TAMS24: Statistisk teori solutions to 14 frågor

1~

Solution. (a) First $E\left(X_{i}\right)=\int_{0}^{\infty} x f(x) d x=5-4 a$. From $E\left(X_{i}\right)=\bar{x}$, it follows that $5-4 a=\bar{x}$. Thus $\hat{a}=(5-\bar{x}) / 4$.
(b) Let Y be the number of elements which "har gått sönder under detta halvår", then from independence $Y \sim \operatorname{Bin}\left(n_{2}, p\right)$ where

$$
\begin{aligned}
p & =P(\text { en element "har gått sönder under detta halvår" }) \\
& =P\left(X_{i} \leq 1 / 2\right)=\int_{0}^{1 / 2} f(x) d x=(1-a)\left(1-e^{-1 / 10}\right)+a\left(1-e^{-1 / 2}\right)
\end{aligned}
$$

It is reasonable to believe that $n_{2} \cdot p=y$ (for instance momentmetoden), which gives

$$
\hat{a}=\left(\frac{y}{n_{2}}-0.0952\right) / 0.2983
$$

(c) In practice, Metod 2 is much more useful because: in Metod 1 in order to get \bar{x}, one needs to collect the lifetime of each element, which means that one has to wait until all elements die (this may take a long time); in Metod 2, in order to get y one just needs to wait for a half year.

Solution. Let X be the number of "transistorer" which still work after en tidsenhet, then $X \sim \operatorname{Bin}(400, p)$ where

$$
\begin{aligned}
p & =P(\text { a "transistorer" still works after en tidsenhet }) \\
& =P\left(\operatorname{Exp}\left(\frac{1}{\mu}\right)>1\right)=\int_{1}^{\infty} \frac{1}{\mu} e^{-x / \mu} d x=e^{-1 / \mu}
\end{aligned}
$$

Thus for mean, we use $400 \cdot p=109$ to get $\hat{p}=109 / 400$ and $\hat{\mu}=\frac{1}{\ln (400 / 109)}=0.77$.
For the median, from $P\left(\operatorname{Exp}\left(\frac{1}{\mu}\right)>\operatorname{median}\right)=1 / 2$ we have median $=\mu \ln 2$, that is

$$
\widehat{\text { median }}=\hat{\mu} \cdot \ln 2=0.77 \cdot \ln 2=0.53
$$

Solution. First

$$
E\left(X_{i}\right)=\int_{\theta}^{1} x \frac{1}{1-\theta} d x=\frac{1}{2}(1+\theta)
$$

It follows from $E\left(X_{i}\right)=\bar{x}$ that $\frac{1}{2}(1+\theta)=\bar{x}$, thus $\hat{\theta}=2 \bar{x}-1$. Den är väntevärdesriktig eftersom

$$
E(\hat{\Theta})=E(2 \bar{X}-1)=2 E\left(X_{i}\right)-1=2 \cdot \frac{1}{2}(1+\theta)-1=\theta
$$

$4 \sim$

Solution. Because of the normal assumption with the same variance, a point estimate of $\mu_{i}-\mu_{j}$ would be $\hat{\mu}_{i}-\hat{\mu}_{j}=\bar{x}_{i}-\bar{x}_{j}$ which is an observation of $\bar{X}_{i}-\bar{X}_{j} \sim N\left(\mu_{i}-\mu_{j}, \sigma \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}\right)$. Then we have the hjälpvariabeln

$$
\frac{\left(\bar{X}_{i}-\bar{X}_{j}\right)-\left(\mu_{i}-\mu_{j}\right)}{S \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}} \sim t(d f)
$$

where S is an estimator of σ defined as

$$
s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\left(n_{3}-1\right) s_{3}^{2}+\left(n_{4}-1\right) s_{4}^{2}}{n_{1}+n_{2}+n_{3}+n_{4}-4}
$$

and the degrees of freedom $d f=n_{1}+n_{2}+n_{3}+n_{4}-4$. Based on this 99% confidence interval of $\mu_{i}-\mu_{j}$ is

$$
I_{\mu_{i}-\mu_{j}}=\left(\bar{x}_{i}-\bar{x}_{j}\right) \mp t_{0.005}(d f) \cdot s \cdot \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}} .
$$

