
Lecture 13

Birth and Death Processes

The subsequent material has been partially taken from V. Andasari, course notes Stochas-
tic Modeling, at Boston University and from Wikipedia.

Transition Probabilities, Kolmogorov's equations

The continuous-time birth and death Markov chain {X(t) : t ∈ [0,∞)} may have either
a �nite {0, 1, 2, · · · , N ] or in�nite {0, 1, 2, · · · } state space. Assume that its transition
probabilities Py(t) are stationary, i.e.

Pij(t) = P |X(t+ s) = j|X(s) = i} , for all ∆t ≥ 0.

In addition, assume the in�nitesimal transition probabilities for this process are

Pi,i+j(∆t) = P{X(t+ ∆t)−X(t) = j | X(t) = i}

=


λi∆t+ o(∆t), j = 1

µi∆t+ o(∆t), j = −1

1− (λi + µi) ∆t+ o(∆t), j = 0

o(∆t), j 6= −1, 0, 1

for ∆t su�ciently small, µ0 = 0, λ0 > 0, and λi > 0, µi > 0 for i = 1, 2, · · · . It is often the
case that λ0 = 0, except when there is immigration. The initial conditions are

Pij(0) = δij =

{
1, i = j
0, i 6= j

In a small time interval ∆t, at most one change in state can occur, either a birth, i→ i+1
or a death, i→ i− 1.

Source Wikipedia

In the same way as for the Poisson process, we de�ne Pi(t) = P{X(t) = i} and assume
X(0) = 0. If ∆t > 0, i ≥ 1, by invoking the law of total probability and the Markov



property, we obtain

Pij(t+ ∆t) =
∞∑
k=0

Pik(t)Pkj(∆t)

=
∞∑
k=0

Pik(t) · P{X(t+ ∆t) = j | X(t) = k}

=
∞∑
k=0

Pik(t) · P{X(t+ ∆t)−X(t) = j − k | X(t) = k}

=

k=j∑
k=0

Pik(t) · P{X(t+ ∆t)−X(t) = j − k | X(t) = k}.

Now, for k = j, for the right hand side we have

= Pij(t) · P{X(t+ ∆t)−X(t) = j − j | X(t) = j}
= Pij(t) · P{X(t+ ∆t)−X(t) = 0 | X(t) = j}
= Pij(t) · [1− (λj + µj) ∆t+ o(∆t)]

for k = j − 1,

= Pi,j−1(t) · P{X(t+ ∆t)−X(t) = j − (j − 1) | X(t) = j − 1}
= Pi,j−1(t) · P{X(t+ ∆t)−X(t) = 1 | X(t) = j − 1}
= Pi,j−1(t) · [λj−1∆t+ o(∆t)]

for k = j + 1

= Pi,j+1(t) · P{X(t+ ∆t)−X(t) = j − (j + 1) | X(t) = j + 1}
= Pi,j+1(t) · P{X(t+ ∆t)−X(t) = −1 | X(t) = j + 1}
= Pi,j+1(t) · [µj+1∆t+ o(∆t)]

whereas for k 6= j, j − 1, j + 1, that is for k ≤ j − 2

= Pik(t) · P{X(t+ ∆t)−X(t) ≥ 2 | X(t) = k}
= Pik(t) · o(∆t)

and k ≥ j + 2
= Pik(t) · P{X(t+ ∆t)−X(t) ≤ −2 | X(t) = k}
= Pik(t) · o(∆t) .

Collecting all together,

Pij(t+ ∆t) =Pij(t) · [1− (λj + µj) ∆t+ o(∆t)] + Pi,j−1(t) · [λj−1∆t+ o(∆t)] +

Pi,j+1(t) · [µj+1∆t+ o(∆t)] + Pik(t) · o(∆t)
=Pi,j−1(t)λj−1∆t+ Pi,j+1(t)µj+1∆t+ Pij(t) [1− (λj + µj) ∆t] + o(∆t),

which holds for all i and j in the state space with the exception of j = 0 and j = N (if
the population size is �nite).

