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Example 1
The same example again but now twelve subjects are asked to
estimate the price of the bar.

For six of the subjects, the packages

P1: plain wrapped, unboxed,

P2: plain wrapped, boxed,

P3: foil wrapped, unboxed, and

P4: foil wrapped, boxed.

have been labeled with a well-known brand name. For the
remaining six subjects, no label is used.

Srivastava, M. S., & Carter, E. M. (1983). An introduction to applied

multivariate statistics. North-holland.
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Packaging

Subject P1 P2 P3 P4

1 0.30 0.40 0.55 0.65
2 0.20 0.65 0.30 0.80

labeled 3 0.30 0.50 0.50 0.70
4 0.25 0.35 0.45 0.65
5 0.35 0.35 0.55 0.55
6 0.50 0.50 0.50 0.50

mean 0.317 0.458 0.475 0.642

1 0.40 0.40 0.60 0.60
2 0.45 0.50 0.55 0.85

unlabeled 3 0.90 0.95 1.10 1.10
4 0.60 0.70 0.85 0.95
5 0.55 0.75 1.00 1.20
6 0.70 0.70 1.00 1.10

mean 0.600 0.667 0.850 0.967

Martin Singull 2/23



Martin Singull 3/23



Example 2, p = 4 and k = 4 (Srivastava, 1987)
We wish to compare the performance of students from four
different schools in four different subjects such as Mathematics
(S1), Science (S2), English (S3) and History (S4).

Assume that we have ni students from school i = 1, 2, 3, 4.

Students were required to solve problems in each subject. All the
problem were planned to be of the same difficulty and the time to
solve each problem was recorded. From the data (fictitious) we
obtain

x̄1 =
(
38.41 47.81 67.49 54.30

)′
, n1 = 10

x̄2 =
(
21.06 28.26 49.10 37.05

)′
, n2 = 15

x̄3 =
(
30.50 38.05 58.33 46.41

)′
, n3 = 14

x̄4 =
(
18.53 25.27 46.99 34.35

)′
, n4 = 12
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Profile analysis of several groups
Considered the following three hypotheses:

1. H1 : µi − µk = γi1p, i = 1, . . . , k − 1 vs. A1 6= H1

(parallelism – no interaction)

2. H2|H1 : γi = 0, i = 1, . . . k − 1, vs. A2 6= H2|H1

(same level)

3. H3|H1 : µ• = γk1p vs. A3 6= H3|H1

(flatness – no row effect)

Here µ• = N−1
∑k

i=1 niµi and the scalars γi are unknown.

Srivastava, M. S. (1987). Profile analysis of several groups.

Communications in Statistics - Theory and Methods, 16(3):909–926.
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Model
Let x ij be p-dimensional random vectors independent distributed
as x ij ∼ Np(µi ,Σ), where µi = (µi1, . . . , µip)′, Σ > 0,
j = 1, . . . , ni , i = 1, . . . , k and N = n1 + · · ·+ nk .

This model can be written as (observe that it is transposed to the
usual observation matrix)

X ∼ NN,p (AM , IN ,Σ) ,

where

X = (X 1, . . . ,X k)′ ,

X i = (x i1, . . . , x ini ) ,

M = (µ1, . . . ,µk)′

and

A = diag (1n1 , . . . , 1nk ) .
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The likelihood function
The likelihood function is now given by

c |Σ|−
N
2 etr

{
− 1

2
Σ−1

[
V +

(
Y − η

)
Ξ−1

()′
+ N (x̄ − µ•) ()′

]}
,

where c is a constant,

V = X ′
(
I − A(A′A)−1A′

)
X : p × p

(V is the within sum of squares),

Y = (x̄1 − x̄k , . . . , x̄k−1 − x̄k) : p × (k − 1),

η =
(
µ1 − µk , . . . ,µk−1 − µk

)
: p × (k − 1),

x̄ i =
1

ni
X i1ni : p × 1,

x̄ =
1

N
X ′1N : p × 1 and
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the matrix

Ξ = diag

(
1

n1
, . . . ,

1

nk−1

)
+

1

nk
1k−11′k−1

with

Ξ−1 = diag (n1, . . . , nk−1)− 1

n
nk−1n′k−1,

where nk−1 = (n1, . . . , nk−1)′. This matrix can be used for the
between sum of squares

H = Y Ξ−1Y ′ = ZZ ′,

where Z = Y Ξ−1/2.
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MLEs under A1 and H1

The MLEs under A1, i.e., no mean structure, are given by

µ̂• = x̄ , η̂ = Y and NΣ̂ = V .

The first hypothesis is given by

H1 : µi − µk = γi1p, i = 1, . . . , k − 1 ⇔ H1 : η = 1pγ
′,

where γ = (γ1, . . . , γk−1)′. The MLEs under H1 are

µ̂• = x̄ , γ̂ ′ =
(
1′V−11

)−1
1′V−1Y and

NΣ̂ = V +
(
Y − 1γ̂ ′

)
Ξ−1

()′
= ... =

= V + (I − (1′V−11)−111′V−1)H()′.

Martin Singull 10/23



LRT

The LRT, for the parallel hypothesis H1 : η = 1pγ
′ is given by

ΛH1 =
|NΣ̂A1 |
|NΣ̂H1 |

= ... =

=
∣∣∣I + Z ′

(
V−1 − V−11

(
1′V−11

)−1
1′V−1

)
Z
∣∣∣−1

and we reject H1 for small values of ΛH1 .
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Lemma

Let C be a (p− 1)× p matrix of rank p− 1 such that C1 = 0. Let
V be a p × p positive definite matrix. Then

C ′(CVC ′)−1 = V−1 − V−11(1′V−11)−11′V−1.