Therefore we have (notice that $s=0.1270$ and $d f=11$)

$$
I_{\mu_{1}-\mu_{2}}=(-0.03,0.48), \quad I_{\mu_{1}-\mu_{3}}=(-0.01,0.59), \quad I_{\mu_{1}-\mu_{4}}=(0.02,0.70)
$$

What we can conclude: $\mu_{1}>\mu_{4}$ (this means that Material 1 is worse than Material 4). Other differences are not significant.

5~

Solution. The hjälpvariabeln is

$$
\frac{\left(n_{1}+n_{2}+n_{3}-3\right) S^{2}}{\sigma^{2}} \sim \chi^{2}\left(n_{1}+n_{2}+n_{3}-3\right)
$$

(a) A 95% confidence interval $I_{\sigma^{2}}$ of type $\left(0, a^{2}\right)$ of σ^{2} would be

$$
\begin{equation*}
I_{\sigma^{2}}=\left(0, a^{2}\right)=\left(0, \frac{\left(n_{1}+n_{2}+n_{3}-3\right) s^{2}}{\chi_{1-\alpha}^{2}\left(n_{1}+n_{2}+n_{3}-3\right)}\right)=\left(0, \frac{27 \cdot 39.45887}{\chi_{0.95}^{2}(27)}\right)=(0,65 \tag{65.76}
\end{equation*}
$$

where $\chi_{0.95}^{2}(27)=16.2$ from the table, and

$$
s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\left(n_{3}-1\right) s_{3}^{2}}{n_{1}+n_{2}+n_{3}-3}=39.45887
$$

Thus a 95% confidence interval I_{σ} of type $(0, a)$ of σ is $I_{\sigma}=(\sqrt{0}, \sqrt{65.76})=(0,8.11)$.
(b) First we know that

$$
c_{i} \bar{X}_{i}+c_{j} \bar{X}_{j} \sim N\left(c_{i} \mu_{i}+c_{j} \mu_{j}, \sigma \sqrt{\frac{c_{i}^{2}}{n_{i}}+\frac{c_{j}^{2}}{n_{j}}}\right)
$$

then the hjälpvariabeln is

$$
\frac{\left(c_{i} \bar{X}_{i}+c_{j} \bar{X}_{j}\right)-\left(c_{i} \mu_{i}+c_{j} \mu_{j}\right)}{S \sqrt{\frac{c_{i}^{2}}{n_{i}}+\frac{c_{j}^{2}}{n_{j}}}} \sim t\left(n_{1}+n_{2}+n_{3}-3\right)
$$

(NOTE that the degrees of freedom involves all samples sizes n_{1}, n_{2} and n_{3}, NOT just n_{i} and n_{j}.) In order to investigate whether $\mu_{2}>1.4 \mu_{3}$, we construct a 95% confidence interval of $\mu_{2}-1.4 \mu_{3}$ of the form $(a,+\infty)$. To this end,

$$
(a,+\infty)=\left(\left(\bar{x}_{2}-1.4 \bar{x}_{3}\right)-t_{\alpha}\left(n_{1}+n_{2}+n_{3}-3\right) \cdot s \cdot \sqrt{\frac{1^{2}}{n_{2}}+\frac{1.4^{2}}{n_{3}}},+\infty\right)=(0.17,+\infty)
$$

Since $0.17>0$, we conclude that $\mu_{2}>1.4 \mu_{3}$.
$6 \sim$

Solution. The idea of the solution (including the hjälpvariabeln) is exactly the same as $5 \sim$, so we omit the details.
(a) $I_{\sigma}=(0,5.86)$.
(b) $I_{\mu_{1}-\mu_{2}}=(2.89,16.35), I_{\mu_{1}-\mu_{3}}=(-12.71,1.95)$ and $I_{\mu_{2}-\mu_{3}}=(-22.67,-7.33)$. Thus we conclude that $\mu_{1}>\mu_{2}$ and $\mu_{3}>\mu_{2}$. Difference between μ_{1} and μ_{3} is not significant.