If j = 0, then (and due to µ0 = 0 )

Pi0(t+ ∆t) = Pi1(t)µ1∆t+ Pi0(t) [1− λ0∆t] + o(∆t)



If j = N, which is the maximum population size, then

PiN(t+ ∆t) = Pi,N−1(t)λN−1∆t+ PiN(t) [1− µN) ∆t] + o(∆t),

where λN = 0 and PkN = 0 for k > N . Subtracting Pij(t), Pi0(t), and PiN(t) from the
preceding three equations, respectively, dividing by ∆t, and taking the limit as ∆t →
0, yields the forward Kolmogorov di�erential equations for the general birth and death
process,

dPij(t)

dt
= λj−1Pi,j−1(t)− (λj + µj)Pij(t) + µj+1Pi,j+1(t)

dPi0(t)

dt
= −λ0Pi0(t) + µ1Pi1(t), for j = 0

dPiN(t)

dt
= λN−1Pi,N−1(t)− µNPiN(t), for j = N .

The forward Kolmogorov di�erential equations can be written in matrix notation,

dP(t)

dt
= P(t)Q

or
dPi0/dt
dPi1/dt
dPi2/dt
dPi3/dt

...

 = [Pi0 Pi1 Pi2 Pi3 · · · ] ·


−λ0 λ0 0 0 · · ·
µ1 − (λ1 + µ1) λ1 0 · · ·
0 µ2 − (λ2 + µ2) λ2 · · ·
0 0 µ3 − (λ3 + µ3) · · ·
...

...
...

...


where the generator matrix Q for the in�nite state space is

Q =


−λ0 λ0 0 0 · · ·
µ1 − (λ1 + µ1) λ1 0 · · ·
0 µ2 − (λ2 + µ2) λ2 · · ·
0 0 µ3 − (λ3 + µ3) · · ·
...

...
...

...

,

and for the �nite state space is

Q =


−λ0 λ0 0 0 · · ·
µ1 − (λ1 + µ1) λ1 0 · · ·
...

...
... · · · ...

0 0 µN−1 − (λN−1 + µN−1) λN−1
0 0 0 µN −µN

 .

Similarly, to obtain the backward Kolmogorov di�erential equations, we start from

Pij(∆t+ t) =
∞∑
k=0

Pik(∆t)Pkj(t)

= Pi,i−1(∆t)Pi−1,j(t)︸ ︷︷ ︸
k=i−1

+Pii(∆t)Pij(t)︸ ︷︷ ︸
k=i

+Pi,i+1(∆t)Pi+1,j(t)︸ ︷︷ ︸
k=i+1

+
∑
k

Pik(∆t)Pkj(t),



where the last summation is over all k 6= i− 1, i+ 1, i. For k = i

Pii(∆t)Pij(t) = Pij(t) · [1− (λi + µi) ∆t+ o(∆t)]

for k = i− 1
Pi,i−1(∆t)Pi−1,j(t) = Pi−1,j(t) · [µi∆t+ o(∆t)]

for k = i+ 1
Pi,i+1(∆t)Pi+1,j(t) = Pi+1,j(t) · [λi∆t+ o(∆t)]

and for k 6= j, j − 1, j + 1, we have∑
k

Pik(∆t)Pkj(t) = Pkj(t) · o(∆t) .

Piecing everything together and rearranging the resulting equation , it turns out that

Pij(t+ ∆t)− Pij(t) = µi∆tPi−1,j(t)− (λi + µi) ∆tPij(t) + λi∆tPi+1,j(t) + o(∆t)

Dividing by ∆t and taking the limit as ∆t → 0, we obtain the backward Kolmogorov

di�erential equations

dPij(t)

dt
= µiPi−1,j(t)− (λi + µi)Pij(t) + λiPi+1,j(t)

dP0j(t)

dt
= −λ0P0j(t) + λ0P1j(t), for i = 0

dPNj(t)

dt
= µNPN−1,j(t)− µNPNj(t), for i = N

where µ0 = 0 and λN = 0, and j ≥ 0, i ≥ 0 The backward Kolmogorov di�erential
equations can be written in matrix notation,

dP(t)

dt
= QP(t)

or 
dP0j/dt
dP1j/dt
dP2j/dt

...
dPNj/dt

 =


−λ0 λ0 0 0 · · ·
µ1 − (λ1 + µ1) λ1 0 · · ·
0 µ2 − (λ2 + µ2) λ2 · · ·
...

...
...

