TAMS24: Notations and Formulas

— by Xiangfeng Yang

1 Basic notations and definitions

X: random variable (stokastiska variabel);
Mean (Vintevirde):

S kpx(k), if X is discrete,

ffooc zfx(z)dz, if X is continuous;

uﬂﬂ{

Variance (Varians): 0% = V(X) = E((X — p)?) = B(X?) — (E(X))%
Standard deviation (Standardavvikelse): o = D(X) = /V(X);

Population X;

Random sample (slumpmaissigt stickprov): Xi,..., X, are independent and have the same dis-
tribution as the population X. Before observe/measure, X1,..., X, are random variables, and after
observe/measure, we use x1,...,Z, which are numbers (not random variables);

Sample mean (Stickprovsmedelvérde): Before observe/measure, X = 23" | X;, and after obser-
ve/measure, T = 2 3" | a3

Sample variance (Stickprovsvarians): Before observe/measure, S = ﬁ S (X — X)2, and after

observe/measure, s> = L. S (z; — 7)%

Sample standard deviation (Stickprovsstandardavvikelse): Before observe/measure, S = V.52,

and after observe/measure, s = Vs,

n

n
E(Z CZ‘Xi) = ZCiE(Xi)7
i=1 i=1
n n
V(Z X)) = Zc?V(Xi), if Xy,..., X, are independent (oberoende);
i=1

i=1
If X ~ N(u,0), then 224 ~ N(0,1);
If X1,..., X, are independent and X; ~ N(u;,0;), then

n n
d+ Zcz‘Xi ~ N(d+ Z(;iﬂi,
i=1

i=1

For a population X with an unknown parameter 6, and a random sample {X1,..., X, } :
Estimator (Stickprovsvariabeln): © = g(Xy,...,X,), a random variable;
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Estimate (Punktskattning): 0= g(x1,...,2,), a number;
Unbiased (Vinteviirdesriktig): E(0) = 6;

}:]ﬁ'ectivg (Eﬁ'ektAiv): Two estimators @1 and @2 are unbiased, we say that é)l is more effective than
O, if V(@l) < V(@Q);

Binomial distribution X ~ Bin(N,p) : there are N independent and identical trials, each trial has

a probability of success p, and X = the number of successes in these N trials. The random variable
X ~ Bin(N,p) has a probability function (sannolikhetsfunktion)

p(k)=P(X =k) = <j]\€[> P — )N,

Ezponential distribution X ~ Exp(1/p) : when we consider the waiting time/lifetime... The random
variable X ~ Ezp(1/p) has a density function (téthetsfunktion)

flz) = le,ﬂ”/“, x> 0.
I

2 Point estimation

Method of moments (Momentmetoden): # of equations depends on # of unknown parameters,

) 1 n ) no
E(X)=1z, EX?= - E z}, B(X?) = o E e S
i=1 =

Consistent (Konsistent): An estimator © = g(X1, ..., X,,) is consistent if
lim P(|6 — 6| > ¢) = 0, for any constant € > 0.
n—oo
(This is called “convergence in probability”).
Theorem: If E(é)) =0 and lim,,_, V(@) =0, then © is consistent.

Least square method (minsta-kvadrat-metoden): The least square estimate 0 is the one minimizing

n

Q) = (z: — E(X))%.

i=1
Maximume-likelihood method (Maximum-likelihood-metoden): The maximum-likelihood esti-

mate 6 is the one maximizing the likelihood function

L) = [T f(2i;0), if X is continuous,
T, p(zi30),  if X is discrete.

Remark 1 on ML: In general, it is easier/better to maximize In L(6);
Remark 2 on ML: If there are several random samples (say m) from different populations with a same

unknown parameter 6, then the maximum-likelihood estimate 6 is the one maximizing the likelihood
function defined as L(0) = L1(6) ... Ly, (), where L;(0) is the likelihood function from the i-th population.
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Estimates of population variance ¢?: If there is only one population with an unknown mean, then
method of moments and maximum-likelihood method, in general, give an estimate of o% as follows

= %Z(z, —z)? (NOT unbiased).

An adjusted (or corrected) estimate would be the sample variance

n

1
2 _ 2 .
5= ;:1 (z; — ) (unbiased).

