLEC = PA,SXPC ′ ,

nΣ̂MLE =
(
X − AB̂MLEC

)(
X − AB̂MLEC

)′
= R̂1R̂

′
1︸ ︷︷ ︸

=S

+R̂2R̂
′
2,

where

R̂1 = X (I n − PC ′) ,

R̂2 = (I p − PA,S) XPC ′ ,

S = R̂1R̂
′
1 = X (I n − PC ′) X ′,

PC ′ = C ′(CC ′)−C = projection on C(C ′),

PA,S = A
(
A′S−1A

)−
A′S−1 = projection on CS(A).

Martin Singull 6/18



CS(A)⊗ C(C ′) � (CS(A)⊗ C(C ′))⊥

= (CS(A)⊗ C(C ′)) � CS(A)⊥ ⊗ C(C ′) � V ⊗ C(C ′)⊥

CS(A)⊥ R̂2 R̂1 = X (I n − PC ′)

R̂1

R̂2 = (I p − PA,S) XPC ′

CS(A) AB̂MLEC

C(C ′) C(C ′)⊥

AB̂MLEC = PA,SXPC ′ ,

nΣ̂MLE = R̂1R̂
′
1 + R̂2R̂

′
2.
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Example - Potthoff & Roy (1964), cont.

The MLEs for the Example are given by

B̂MLE =

(
17.4254 15.8423
0.4764 0.8268

)
and

Σ̂ =


5.1192 2.4409 3.6105 2.5222
2.4409 3.9279 2.7175 3.0623
3.6105 2.7175 5.9798 3.8235
2.5222 3.0623 3.8235 4.6180

 .
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Properties of the Estimators

Let r(A) = q and r(C ) = k , the mean and covariance for B̂MLE are
(Kollo and von Rosen, 2005)

E
(
B̂MLE

)
= B, and

D
(
B̂MLE

)
=

n − k − 1

n − k − 1− (p − q)
(CC ′)−1 ⊗ (A′Σ−1A)−1,

if n − k − 1− (p − q) > 0, and

E
(

Σ̂MLE

)
= Σ− k

n

n − k − 1− 2(p − q)

n − k − 1− (p − q)
A(A′Σ−1A)−1A′.

The bias depends on the design A and thus it could be significant.

Also, note that since q ≤ p ≤ n we have
n − k − 1

n − k − 1− (p − q)
≥ 1.
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Example - p Time Points and n Observations
In a small simulation example we may use the parameters and designs

B =


b01 b02
b11 b12
b21 b22
b31 b32

 =


−0.0134 −0.0017
0.0098 0.0027
−0.0021 −0.0011
0.0001 0.0001

 ,

A =


1 t1 t21 t31
1 t2 t22 t32
...

...
...

...
1 tp t2p t3p

 and C =

(
1′n1 0′n2
0′n1 1′n2

)
,

where we have used q = 4 (i.e., cubic growth) and k = 2 groups for
simplicity with n1 = n2 = n/2. Furthermore, we put t1 = 0 and

ti = i
10

p − 1
, for i = 1, ..., p − 1.
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n1 = n2 = 25 with p = 12 ≤ n − k = 48
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Unweighted Estimator of B

A natural alternative, proposed by Srivastava & Singull (2017a,b), to
the MLE would be an unweighted estimator of B given by

B̂ = (A′A)−1A′XC ′(CC ′)−1.

This estimator is simpler than the MLE, since we do not need to
calculate the inverse of the sum of squares matrix S−1.

The distribution of the estimator is given by

B̂ ∼ Nq,m(B, (A′A)−1A′ΣA(A′A)−1, (CC ′)−1),

i.e., we have

E
(
B̂
)

= B, and D
(
B̂
)

= (CC ′)−1 ⊗ (A′A)−1A′ΣA(A′A)−1.
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Example, cont.
N1 = N2 = 25 with p = 12 ≤ n − k = 48
(—– real growth, – – – weighted est. (MLE) and · · · unweighted est.)
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Example - Potthoff & Roy (1964), cont.

The two different estimates are

B̂MLE =

(
17.4254 15.8423
0.4764 0.8268

)
and

B̂ =

(
17.3727 16.3406
0.4795 0.7844

)
.
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Compare the Estimators B̂MLE and B̂

Both B̂MLE and B̂ are unbiased and

D
(
B̂MLE

)
=

n − k − 1

n − k − 1− (p − q)
(CC ′)−1 ⊗ (A′Σ−1A)−1,

D
(
B̂
)

= (CC ′)−1 ⊗ (A′A)−1A′ΣA(A′A)−1.

Hence, we need to study

(A′Σ−1A)−1 versus (A′A)−1A′ΣA(A′A)−1.
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Following Rao (1967) (Lemma 2.c) or Baksalary and Puntanen (1991)
one can show that

(A′Σ−1A)−1 ≤ (A′A)−1A′ΣA(A′A)−1

with equality if and only if C(Σ−1A) = C(A) (MLE = unweighted).

The inequality is with respect to the Loewner partial ordering, i.e.,
A ≤ B if B − A is nonnegative definite.

For large n, the unweighted unbiased estimator of B has a larger
covariance than the weighted one, as expected since the weighted
estimator is the MLE.

But, when also p is large, but still less than n, the factor

1� (n − 1)/(n − 1− (p − q)) ⇒ D
(
B̂
)
< D

(
B̂MLE

)
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C(Σ−1A) = C(A)

Under the restriction C(Σ−1A) = C(A), the MLE for the GCM is given
by the unweighted estimator.

This condition is fulfilled, for example when

I sphericity Σ = σ2I p, or

I intraclass covariance matrix Σ = σ2((1− ρ)I p + ρ11′) and A
includes a column vector of ones, e.g., A = [1 : A1].
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