

LÖSNINGAR TILL TENTAMEN I TAMS22 SANNOLIKHETS-TEORI OCH BAYESIANSKA NÄTVERK, MÅNDAG 10 JANUARI 2022 KL 14.00-18.00.

1. (a) Define the binary valued r.v.s: B = "battery charged/low", D = "drops/does not drop ball", and R = "reports/does not report a dropped ball". The following DAG describes the situation:

The pmf for B is: $p_B(1) = 0.95$, $p_B(0) = 0.05$. The tables for the conditional pmfs are:

$$p_{D|B} = \begin{array}{c|ccc} D \setminus B & 0 & 1 \\ \hline 0 & 0.1 & 0.99 \\ 1 & 0.9 & 0.01 \end{array} \qquad p_{R|D} = \begin{array}{c|ccc} R \setminus D & 0 & 1 \\ \hline 0 & 1 & 0.1 \\ 1 & 0 & 0.9 \end{array}$$

(b) $p_{B,R}(0,1) = p_B(0) \sum_{i=0}^{1} p_{D|B}(i|0) p_{R|D}(1|i) = 0.05 \cdot (0.1 \cdot 0 + 0.9 \cdot 0.9) = 0.0405$, and $p_{B,R}(1,1) = p_B(1) \sum_{i=0}^{1} p_{D|B}(i|1) p_{R|D}(1|i) = 0.95 \cdot (0.99 \cdot 0 + 0.01 \cdot 0.9) = 0.00855$, so $p_R(1) = 0.0405 + 0.00855 = 0.04905$, and

$$p_{B|R}(0|1) = \frac{p_{B,R}(0,1)}{p_R(1)} \approx \underline{0.8257}.$$

2. (a) Only the node \underline{B} is *d*-separated from *F*.

(b) $p_{B,C}(0,1) = \sum_{a=0}^{1} p_A(a) p_{B|A}(0|a) p_{C|A}(1|a) = 0.4 \cdot 0.3 \cdot 0.8 + 0.6 \cdot 0.6 \cdot 0.1 = 0.132$, and $p_B(0) = \sum_{a=0}^{1} p_A(a) p_{B|A}(0|a) = 0.4 \cdot 0.3 + 0.6 \cdot 0.6 = 0.48$, so we get:

$$p_{C|B}(1|0) = \frac{p_{B,C}(0,1)}{p_B(0)} = \underline{0.275}.$$

(c) The "do"-conditioning removes the edge (A, B) from the DAG. In the new DAG, $B \perp C \parallel_{\mathcal{G}} \emptyset$, so B and C are independent. Therefore, $p_{C\parallel B}(1 \parallel 0) = p_C(1) = \sum_{a=0}^{1} p_A(a) p_{C|A}(1|a) = 0.4 \cdot 0.8 + 0.6 \cdot 0.1 = \underline{0.38}.$ 3. (a) The ML estimates are: $\hat{\theta}_{A,1} = \underline{\underline{0.6}}; \ \hat{\theta}_{B,1,1} = \underline{\underline{\frac{2}{3}}}; \ \hat{\theta}_{E,0,1,0} = \underline{\underline{0.25}}.$ (b) The prior distributions are Beta(3, 2) and Beta(1, 1.5). Since

 $\frac{\Gamma(9+6)}{\Gamma(9)\Gamma(6)} = \frac{14!}{8!5!} = 18018; \quad \frac{\Gamma(2+4.5)}{\Gamma(2)\Gamma(4.5)} = \frac{5.5 \cdot 4.5\Gamma(4.5)}{\Gamma(4.5)} = 24.75,$

the posterior pdfs are:

$$f_{A,1}(\theta) = \begin{cases} 18018 \cdot \theta^8 (1-\theta)^5, & 0 < \theta < 1; \\ 0, & \text{otherwise}, \end{cases}$$
$$f_{E,0,1,0}(\theta) = \begin{cases} 24.75 \cdot \theta (1-\theta)^{3.5}, & 0 < \theta < 1; \\ 0, & \text{otherwise}. \end{cases}$$

(c) The Bayes estimates are: $\hat{\theta}_{A,1} = \frac{9}{15} = \underline{0.6}; \ \hat{\theta}_{E,0,1,0} = \frac{2}{6.5} \approx \underline{0.3077}.$

4. (a) The moralized graph:

The moralized graph <u>is not</u> decomposable, since it contains a cycle of length 4 without a chord: $\overline{X}_1 - X_4 - X_6 - X_3 - X_1$.