If there are m different populations with unknown means and a same variance o2, then an adjusted (or
corrected) ML estimate is

2 (n1 —1)s?+ ...+ (ny, — 1)s2,
(mi—1)+...4 (nm—1)

where n; is the sample size of the i-th population, and s? is the sample variance of the i-th population.

(unbiased)

Standard error (medelfelet) of an estimator ©: ~ is an estimate of the standard deviation D(8).

3 Interval estimation

_ TF /\a/zﬁ, if o is known; [fact % ~ N(0, 1)]

One sample

T Ftgp(n— 1)%, if o is unknown; [fact 5\7/% ~t(n— 1)]

{X17 ERR) Xn} 2 2 2
_ [ (n=1)s (n—1)s . (n=1)8* 20, _
from N(p,0) I = <x2%(n*1)’ Xf,%(n*1)> ’ [fact o? X(n 1)}

Unknown o2 can be estimated by the sample variance s? = 15 3" | (z; — )?

T—Y) FA 7 + U—g, if o1 and o9 are known;
Yy a/2\/ 7, T2
fact % ~ N(0,1)
T . (z — )$ta/2(n1+n2—2 ’/% nz, if 01 = 09 = o is unknown;
'wo samples
{Xla--~aX1L1} I _ fact <X Y)- (M uz) (TLl +n2—2):|
from N(uy,01); e Syar
",.... Y} ~ (T =) Flaya(f) - _+ 7, if oy 7502 both are unknown;
from N(p2,02); oo
(ﬂ? 2) fact (X— Y>2( 2;@ Nf(f)
N(p1,01) and 57 +
n2
N(p2,09) are i ) o 2
independent degrees of freedom f = (5(5/17{31;5(23/%72)2}
T
ny—1 ng—1

_ [ (ni+n2—2)s? (n14mo—2)s? : _ —
Ip2 = <x2%(n1+n272)’ X%,%("ﬁrm*?) oy =0y =03

[fact Wj#)s? ~x%(ny +ng —2)

2 (n1—1)s3+(na—1)s3
- ny+ng—2

2

Unknown o° can be estimated by the samples variance s

m samples: The unknown o7 = ... = 02, = 02 can be estimated by s =

(n1=1)s3+..4+(nm—1)s2,
(mi—-1)+..+(nm—-1)
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Remark: The idea of using fact (sampling distribution) to find confidence intervals is very important.
There are a lot more different confidence intervals besides above. For instance, we consider two indepen-
dent samples: {X71,..., Xy, } from N(u1,0) and {Y1,...,Y,,} from N(ug,0). In this case, we can easily
prove that

2 2

_ _ c &
X +cY ~N | cip +copn, o d 42
n1 ng

(a1 X+eaV)—(cypteaps) N(0,1

o If o is known, then fact ,1). So we can find Ie, 4 eopns

-2 2
%
n Tho

e If o is unknown, then fact M ~t(n1 +ng — 2). So we can find 1o, 4 cop,-
sy/dr2

ny n2

3.1 Confidence intervals from normal approximations.

X ~ Bin(N, =pTFA V —~_ ~ N(0,1).
in(N,p): Iy =D F Aaj2 \/m 0,1)

(we require that Np(1 — p) > 10)

N N-n 1 P-
X ~ Hyp(N,n,p) : Iy =P F Aaj2 N_1'n -p(1 —p), fa(’t%~]v(0al)
N1 PA-=P)
X ~ Po(u): I, = iq:)\a/Q\/; fact \/, ~ N(0,1).
(we require that nz > 15)
X Ewﬁl)'°l = ‘443—7——4347 ~ N(0,1)
I . M 1+a/2 17@ ’ /\/7 ’
\f Vi,
X —pn
o, =ZF Ayjo—r=, fact B~ N(,1).

f X/vn
(we require that n > 30)

Remark: Again there are more confidence intervals besides above. For instance, we consider two inde-
pendent samples: X from Bin(Ni,p1) and Y from Bin(Na, ps), with unknown p; and ps. As we know

. 1— . 1—
PN (p PO i By N [ o, /P20 P2)
n1 ng

soP - Py~ N (pl D2, allpy) 4 72l ?2)) - Therefore, fact is —BP)np) oy (0,1),

m [P1(1-Py) | Py(1-Py)
ny + g

p1(1 —p1) N P2(1 — po2)
ny ng

Ipi—p, = (B1 —P2) F /\04/2\/

3.2 Confidence intervals from the ratio of two population variances.
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Suppose there are two independent samples { X7, ..., X, } from N(p1,01), and {Y1,..., Yy, } from N(ug, 02).

