TAMS24: Statistisk teori solutions to 14 frågor

 $1\sim$

Solution. (a) First $E(X_i) = \int_0^\infty x f(x) dx = 5 - 4a$. From $E(X_i) = \bar{x}$, it follows that $5 - 4a = \bar{x}$. Thus $\hat{a} = (5 - \bar{x})/4$.

(b) Let Y be the number of elements which "har gått sönder under detta halvår", then from independence $Y \sim Bin(n_2, p)$ where

p = P(en element "har gått sönder under detta halvår")

$$= P(X_i \le 1/2) = \int_0^{1/2} f(x) dx = (1-a)(1-e^{-1/10}) + a(1-e^{-1/2}).$$

It is reasonable to believe that $n_2 \cdot p = y$ (for instance momentmetoden), which gives

$$\hat{a} = (\frac{y}{n_2} - 0.0952)/0.2983$$

(c) In practice, Metod 2 is much more useful because: in Metod 1 in order to get \bar{x} , one needs to collect the lifetime of each element, which means that one has to wait until all elements die (this may take a long time); in Metod 2, in order to get y one just needs to wait for a half year.

 $2\sim$

Solution. Let X be the number of "transistorer" which still work after en tidsenhet, then $X \sim Bin(400, p)$ where

$$p = P(a \text{ "transistorer" still works after en tidsenhet})$$
$$= P(Exp(\frac{1}{\mu}) > 1) = \int_{1}^{\infty} \frac{1}{\mu} e^{-x/\mu} dx = e^{-1/\mu}.$$

Thus for mean, we use $400 \cdot p = 109$ to get $\hat{p} = 109/400$ and $\hat{\mu} = \frac{1}{\ln(400/109)} = 0.77$.

For the median, from $P(Exp(\frac{1}{\mu}) > \text{median}) = 1/2$ we have median= $\mu \ln 2$, that is

$$\hat{\text{median}} = \hat{\mu} \cdot \ln 2 = 0.77 \cdot \ln 2 = 0.53.$$

 $3\sim$

Solution. First

$$E(X_i) = \int_{\theta}^{1} x \frac{1}{1-\theta} dx = \frac{1}{2}(1+\theta).$$

It follows from $E(X_i) = \bar{x}$ that $\frac{1}{2}(1+\theta) = \bar{x}$, thus $\hat{\theta} = 2\bar{x} - 1$. Den är väntevärdesriktig eftersom

$$E(\hat{\Theta}) = E(2\bar{X} - 1) = 2E(X_i) - 1 = 2 \cdot \frac{1}{2}(1 + \theta) - 1 = \theta.$$

 $4\sim$

Solution. Because of the normal assumption with the same variance, a point estimate of $\mu_i - \mu_j$ would be $\hat{\mu}_i - \hat{\mu}_j = \bar{x}_i - \bar{x}_j$ which is an observation of $\bar{X}_i - \bar{X}_j \sim N(\mu_i - \mu_j, \sigma \sqrt{\frac{1}{n_i} + \frac{1}{n_j}})$. Then we have the hjälpvariabeln

$$\frac{(X_i - X_j) - (\mu_i - \mu_j)}{S_{\sqrt{\frac{1}{n_i} + \frac{1}{n_j}}}} \sim t(df)$$

where S is an estimator of σ defined as

$$s^{2} = \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2} + (n_{3}-1)s_{3}^{2} + (n_{4}-1)s_{4}^{2}}{n_{1}+n_{2}+n_{3}+n_{4}-4},$$

and the degrees of freedom $df = n_1 + n_2 + n_3 + n_4 - 4$. Based on this 99% confidence interval of $\mu_i - \mu_j$ is

$$I_{\mu_i - \mu_j} = (\bar{x}_i - \bar{x}_j) \mp t_{0.005}(df) \cdot s \cdot \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$$

Therefore we have (notice that s = 0.1270 and df = 11)

$$I_{\mu_1-\mu_2} = (-0.03, 0.48), \quad I_{\mu_1-\mu_3} = (-0.01, 0.59), \quad I_{\mu_1-\mu_4} = (0.02, 0.70).$$

What we can conclude: $\mu_1 > \mu_4$ (this means that Material 1 is worse than Material 4). Other differences are not significant.

 $5\sim$

Solution. The hjälpvariabeln is

$$\frac{(n_1 + n_2 + n_3 - 3)S^2}{\sigma^2} \sim \chi^2(n_1 + n_2 + n_3 - 3).$$

(a) A 95% confidence interval I_{σ^2} of type $(0, a^2)$ of σ^2 would be

$$I_{\sigma^2} = (0, a^2) = (0, \frac{(n_1 + n_2 + n_3 - 3)s^2}{\chi^2_{1-\alpha}(n_1 + n_2 + n_3 - 3)}) = (0, \frac{27 \cdot 39.45887}{\chi^2_{0.95}(27)}) = (0, 65.76)$$

where $\chi^{2}_{0.95}(27) = 16.2$ from the table, and

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2} + (n_{3} - 1)s_{3}^{2}}{n_{1} + n_{2} + n_{3} - 3} = 39.45887.$$

Thus a 95% confidence interval I_{σ} of type (0, a) of σ is $I_{\sigma} = (\sqrt{0}, \sqrt{65.76}) = (0, 8.11)$.

