The Gram-Schmidt process

We define the projection operator by

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

where $\langle\mathbf{v}, \mathbf{u}\rangle$ denotes the inner product of the vectors \mathbf{v} and \mathbf{u}. This operator projects the vector \mathbf{v} orthogonally onto the line spanned by vector \mathbf{u}. The Gram-Schmidt process then works as follows:
$\mathbf{u}_{1}=\mathbf{v}_{1}$,

$$
\mathbf{e}_{1}=\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}
$$

$\mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{2}\right)$,

$$
\mathbf{e}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|}
$$

$$
\mathbf{u}_{3}=\mathbf{v}_{3}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{3}\right)-\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{3}\right)
$$

$$
\mathbf{e}_{3}=\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|}
$$

$$
\mathbf{u}_{4}=\mathbf{v}_{4}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{4}\right)-\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{4}\right)-\operatorname{proj}_{\mathbf{u}_{3}}\left(\mathbf{v}_{4}\right)
$$

$$
\mathbf{e}_{4}=\frac{\mathbf{u}_{4}}{\left\|\mathbf{u}_{4}\right\|}
$$

\vdots
$\mathbf{u}_{k}=\mathbf{v}_{k}-\sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{j}}\left(\mathbf{v}_{k}\right)$,
$\mathbf{e}_{k}=\frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}$.

Example

Consider the following set of vectors in \mathbf{R}^{2} (with the conventional inner product)

$$
S=\left\{\mathbf{v}_{1}=\binom{3}{1}, \mathbf{v}_{2}=\binom{2}{2}\right\}
$$

Now, perform Gram-Schmidt, to obtain an orthogonal set of vectors:

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{v}_{1}=\binom{3}{1} \\
& \mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{2}\right)=\binom{2}{2}-\operatorname{proj}_{\binom{3}{1}}\left(\binom{2}{2}\right)=\binom{-2 / 5}{6 / 5}
\end{aligned}
$$

We check that the vectors \mathbf{u}_{1} and \mathbf{u}_{2} are indeed orthogonal:

$$
\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}\right\rangle=\left\langle\binom{ 3}{1},\binom{-2 / 5}{6 / 5}\right\rangle=-\frac{6}{5}+\frac{6}{5}=0
$$

noting that if the dot product of two vectors is 0 then they are orthogonal.
We can then normalize the vectors by dividing out their sizes as shown above:
$\mathbf{e}_{1}=\frac{1}{\sqrt{10}}\binom{3}{1}$
$\mathbf{e}_{2}=\frac{1}{\sqrt{\frac{40}{25}}}\binom{-2 / 5}{6 / 5}=\frac{1}{\sqrt{10}}\binom{-1}{3}$.

Problems

Perform the Gram-Schmidt process on each of these sets of vectors.

1. $\left\langle\binom{ 1}{1},\binom{2}{1}\right\rangle$
2. $\left\langle\binom{ 0}{1},\binom{-1}{3}\right\rangle$
3. $\left\langle\binom{ 0}{1},\binom{-1}{0}\right\rangle$
4. $\left\langle\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)\right\rangle$
$5 .\left\langle\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)\right\rangle$

Answers

1. $\left.\vec{\kappa}_{1}=\binom{1}{1} \quad \vec{\kappa}_{2}=\binom{2}{1}-\operatorname{proj}_{\left[\vec{\kappa}_{1]}\right]}\binom{2}{1}\right)=\binom{2}{1}-\frac{\binom{2}{1} \cdot\binom{1}{1}}{\binom{1}{1} \cdot\binom{1}{1}} \cdot\binom{1}{1}=\binom{2}{1}-\frac{3}{2} \cdot\binom{1}{1}=\binom{1 / 2}{-1 / 2}$
2. $\left.\vec{\kappa}_{1}=\binom{0}{1} \quad \vec{\kappa}_{2}=\binom{-1}{3}-\operatorname{proj}_{\left[\vec{k}_{1]}\right]}\binom{-1}{3}\right)=\binom{-1}{3}-\frac{\binom{-1}{3} \cdot\binom{0}{1}}{\binom{0}{1} \cdot\binom{0}{1}} \cdot\binom{0}{1}=\binom{-1}{3}-\frac{3}{1} \cdot\binom{0}{1}=\binom{-1}{0}$
3. $\left.\quad \vec{\kappa}_{1}=\binom{0}{1} \quad \vec{\kappa}_{2}=\binom{-1}{0}-\operatorname{proj}_{\left[\vec{\kappa}_{1}\right]}\binom{-1}{0}\right)=\binom{-1}{0}-\frac{\binom{-1}{0} \cdot\binom{0}{1}}{\binom{0}{1} \cdot\binom{0}{1}} \cdot\binom{0}{1}=\binom{-1}{0}-\frac{0}{1} \cdot\binom{0}{1}=\binom{-1}{0}$

The corresponding orthonormal bases for the three parts of this question are these.

$$
\left\langle\binom{ 1 / \sqrt{2}}{1 / \sqrt{2}},\binom{\sqrt{2} / 2}{-\sqrt{2} / 2}\right\rangle \quad\left\langle\binom{ 0}{1},\binom{-1}{0}\right\rangle \quad\left\langle\binom{ 0}{1},\binom{-1}{0}\right\rangle
$$

4. $\quad \vec{k}_{1}=\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)$

$$
\begin{aligned}
\vec{\kappa}_{2}= & \left.\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)-\operatorname{proj}_{\left[k_{1}\right]}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)-\frac{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)}{\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)} \cdot\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)-\frac{0}{12} \cdot\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \\
\vec{\kappa}_{3} & =\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)-\operatorname{proj}_{\left[k_{1}\right]}\left(\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)-\operatorname{proj}_{\left[k_{2}\right]}\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)\right)=\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)-\frac{\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) \cdot\binom{2}{2}}{\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
2 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
3 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)-\frac{8}{12} \cdot\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)-\frac{-1}{2} \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-5 / 6 \\
5 / 3 \\
-5 / 6
\end{array}\right)
\end{aligned}
$$

5. $\quad \vec{\kappa}_{1}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$

$$
\begin{aligned}
\vec{k}_{2} & =\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\operatorname{proj}_{\left[\vec{R}_{1}\right]}\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\frac{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)}{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)} \cdot\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\frac{-1}{2} \cdot\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right) \\
\vec{\kappa}_{3} & \left.\left.=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)-\operatorname{proj}_{\left[\boldsymbol{k}_{1}\right]}\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)\right)-\operatorname{proj}_{\left[\tilde{R}_{2}\right]}\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)\right) \\
& =\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)-\frac{\left(\begin{array}{c}
2 \\
3 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)}{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)} \cdot\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)-\frac{\left(\begin{array}{c}
2 \\
3 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right)}{\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right)} \cdot\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right) \\
& =\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)-\frac{-1}{2} \cdot\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)-\frac{5 / 2}{1 / 2} \cdot\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

The corresponding orthonormal bases for the two parts of this question are these.

$$
\left\langle\left(\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right),\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right),\left(\begin{array}{c}
-1 / \sqrt{6} \\
2 / \sqrt{6} \\
-1 / \sqrt{6}
\end{array}\right)\right\rangle \quad\left\langle\left(\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right),\left(\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle
$$