$7 \sim$

Solution. Let X be the antal felaktiga bland 500 , then $X \sim \operatorname{Bin}(500, p)$. From normal approximation, the hjälpvariabeln is

$$
\frac{\hat{P}-p}{\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}} \approx N(0,1)
$$

where $\hat{p}=x / n=87 / 500$. Thus a 95% confidence interval I_{p} of p is

$$
I_{p}=\hat{p} \mp \lambda_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=(0.141,0.207)
$$

Solution. From normal approximation, the hjälpvariabeln is

$$
\frac{\bar{X}-\mu}{\mu / \sqrt{n}} \approx N(0,1)
$$

(a) By solving μ, a 95% confidence interval I_{μ} of μ is

$$
I_{\mu}=\left(\frac{\bar{x}}{1+\frac{\lambda_{\alpha / 2}}{\sqrt{n}}}, \frac{\bar{x}}{1-\frac{\lambda_{\alpha / 2}}{\sqrt{n}}}\right)=\left(\frac{4.5}{1+\frac{1.96}{\sqrt{80}}}, \frac{4.5}{1-\frac{1.96}{\sqrt{80}}}\right)=(3.69,5.76) .
$$

(b) Be definition $p=P\left(\operatorname{Exp}\left(\frac{1}{\mu}\right)>10\right)=e^{-10 / \mu}$. A 95% confidence interval should be $I_{p}=\left(?_{1}, ?_{2}\right)$ where

$$
95 \%=P\left(?_{1}<p<?_{2}\right)=P\left(?_{1}<e^{-10 / \mu}<?_{2}\right)=P\left(-10 / \ln \left(?_{1}\right)<\mu<-10 / \ln \left(?_{2}\right)\right)
$$

Thus $-10 / \ln \left(?_{1}\right)=3.69$ and $?_{1}=e^{-10 / 3.69}=0.067$. Similarly $?_{2}=e^{-10 / 5.76}=0.176 . I_{p}=(0.067,0.176)$.

$9 \sim$

Solution. From normal approximation, the hjälpvariabeln is

$$
\frac{\bar{X}-\mu}{\sqrt{\bar{X} / n}} \approx N(0,1)
$$

Thus a 95% confidence interval I_{μ} of μ is

$$
I_{\mu}=\bar{x} \mp \lambda_{\alpha / 2} \sqrt{\bar{x} / n}=2.02 \mp 1.96 \sqrt{2.02 / 500}=(1.90,2.14)
$$

$10 \sim$ och $11 \sim$

Solution. From the definition of Type I error, it follows, $X \sim P o(\lambda t)$,

$$
\begin{aligned}
0.01=\alpha & =P\left(\text { reject } H_{0} \text { if } H_{0} \text { is true }\right)=P(X>? \text { if } \lambda=5) \\
& =P\left(\frac{X-\lambda t}{\sqrt{\lambda t}}>\frac{?-\lambda t}{\sqrt{\lambda t}} \text { if } \lambda=5\right)=P\left(\frac{X-5 t}{\sqrt{5 t}}>\frac{?-5 t}{\sqrt{5 t}}\right) \\
& \approx P\left(N(0,1)>\frac{?-5 t}{\sqrt{5 t}}\right), \quad \text { thus } ?=5 t+\lambda_{0.01} \sqrt{5 t}
\end{aligned}
$$