(b) First we know that

$$c_i \bar{X}_i + c_j \bar{X}_j \sim N(c_i \mu_i + c_j \mu_j, \sigma \sqrt{\frac{c_i^2}{n_i} + \frac{c_j^2}{n_j}})$$

then the hjälpvariabeln is

$$\frac{(c_i \bar{X}_i + c_j \bar{X}_j) - (c_i \mu_i + c_j \mu_j)}{S \sqrt{\frac{c_i^2}{n_i} + \frac{c_j^2}{n_j}}} \sim t(n_1 + n_2 + n_3 - 3).$$

(NOTE that the degrees of freedom involves all samples sizes n_1, n_2 and n_3 , NOT just n_i and n_j .) In order to investigate whether $\mu_2 > 1.4\mu_3$, we construct a 95% confidence interval of $\mu_2 - 1.4\mu_3$ of the form $(a, +\infty)$. To this end,

$$(a, +\infty) = ((\bar{x}_2 - 1.4\bar{x}_3) - t_\alpha(n_1 + n_2 + n_3 - 3) \cdot s \cdot \sqrt{\frac{1^2}{n_2} + \frac{1.4^2}{n_3}}, +\infty) = (0.17, +\infty).$$

Since 0.17 > 0, we conclude that $\mu_2 > 1.4\mu_3$.

 $6\sim$

Solution. The idea of the solution (including the hjälpvariabeln) is exactly the same as $5\sim$, so we omit the details.

(a) $I_{\sigma} = (0, 5.86).$

(b) $I_{\mu_1-\mu_2} = (2.89, 16.35), I_{\mu_1-\mu_3} = (-12.71, 1.95)$ and $I_{\mu_2-\mu_3} = (-22.67, -7.33)$. Thus we conclude that $\mu_1 > \mu_2$ and $\mu_3 > \mu_2$. Difference between μ_1 and μ_3 is not significant.

 $7\sim$

Solution. Let X be the antal felaktiga bland 500, then $X \sim Bin(500, p)$. From normal approximation, the hjälpvariabeln is

$$\frac{\hat{P} - p}{\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}} \approx N(0,1),$$

where $\hat{p} = x/n = 87/500$. Thus a 95% confidence interval I_p of p is

$$I_p = \hat{p} \mp \lambda_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = (0.141, 0.207).$$

8~

Solution. From normal approximation, the hjälpvariabeln is

$$\frac{\bar{X} - \mu}{\mu / \sqrt{n}} \approx N(0, 1)$$

(a) By solving $\mu,$ a 95% confidence interval I_{μ} of μ is

$$I_{\mu} = \left(\frac{\bar{x}}{1 + \frac{\lambda_{\alpha/2}}{\sqrt{n}}}, \frac{\bar{x}}{1 - \frac{\lambda_{\alpha/2}}{\sqrt{n}}}\right) = \left(\frac{4.5}{1 + \frac{1.96}{\sqrt{80}}}, \frac{4.5}{1 - \frac{1.96}{\sqrt{80}}}\right) = (3.69, 5.76).$$

(b) Be definition $p = P(Exp(\frac{1}{\mu}) > 10) = e^{-10/\mu}$. A 95% confidence interval should be $I_p = (?_1, ?_2)$ where

$$95\% = P(?_1$$

Thus $-10/\ln(?_1) = 3.69$ and $?_1 = e^{-10/3.69} = 0.067$. Similarly $?_2 = e^{-10/5.76} = 0.176$. $I_p = (0.067, 0.176)$.

 $9\sim$

Solution. From normal approximation, the hjälpvariabeln is

$$\frac{X-\mu}{\sqrt{\bar{X}/n}} \approx N(0,1).$$

Thus a 95% confidence interval I_{μ} of μ is

$$I_{\mu} = \bar{x} \mp \lambda_{\alpha/2} \sqrt{\bar{x}/n} = 2.02 \mp 1.96 \sqrt{2.02/500} = (1.90, 2.14).$$

10~ och 11~

Solution. From the definition of Type I error, it follows, $X \sim Po(\lambda t)$,

$$0.01 = \alpha = P(\text{reject } H_0 \text{ if } H_0 \text{ is true}) = P(X > ? \text{ if } \lambda = 5)$$
$$= P(\frac{X - \lambda t}{\sqrt{\lambda t}} > \frac{? - \lambda t}{\sqrt{\lambda t}} \text{ if } \lambda = 5) = P(\frac{X - 5t}{\sqrt{5t}} > \frac{? - 5t}{\sqrt{5t}})$$
$$\approx P(N(0, 1) > \frac{? - 5t}{\sqrt{5t}}), \quad \text{thus } ? = 5t + \lambda_{0.01}\sqrt{5t}.$$