(b) X_8, X_2 (fill-in: $X_1 - X_5$), X_3 (fill-in: $X_1 - X_6$), X_6 (fill-in: $X_1 - X_7$), X_1, X_5, X_7, X_4 .

(c) A junction tree:

A fully active schedule:

 $\begin{array}{l} X_{1}X_{3}X_{6} \rightarrow X_{1}X_{4}X_{6}X_{7}; \ X_{1}X_{4}X_{6}X_{7} \rightarrow X_{1}X_{4}X_{5}X_{7}; \ X_{1}X_{2}X_{4}X_{5} \rightarrow X_{1}X_{4}X_{5}X_{7}; \ X_{4}X_{5}X_{7}X_{8} \rightarrow X_{1}X_{4}X_{5}X_{7}; \ X_{1}X_{4}X_{5}X_{7} \rightarrow X_{4}X_{5}X_{7}X_{8}; \\ X_{1}X_{4}X_{5}X_{7} \rightarrow X_{1}X_{2}X_{4}X_{5}; \ X_{1}X_{4}X_{5}X_{7} \rightarrow X_{1}X_{4}X_{6}X_{7}; \ X_{1}X_{4}X_{6}X_{7} \rightarrow X_{1}X_{3}X_{6}. \end{array}$

- 5. (a) There are exactly three such subsets: $\{C\}$, $\{E\}$, and $\{C, E\}$.
 - (b) According to the intervention formula,

$$p_{V\setminus\{D\}||D} = \frac{p_V}{p_{D|C}} = p_C p_{E|C} p_{A|E} p_{F|D} p_{B|A,F}.$$

Marginalizing over B, F, E, and C (in that order), we get:

$$p_{A||D}(a||d) = \sum_{c \in \chi_C} \sum_{e \in \chi_E} p_C(c) p_{E|C}(e|c) p_{A|E}(a|e) \qquad \forall a \in \chi_A, d \in \chi_D.$$

Since $A \perp C \parallel_{\mathcal{G}} E$ (why?), it holds that $A \perp C \mid E$, so $p_{A \mid C, E}(a \mid c, e) = p_{A \mid E}(a \mid e)$ for all $a \in \chi_A, c \in \chi_C, e \in \chi_E$ such that $p_{C,E}(c, e) > 0$. Therefore,

$$p_{A||D}(a||d) = \sum_{c \in \chi_C} \sum_{e \in \chi_E} p_C(c) p_{E|C}(e|c) p_{A|C,E}(a|c,e)$$

$$=\sum_{c\in\chi_C}\sum_{e\in\chi_E}p_C(c)p_{A,E|C}(a,e|c)=\sum_{c\in\chi_C}p_C(c)p_{A|C}(a|c)\quad\forall a\in\chi_A, d\in\chi_D.$$

6. We must show that $X \perp Y \parallel_{\mathcal{G}} Z$ and that $X \perp W \parallel_{\mathcal{G}} Z$. To prove the first claim, assume that τ is a trail in \mathcal{G} connecting X and Y, such that no node in τ belongs to Y (apart from the end node). Then, either τ has a collider node α such that neither α nor any of its descendants

belong to $W \cup Z$, in which case Z blocks τ ; or τ has no such collider node, but has a chain or fork node β which belongs to $W \cup Z$. If $\beta \in Z$, then Z blocks τ , while if $\beta \in W$ (and τ has no chain or fork node belonging to Z), then there is a trail $\tau' \subset \tau$ (a subtrail of τ) connecting X and W, which contains no chain or fork node belonging to $Y \cup Z$. By assumption, then, τ' has a collider node α' such that neither α' nor any of its descendants belong to $Y \cup Z$, implying that Z blocks τ .

The second claim is proven in exactly the same way, by reversing the roles of Y and W.