From the definition of power, it follows

$$
\begin{aligned}
0.99=\alpha & =P\left(\text { reject } H_{0} \text { if } H_{0} \text { is false and } \lambda=7.5\right)=P(X>\text { ? if } \lambda=7.5) \\
& =P\left(\frac{X-\lambda t}{\sqrt{\lambda t}}>\frac{?-\lambda t}{\sqrt{\lambda t}} \text { if } \lambda=7.5\right)=P\left(\frac{X-7.5 t}{\sqrt{7.5 t}}>\frac{?-7.5 t}{\sqrt{7.5 t}}\right) \\
& \approx P\left(N(0,1)>\frac{?-7.5 t}{\sqrt{7.5 t}}\right), \quad \text { thus } ?=7.5 t+\lambda_{0.99} \sqrt{7.5 t} .
\end{aligned}
$$

Therefore we get

$$
5 t+\lambda_{0.01} \sqrt{5 t}=7.5 t+\lambda_{0.99} \sqrt{7.5 t}, \quad \text { so } t=21.428 .
$$

12~

Solution. (a) We do a testing $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ mot $H_{0}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$. We know the test statistic is $s_{1}^{2} / s_{2}^{2}=0.0478$, and the critical region is

$$
\left(0, F_{1-\frac{\alpha}{2}}(7,7)\right) \cup\left(F_{\frac{\alpha}{2}}(7,7),+\infty\right)=(0,0.1125) \cup(8.89,+\infty) .
$$

Since the test statistic is in the critical region, we reject H_{0}. Therefore variances are NOT the same!
(b) Try to get 95% confidence intervals $I_{\mu_{2}-\mu_{1}}, I_{\mu_{2}-\mu_{3}}$ and $I_{\mu_{3}-\mu_{1}}$. At the end, from these intervals one can see that μ_{2} is the biggest.

13~

Solution. (a) The test statistic is $\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{11.2-10}{2.1 / \sqrt{25}}=2.857$, and the critical region is

$$
\left(-\infty,-t_{\alpha / 2}(n-1)\right) \cup\left(t_{\alpha / 2}(n-1),+\infty\right)=(-\infty,-2.80) \cup(2.80,+\infty) .
$$

Since the test statistic is in the critical region, we reject H_{0}.
(b) A 99% confidence interval of μ is

$$
I_{\mu}=\bar{x} \mp t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}=11.2 \mp 2.80 \cdot \frac{2.1}{\sqrt{25}}=(10.024, \quad 12.376) .
$$

This is another way to reject H_{0} since 10 is not in the 99% confidence interval.
$14 \sim$ a) Livsliangderna för 50 elektronrör beständes och man fick $\bar{x}=38.5$. Man autar att luslangderna är oberoende och exponentialfördelade med ett okänt väntevärde μ.
Konstruera ett trasidigt konfidens interval för μ med konfidensgraden 95%
b) Di man sigg hur obserrationera tördlelat sig pà tallimjen, blev man treksam över exponentiatfo'rdelningsant agandet:

Intervall	Absolut frekvens
$0 \leq x<20$	14
$20 \leq x<40$	18
$40 \leq x<60$	7
$60 \leq x<80$	6
$80 \leq x$	5

Undersök med ett x^{2}-test pai nivän 0.10 om ahtagandet om exponential fördelning är rimligt
Solution a) 95% contidence interval of μ (large sompie) is

$$
\begin{aligned}
& \bar{x} \mp \lambda_{/ 2} \frac{\bar{x}}{\sqrt{n}}=38.5 \mp 1.96 \frac{38.5}{\sqrt{50}}=(27.83,49.17) \\
& 38.5 . \quad x \sim \operatorname{Exp}\left(\frac{1}{\pi}\right)
\end{aligned}
$$

b) $\hat{\mu}=\bar{x}=38.5 . \quad x \sim \operatorname{Exp}\left(\frac{1}{\pi}\right)$