From the definition of power, it follows

$$0.99 = \alpha = P(\text{reject } H_0 \text{ if } H_0 \text{ is false and } \lambda = 7.5) = P(X > ? \text{ if } \lambda = 7.5)$$

= $P(\frac{X - \lambda t}{\sqrt{\lambda t}} > \frac{? - \lambda t}{\sqrt{\lambda t}} \text{ if } \lambda = 7.5) = P(\frac{X - 7.5t}{\sqrt{7.5t}} > \frac{? - 7.5t}{\sqrt{7.5t}})$
 $\approx P(N(0, 1) > \frac{? - 7.5t}{\sqrt{7.5t}}), \text{ thus } ? = 7.5t + \lambda_{0.99}\sqrt{7.5t}.$

Therefore we get

$$5t + \lambda_{0.01}\sqrt{5t} = 7.5t + \lambda_{0.99}\sqrt{7.5t}$$
, so $t = 21.428$.

г	

12~

Solution. (a) We do a testing $H_0: \sigma_1^2 = \sigma_2^2 \mod H_0: \sigma_1^2 \neq \sigma_2^2$. We know the test statistic is $s_1^2/s_2^2 = 0.0478$, and the critical region is

$$(0, F_{1-\frac{\alpha}{2}}(7,7)) \cup (F_{\frac{\alpha}{2}}(7,7), +\infty) = (0, 0.1125) \cup (8.89, +\infty).$$

Since the test statistic is in the critical region, we reject H_0 . Therefore variances are NOT the same!

(b) Try to get 95% confidence intervals $I_{\mu_2-\mu_1}, I_{\mu_2-\mu_3}$ and $I_{\mu_3-\mu_1}$. At the end, from these intervals one can see that μ_2 is the biggest.

$13\sim$

Solution. (a) The test statistic is $\frac{\bar{x}-\mu_0}{s/\sqrt{n}} = \frac{11.2-10}{2.1/\sqrt{25}} = 2.857$, and the critical region is

$$(-\infty, -t_{\alpha/2}(n-1)) \cup (t_{\alpha/2}(n-1), +\infty) = (-\infty, -2.80) \cup (2.80, +\infty).$$

Since the test statistic is in the critical region, we reject H_0 .

(b) A 99% confidence interval of μ is

$$I_{\mu} = \bar{x} \mp t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}} = 11.2 \mp 2.80 \cdot \frac{2.1}{\sqrt{25}} = (10.024, \quad 12.376).$$

This is another way to reject H_0 since 10 is not in the 99% confidence interval.

5/5

[4~] a) Livslängderna för 50 elektronrör bestämdes
och man fick X=38.5. Man antar att livslängderna är oberoende och exponential- fördelade med ett okänt väntevärde u Konstruera ett tvåsidigt konfidens intervall för u
med rougidensgraden 95%
b) Då man såg hur observationera tördelat sig på
tallinjen, blev man treksam över exponential- tördelningsantagandet:
Intervall Absolut frekvens 0 < x < 20
$20 \le x < 40$ 14 18
$40 \leq \chi < 60$ 7
$bo \leq x \leq 80$
XUE X
abtain lit med ett X-dest på nivån 0.10 om
Undersök med ett χ^2 -dest på nivån 0.10 om aktagandet om exponential fördelning är rimligt <u>Solution</u> : 995% contidence interval of μ (large sample) is $\overline{\chi} \mp \lambda_{\chi} = \frac{\overline{\chi}}{\sqrt{5}} = 385 \pm 101.385$
interval of 12 (1
12 VIL 2017 F 1.96
1 - 1 - 1 = 1 = 1 = 1
$\begin{cases} P_2 = p(z_0 \le X < 40) = 0.4052 \\ = 0.405$
$P_3 = = = = = = = = = = = = = = = = = = =$
Combine $P_4 = = 0.0853, nP_4 = 4.265$ = 0.1252, nP_5 = 6.26
After combino, $P_1 = 0.4052$, $np_1 = 20.26$ $P_2 = 0.241$, $np_2 = 12.05$, $TS = \frac{4}{5} \frac{(N_1 - np_1)^2}{np_1} = 4.897$
$ \begin{array}{l} P_3 = 0.1435, nP_3 = 7.165 \\ P_4 = 0.2195, nP_4 = 10.525 \\ \end{array} \begin{array}{l} C = (\chi^2_{(k-1)} + \pi_0 + unknowns, +\infty) \\ = (\chi^2_{0.1} (4-1-1), +\infty) = (4.6, \infty) \\ \end{array} $