— 2 P _ 2 -
Then % ~x%(ny — 1) and % ~ x%(ng — 1), therefore
1 2

St/ot
83/o3

~ F(TL1 — 1777,2 - 1)7 fact.

Thus

2 2
S B

Ioé/af = (gg 'Fl—%(nl — 1,TL2 - 1), ?; F%(nl - 1,n27 1)) .
1 1

3.3 Large sample size (n > 30, population may be completely unknown).

If there is no information about the population(s), then we can apply Central Limit Theorem (usually
with a large sample n > 30) to get an approximated normal distributions. Here are two examples:

Example 1: Let {Xi,...,X,},n > 30, be a random sample from a population, then (no matter what
distribution the populatlon is)

X—p

s/

N(0,1).

Example 2: Let {X7,..., X, },n1 > 30, be a random sample from a population, and {Y1,...,Y,,}, ng >
30, be a random sample from another population which is independent from the first population, then
(no matter what distributions the populations are)

4 Hypothesis testing

4.1 One sample and the general theory of hypothesis testing

Suppose there is a random sample {X7,..., X,,} from a population X with an unknown parameter 6,

Hy: 6 =10, vs. Hy: 0 <6y, or >0y orf 06,

Hy is true Hy is false and 6 = 6,
reject Hy (type I error or significance level) o (power) h(6;)
don’t reject Hy 11—« (type II error) 5(61) =1 — h(61)

Regarding the p-value:
reject Hy if and only if p-value < a.

For notational simplicity, we employ

TS := “test statistic”; and C := “critical region”.
reject Hy if TS € C;
reject Hy if and only if p-value < a.
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4.2 Hypothesis testing for population mean(s)

One sample: {X1,...,X,} from N(u, o). Null hypothesis Hy : p = po.

&\

Hy:p<pg: TS :a/f’ C = (—00,—An);
p-value = P(N(0,1) < TS);
o is known: Hy:p>pp: TS =250 C = (), +00),

X~ N(0,1) pvalue = P(N(0,1) > TS);
Hy:p#po: TS = ;7”?1’ C = (7007 7>‘a/2) U ()‘a/27+oo)7

p-value = 2P(N(0,1) > |TS|).

Hy:p<po: TS = f;“g, C = (=00, —ta(n—1)),
p—value = P(f(n —1) <TS);
o is unknown: | Hy:p>pp: TS = 5/ 2, C = (taln — 1), +00),
s/ff ~t(n—1) p-value = P(t(n — 1) > TS);
Hyip s TS = 558, C = (—00,~tajsln— 1) U (taja(n — 1),-+00),
p-value = 2P (t(n — 1) > |TS|).

Two samples: {X1,..., Xy, } from N(p1,01); {Y1,..., Yy, } from N(ua,02); Null hypothesis Hy : 1 = po.

Hy : 1 < pg TS = (l;y)Z ) C = (_Oov_)‘a)v
]
o s
p-value = P(N(0,1) < TS);
01,02 are known: Hy:pp >po: TS (Ez 9) , C = (Aq, +00),
ED) ) N0, 1) EEh
%+% p-value = P(N(0,1) > TS);
Hyipn# s TS = 200 € = (=00, ~Aap2) U (Aaja, +00),
A4z
ErT
p-value = 2P(N(0,1) > |TS|).

Hy:pp <pg: TS = \/(7%) C = (=00, —ta(n1 +ng —2)),

p-value = P(t(ny + ng — 2) < TS);

Hy:po>pp: TS = 20 ¢ =(t, —2
01 = 02 is unknown: LifL = e YES— (ta(n1 + ng — 2),+00),
w ~ t(ny +ng — 2) p-value = P(t(ng + ny — 2) > TS);
n + T
v Hyop#pp: TS = —2= (ii)l ; C = (=00, —tasa(n1 +n2 — 2))
VarTg

U (taj2(n1 +n2 — 2), +00),
p-value = 2P(t(n1 + ne — 2) > |TS|).