Using the lemma, the LRT can be rewritten as

ΛH1 = |I p−1 + (CHC ′)(CVC ′)−1|−1 =
|CVC ′|

|CVC ′ + CHC ′|
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Canonical reduction

One can use a canonical reduction to find the distribution of the
LRT. Let Q : p × p be an orthogonal matrix such that

Q =
(
p−1/21p Q1

)
,

Consider the transformation

Z ∗ = Q ′Z = 1

p−1

(
z∗1
′

Z ∗2

)
and

V ∗ = Q ′VQ = 1

p−1

(
v∗11 v∗′12
v∗12 V ∗22

)
.
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Parallelism: H1 : η = 1pγ
′

Theorem

The LRT ΛH1 can be written as

ΛH1 =
|V ∗22|

|V ∗22 + Z ∗2Z
∗
2
′|
,

Under H1, Z ∗2 and V ∗22 are independently distributed as

Z ∗2 ∼ Np−1,k−1 (0,Σ∗22, I k−1)

and

V ∗22 ∼Wp−1 (Σ∗22,N − k) .
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The null distribution

Theorem

The distribution of ΛH1 is the same as the distribution of the
product of p − 1 independent beta random variables with
parameters 1

2 (N − k + 1− i) and 1
2 (k − 1), where

i = 1, . . . , p − 1.

For large N, the asymptotic null distribution of ΛH1 is given by

−
(
N − 1

2
(k + p + 1)

)
ln ΛH1 ∼ χ

2
(p−1)(k−1).
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Level hypothesis: H2|H1 : γ = 0

The estimator for the covariance matrix under the level hypothesis:
H2|H1 : γ = 0 is given by

NΣ̂H2|H1
= V + Y Ξ−1Y ′ = V + H .

Hence, the LRT is given by

ΛH2|H1
=
|NΣ̂H1 |
|NΣ̂H2|H1

|
=
|CVC ′ + CHC ′|
|CVC ′|

|V |
|V + H |
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Using the canonical reduction, the LRT for the second hypothesis
H2|H1 : γ = 0 is

ΛH2|H1
=
|V ∗|

∣∣∣I + Z ∗′
(
V ∗−1 − V ∗−1e

(
e ′V ∗−1e

)−1
e ′V ∗−1

)
Z ∗
∣∣∣

|V ∗ + Z ∗Z ∗′|

= · · · =
v∗1.2

v∗1.2 + y∗2
′y∗2

,

where e =
(
1 0 ... 0

)′
: p × 1,

v∗1.2 = v∗11 − v∗′12V
∗−1
22 v∗12,

y∗2
′ =

(
I − Z ∗′2 V ∗−122 Z ∗2

)−1/2 (z∗1 − Z ∗2V
∗−1
22 v∗12

)
.

y∗2 and v∗1.2 are independently distributed as

y∗2 ∼ Nk−1 (0, σ∗1.2I k−1) and
v∗1.2
σ∗1.2
∼ χ2 (N − k − p + 1) .
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The null distribution
Theorem

Rejecting the hypothesis H2|H1 for small values of ΛH2|H1
is equal

to reject the hypothesis for large values of

F =
1− ΛH2|H1

ΛH2|H1

=
y∗2
′y∗2

v∗1.2
,

where

v∗1.2 = v∗11 − v∗′12V
∗−1
22 v∗12,

y∗2
′ =

(
z∗′1 − v∗′12V

∗−1
22 Z ∗′2

) (
I − Z ∗′2 V ∗−122 Z ∗2

)−1/2
.

The null distribution of F is given by

N − k − p + 1

k − 1
F ∼ Fk−1,N−k−p+1.
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Example 1, cont.
P1: plain wrapped, unboxed,
P2: plain wrapped, boxed,
P3: foil wrapped, unboxed, and
P4: foil wrapped, boxed.
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H1 : µ1 − µ2 = γ14, vs. A1 6= H1

−
(
N − 1

2
(k + p + 1)

)
ln ΛH1 = 3.6169

with N = 12, k = 2, p = 4 and c = χ2
(p−1)(k−1),0.95 = 7.8147

Since k = 2 we could use an exact F -test instead (as before).

Hence, we can’t reject H1, i.e., the profiles are similar.

Martin Singull 20/23



H2|H1 : γ = 0, vs. A2 6= H2|H1

ΛH2|H1
= 0.4368 and N−k−p+1

k−1 F = 9.0243

with c = Fk−1,N−k−p+1,0.95 = 5.5914.

Hence, reject H2|H1, i.e., the profiles are not on the same level.
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H3|H1 : µ• = γk1p

We wish to test the hypothesis

H3|H1 : µ• = γk1p vs. A3 6= H3|H1 (flatness – no row effect),

where µ• = N−1
∑k

i=1 niµi and the scalars γi are unknown.

The MLE of Σ under H1 is given above (page 10), and the MLE of
Σ under H3 is given by

NΣ̂H3|H1
= V +

(
Y − 1γ̂ ′

)
Ξ−1

()′
+ N(x̄ − γ̂k1)()′,

where γ̂k =
x̄ ′V−11

1′V−11
.
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LRT

Hence, the LRT rejects the hypothesis H3|H1 for small values of

ΛH3|H1
=

|V +
(
Y − 1γ̂ ′

)
Ξ−1

()′|
|V +

(
Y − 1γ̂ ′

)
Ξ−1

()′
+ N(x̄ − γ̂k1)()′|

= ... =

=
1

1 + N x̄ ′C ′(CVC ′ + CHC ′)−1Cx̄
,

for some matrix C such that C1 = 0.

Hence, the hypothesis H3|H1 is rejected if

N x̄ ′C ′(CVC ′ + CHC ′)−1Cx̄ ≥ p − 1

N − p + 1
F1−α(p − 1,N − p + 1).
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