...
0 0 0 µN −µN




P0j

P1j

P2j
...

PNj

 .

The Limiting Behavior of Birth and Death Processes

For a general birth and death process that has no absorbing states, the limits

lim
t→∞

Pij(t) = πj ≥ 0

exist and are independent of the initial state i. The limits form the limiting distribution (or
limiting probability) of the process, which is at the same time the stationary distribution.



To determine if a limiting distribution exists and what its values are, we rewrite the
forward Kolmogorov di�erential equations,

dPi0(t)

dt
= −λ0Pi0(t) + µ1Pi1(t)

dPij(t)

dt
= λj−1Pi,j−1(t)− (λj + µj)Pij(t) + µj+1Pi,j+1(t), j ≥ 1,

with initial conditions Pij(0) = δij. If we take the limit as t → ∞ to these equations,
the limit of the right hand sides exists. The limit on the left hand side, the derivatives
P ′ij(t), also exists. Since the probabilities are converging to a constant, the limit of these
derivatives must be zero. These equations can be solved recursively. For the �rst equation,
or when j = 0

lim
t→∞

dPi0(t)

dt
= −λ0 lim

t→∞
Pi0(t) + µ1 lim

t→∞
Pi1(t)

0 = −λ0π0 + µ1π1

Or

π1 =
λ0
µ1

π0

From the second equation,

lim
t→∞

dPij(t)

dt
= λj−1 lim

t→∞
Pi,j−1(t)− (λj + µj) lim

t→∞
Pij(t) + µj+1 lim

t→∞
Pi,j+1(t)

0 = λj−1πj−1 − (λj + µj) πj + µj+1πj+1 ,

when j = 1

π2 =
λ1
µ2

π1 =
λ0λ1
µ1µ2

π0 ,

when j = 2,

π3 =
λ2
µ3

π2 =
λ0λ1λ2
µ1µ2µ3

π0

and so on. Thus,

πi+1 =
λi
µi+1

πi .

Now we aim to show by induction that the stationary probability distribution equals

πi =
λ0λ1 · · ·λi−1
µ1µ2 · · ·µi

π0 , i = 1, 2, 3, · · · .

We have to verify this relation for i+ 1 instead of i. Then

µi+1πi+1 = (λi + µi) πi − λi−1πi−1

=

(
λ0λ1 · · ·λi−1 (λi + µi)

µ1µ2 · · ·µi
− λ0λ1 · · ·λi−1
µ1µ2 · · ·µi−1

)
π0

=
λ0λ1 · · ·λi−1
µ1µ2 · · ·µi−1

(
λi + µi
µi

− 1

)
π0



or,

πi+1 =
λ0λ1 · · ·λi
µ1µ2 · · ·µi+1

π0 .

Thus, if the state space is in�nite, {0, 1, 2, · · · }, a unique positive stationary probability
distribution π for a general birth and death process exists, with

µi > 0 and λi−1 > 0 for i = 1, 2, 3, · · ·

Since
∑∞

i=0 πi = 1, which we expand

∞∑
i=0

πi = 1

π0 +
∞∑
i=1

πi = 1

π0

(
1 +

∞∑
i=1

πi
π0

)
= 1,

from which we solve for π0,

π0 =
1

1 +
∞∑
i=1

λ0λ1 · · ·λi−1
µ1µ2 · · ·µi

. (1)

Let us summarize our work.

Theorem Suppose µi > 0 and λi−1 > 0 for all i ∈ N and

∞∑
i=1

λ0λ1 · · ·λi−1
µ1µ2 · · ·µi

<∞ .

Then there exists a unique limiting distribution

πi =
λ0λ1 · · ·λi−1
µ1µ2 · · ·µi

π0 , i ∈ N,

where π0 is given by (1).

Construction by Trajectories: Waiting times and Jumps

Now suppose we are given a birth and death process {X(t) : t ∈ [0,∞)} with state space
S = Z+. Given X(0) = i ∈ S, introduce the waiting time Ti := inf{t > 0 : X(t) 6= i}.

Theorem It holds that T0 ∼ Exp(λ0) and Ti ∼ Exp(λi + µi) i ∈ N.



Proof. Let us carry out the proof for i ∈ N, the proof for i = 0 is similar. Introduce

Gi(t) := P (Ti > t|X(0) = i) , t > 0.