01 # 02 both unknown: similarly as in the tree of confidence intervals.
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4.3 Hypothesis testing for population variance(s)

Hy:o’<od: TS = %, C =(0,x3_,(n—-1)),
p-value = P(x%(n — 1) < TS);
Hy:02>08: TS = % C = (x2(n—1),+00),
p-value = P(x?(n — 1) > TS);
Hy:o?#02: TS :% C =04 a(n=1) U (& (n—1),+),

p-value = 2P(x%(n — 1) > TS) or 2P(x*(n — 1) < TS).

2 2
Y ~x(n—1)
HO:UQZJ?)

Hy:02<o3: TS =s2/s3, C = (0, Fi_o(n; — 1,ns — 1)),
p-value = P(F(n; — 1,ny — 1) < TS);

{Xh cee aan} from N(iu’lvo'l) Hy: U% > U% : TS = 5%/55’ C = (Fa(”1 —1,ng — 1)¢+OO)¢
{Y1,..., Yy, } from N(p2,02) p-value = P(F(n1 — 1,n2 — 1) > TS);

2 2 b b
SO~ F(m —1ny—1) |Hi:ol#03: TS =s3/s3, C = (0, Fi_s(n1 — 1,nz — 1))
Hy: 0% =03 U (Fa(m —1,n2 — 1), +00),
p-value = 2P(F(ny — 1,ng — 1) > TS)
or 2P(F(n1 — 1,na — 1) < TS).

4.4 Large sample size (n > 30, population may be completely unknown)

If there is no information about the population(s), then we can apply Central Limit Theorem (usually
with a large sample n > 30). The idea is exactly the same as the one used in confidence intervals. One

example is: a sample {X1,...,X,},n > 30, from some population (which is unknown) with a mean s
and standard deviation . Null hypothesis Hp : i = pp. Then it follows from CLT that S);;% ~ N(0,1),
therefore

Hy:p<po: TS = 5/7;%’ C = (—00,—Aa);
p-value = P(N(0,1) < TS);

Hiip>po: TS = 58, C = (A, +00),
p-value = P(N(0,1) > TS);

Hy:p#po: TS = f;\'}% C = (-00,=Aas2) U (Aaj2, +00),
p-value = 2P(N(0,1) > |TS)).

5 Multi-dimension random variables (or random vectors)

Covariance (Kovarians) of (X,Y): oxy = cov(X,Y) = E[(X — ux)(Y — py)], (cov(X, X) = V(X)).

Correlation coefficient (Korrelation) of (X,Y): pxy = % = ;XXUYY

A rule: for real constants a,a;, b and b,

cov(a + i a; X;, b+ i b;Yj) = i i a;bjcov(X;, Y;).
i=1 j=1

i=1 j=1
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X and Y are uncorrelated: if cov(X,Y) = 0.

An important theorem: Suppose that a random vector X has a mean px and a covariance matrix
Cx. Define a new random vector Y = AX + b, for some matrix A and vector b. Then

py = Aux +b, Cy = ACxAT.

Standard normal vectors: {X;} are independent and X; ~ N(0,1),

X, 0 10 ---0
=] . ol . Rl I : 1 -
= ; thus =|.1: =1. . .|, densit, Xx) = eT2X X,
: i : X . : ¥ fx( (V2m)n
Xn 0 00 --- 1

General normal vectors: Y = AX + b, where X is a standard normal vector, and

1
(V2m)"\/det(Cy)

wy =b, Cy =AAT,  density fy(y) = 3 [=m)TCT y=ny)]

6 (Simple and multiple) Linear regressions

Simple linear regression: Y = fy+ iz +¢, &~ N(0,0).
Multiple linear regression: Y = 5y + S1z1 + fexa + ... + Brap +¢, €~ N(0,0).

Both ‘Simple linear regression’ and ‘Multiple linear regression’ can be written as vector forms:

Y1 Loz o ok Bo

Y, 1 mor - wop 5
Y=XB+e: Y= . X = . ) ,B= 2] ,e~N(0,0T,xn).

Y'VL 1 x'ﬂl e xnk) Bk

Y ~ N(uy,Cy), where py = X3 and Cy = 0I,xp.

Estimate of the coefficient 3: ['3 = (XTX)_IXTy.
Estimator of the coefficient 8: B = (X"X) ' X"Y ~ N (8,0% (X"X) ).

Estimated line is: = Bg + lel + 321'2 + ..+ kak

Analysis of variance:

u 58 Y (Y= Y)? .
SSror =Y (4, — ), ToT == ~xP(n=1), i B =... =B =0;

=1

[ o

- SSr il —Y)?

