The Gram—Schmidt process

We define the projection operator by
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where < v,u > denotes the inner product of the vectors v and u. This operator projects the vector v orthogonally onto the line spanned by vector u.

The Gram—Schmidt process then works as follows:
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Example

Consider the following set of vectors in R? (with the conventional inner product)

o (-0}
Now, perform Gram—Schmidt, to obtain an orthogonal set of vectors:
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We check that the vectors u; and u, are indeed orthogonal:
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noting that if the dot product of two vectors is 0 then they are orthogonal.

We can then normalize the vectors by dividing out their sizes as shown above:
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Problems

Perform the Gram-Schmidt process on each of these sets of vectors.

(OO Q) SO @) G




Answers
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The corresponding orthonormal bases for the three parts of this question are these.
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The corresponding orthonormal bases for the two parts of this question are these
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