By the de�nition of conditional probability and the fact that {Ti > t + h, Ti > t,X(0) =
i} = {Ti > t+ h,X(0) = i} we have for h > 0

P (Ti > t+ h|X(0) = i) =
P (Ti > t,X(0) = i)

P (X(0) = 0)
· P (Ti > t+ h, Ti > t,X(0) = i)

P (Ti > t,X(0) = i)

= P (Ti > t|X(0) = i) · P (Ti > t+ h|Ti > t,X(0) = i) .

Thus, by the Markov principal, and time homogeneity,

P (Ti > t+ h|X(0) = i) = P (Ti > t|X(0) = i) · P (Ti > t+ h|X(t) = i)

= P (Ti > t|X(0) = i) · P (Ti > h|X(0) = i) .

According to the in�nitesimal transition probabilities, this says

Gi(t+ h) = Gi(t) ·Gi(h) = Gi(t) · (1− (λi + µi)h) + o(h) .

where we consider now h as an in�nitesimal time increment. Rearranging this and dividing
by h we obtain

Gi(t+ h)−Gi(t)

h
= −(λi + µi)Gi(t) +

o(h)

h
.

Letting h→ 0 this implies

d

dt
Gi(t) = −(λi + µi)Gi(t) , Gi(0) = 1 ,

which has the unique solution

P (Ti > t|X(0) = i) = Gi(t) = e−(λi+µi) t , t ≥ 0 .

However the right-hand side is 1− cumulative distribution function of Exp(λi + µi). 2

Remark For the Exp(λi + µi)-distribution of the waiting times between the (n − 1)st
and nth jump we recall the memoryless property of the exponential distribution. Let
X ∼ Exp(λ). We have

P (X > t+ x|X > t) =
P (X > t+ x,X > t)

P (X > t)

=
P (X > t+ x)

P (X > t)
=

1− FX(t+ x)

1− FX(t)
=
e−λ(t+x)

e−λt

= e−λx = P (X > x) .

Theorem Let X(t) = i ∈ N for some t ≥ 0. Then the the probability to jump to i − 1
(resp. i+ 1) next is µi

λi+µi
(resp. λi

λi+µi
).



Example The so-called simple birth and death process {X(t) : t ∈ [0,∞)} has transition
probabilities

Pi,i+j(∆t) = P{X(t+ ∆t)−X(t) = j | X(t) = i}

=


1− i(µ+ λ)∆t+ o(∆t) j = 0

iλ∆t+ o(∆t) j = 1

iµ∆t+ o(∆t) j = −1

o(∆t) j 6= −1, 0, 1

for all i ∈ Z+. Simple birth and death processes are also known as birth and death
processes with absorbing states. For these processes, the zero state is an absorbing state,
where when the population size becomes zero, it remains zero thereafter.

V. Andasari, course notes Stochastic Modeling, BU

Plots of three sample paths for the simple birth and death process when µ = 1.0, X(0) =
50, and λ = 0.1 (left) and λ = 1.0 (right). In the case λ << µ (left �gure), the population
size becomes zero and it remains in zero forever.

Example The Yule Process or simple birth process is de�ned by its birth rates λi := i λ,
i ∈ N for some λ > 0. There is no death, i. e. µi := 0, i ∈ N. The process stars in state
1, i. e. X(0) = 1.

In other words, for a simple birth process the birth rates are proportional to the size
of the current population. This is, for example, a reasonable assumption on the growth
of a virus population in an infected individual until the production of anti-bodies sets in.
As time proceeds according to the horizontal axis we get a branching image as below.

Federico Polito, research gate, modi�ed



The number of births at time t of a simple birth process of population size n is given by

pn,n+m(t) =

(
n

m

)
(λt)m(1− λt)n−m + o(h) , t ≥ 0.

In exact form, the number of births is the negative binomial distribution with parameters
n and e−λt, recall that on Wikipedia.

For the special case n = 1, this is the geometric distribution with success rate e−λt. The
expectation of the process grows exponentially. In particular, if X0 = 1 then E[X(t)] =
eλt, t ≥ 0.

Jörg-Uwe Löbus, jorg-uwe.lobus@liu.se

https://en.wikipedia.org/wiki/Negative_binomial_distribution