SSr = Z(ﬂj -9)? == ~P(k), i BL=.. =B =0;

; o o?
J=1
u ) SSp i (Y — y)?
SSp = (y; — i)’ O—ZE === 0]2‘ X = k1),
j=1
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SSror = SSp+ SSg, and R? =

2

* % % 0° is estimated as &

2

SSr
SSror”

_ 2 _ _SSe
=8 = k1

% x For the Hypothesis testing: Hy: 1 = ... = 8, =0 vs Hy : at least one §; # 0,

SSr/k
ssoidiy ~ Flkn—k—1)

. SSp/k
TS = ssE/(f—k—l)

C = (Fa(k,n—k—1),400).

* % % We know B = (XTX)71 XTY ~ N (ﬂ, o2 (XTX)A) , thus if we denote

then Bj ~ N(8;,0+/hj;) and

B;

- 8;

S\/ hijj

hoo hor -+ hok
(XTX)71 - }ng }LH e ]le
hkr gz o hpg

Bib; N(0,1). But o is generally unknown, therefore
pu \/@ ( 1) g y s

~tn—k-1), [s\/hjj is sometimes denoted as d(5;) or se(/;’j)] .

Confidence interval of 3 is: Ig, = BT tajo(n —k—1) - sy/hjj;

Hypothesis testing Ho : 8; = 0 vs Hy : 8 # 0 has

__B
C= (7007 7tu/2(n —k- 1)) U (tu/Q(n —k- 1),+OO).

Rewrite simple and multiple linear regressions as follows:

For a given/fixed new observation u = (1,uy,...,ug

Y =08+ fix1+...+ Brrr+e, €~ N(0,0), (themodel);
uw=EY)=p0+ pix1 + ...+ Brag, (the mean);
= Bo + 31z1 +o+ Bz, (the estimated line).

)T, the scalar ji is an estimate of unknown u (and

Y'). Then we can talk about ‘accuracy’ of this estimate in terms of confidence intervals (and prediction

intervals).

Confidence interval of u: I), = i Fto/o(n —k —1) -5 y/ul (XTX) " u.
Prediction interval of Y: Iy = i Fto/5(n —k—1)-5-y/ul (XTX)u+1.

Suppose we have two models:

{

Model 1:
Model 2:

Y =Bo+Brw1+ ...+ Brag + €
Y =80+ 011 + .o+ Bk + Brr1Trt1 + -+ BeapThap + €,
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and we want to test Ho : fg41 = ... = Brqp = 0 vs Hy : at least one Sy # 0,
(859 —552 /p e b
55D J(n—k-p—1) Flpn—k—p—1)

TS — (551 —552)) /p
58P /(n—k—p—1)
C = (Fa(p,n—k—p—1),+00).

Variable selection. If we have a response variable y with possibly many predictors z1, .. ., xj, then how
to choose appropriate z’s (some z’s are useful to Y, and some are not):
Step 1: corr([z1,...,zk],y), choose a maximal correlation (say ;), Y = o + Biz; + €, test if 5; = 07

Step 2: do regression Y = B + Biz; + Bers +e for x =1,...,i—1,i+1,..., k, choose a minimal SSg
(say x;), Y = Bo + Bixs + Bjx; + ¢, test if §; = 07

Step 3: repeat Step 2 until the last test for 8 = 0 is not rejected.

7 Basic x>-test

Hy: X ~ distribution (with or without unknown parameters);

Suppose we want to test .
Hy: X » distribution

fact is : 2, W ~ x%(k — 1 — #of unknown parameters);

Then { TS = YOk | Wenp)”,

np;

C= (XZ (k-1 7#0f unknown parameters), +oo) .
Independence / Homogeneity. Suppose we have a data with r rows and k columns,

{Hg : the grouping of r rows and the grouping of k& columns are independent;

Hy :  the grouping of r rows and the grouping of k£ columns are not independent.
Equivalently,
Hy: the distributions of r rows in each column are the same
H, : the distributions of r rows in each column are Not the same
Then

fact is : Z;L] i Wy=np)?® X((r =Dk = 1));

npi;

c - (Nij—npig)?

TS = b, Sy, el
C=(E(r= 1)k —1)), +0),

where p;; = p; - g; are the theoretical probabilities.
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