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1. (a) Let Xi ∼ N(µX , σ
2) be the new random sample. It follows that (by Cochran’s and

Gosset’s theorems)

TX =
X − µX
S/
√

8
∼ t(7),

and
P (−tα/2(7) < TX < tα/2(7)) = 1− α,

where we can solve the inequality for

X − tα/2(7) · S√
8
< µX < X + tα/2(7) · S√

8
.

From a table, we find that t0.005(7) = 3.50.

x

y

t0.005(7)−t0.005(7) 0

As an observation of SX , we use
√
s2X , so

t0.005(7)
s√
8

= 3.50 · 0.5032

2.8284
= 0.6226.

Since x = 6.965, the interval is given by

IµX = (6.34, 7.59).

(b) Let Y ∼ N(µY , σ
2) be the old sample. Since the variances are equal, we weight them

together according to the pooled variance:

s2 =
7s21 + 7s22

14
=

1

2

(
s21 + s22

)
.

It now follows that (by Cochran’s and Gosset’s theorems)

T =
0.5X − Y − (0.5µX − µY )

S

√
0.52

8
+

1

8

∼ t(16− 2) = t(14),

and
P (T < tα(14)) = 1− α,

where we can solve the inequality for

0.5 ·X − Y − tα(14) · S
√

0.52

8
+

1

8
< 0.5 · µX − µY .

We use a one-sided interval since we only want to investigate if 0.5 · µX > µY . From
a table, we find that t0.05(14) = 1.7613.



x

y

tα(14)

As an observation of S, we use
√
s2, so

t0.05(14) · s ·
√

0.52

8
+

1

8
= 1.7613 · 0.4520 · 0.3953 = 0.3147.

Since 0.5 · x− y = 0.3312, the interval is given by

I0.5·µX−µY = (0.3312− 0.3147, ∞)

= (0.0165, ∞).

We see that 0 is not included in the interval, so we can claim that it is likely
that 0.5 · µX > µY at this significance level.

(c) Let
H0 : σ2

X = σ2
Y = σ2

and
H1 : σ2

X 6= σ2
Y .

If H0 is true, then 7S2
X/σ

2 ∼ χ2(7) and 7S2
Y /σ

2 ∼ χ2(7). Thus

V =

7S2
X

σ2
/7

7S2
Y

σ2
/7

=
S2
X

S2
Y

∼ F (7, 7)

since S2
1 and S2

2 are independent. We seek a critical region C such that

α = P (V ∈ C |H0).

x

y

ba

Reasonable

observations

if H0 is true.

C1 C2

α
2

α
2



We find the bounds a and b from a table so that

P (V < a) = P (V > b) =
α

2
.

with a = 0.2002 and b = 5.00. Note that a two-sided interval is necessary here. Since

v =
0.2532

0.1553
= 1.6306 6∈ C

we can’t reject H0. The variances could be equal (but are they?)

Answer:

(a) (6.34, 7.59)

(b) The new expectations seems to be more than twice the old one.

(c) We can’t reject the hypothesis that they are equal; we do not know.

2. (a) Assume that H0 is true. Let X ∼ Po(5) (since the expected number of counts is 5
during 1 second). We need to find the critical region C.

x

y

c

CReasonable observations if H0 is true

Let p(k), k = 0, 1, 2, . . ., be the probability function for X. From a table we can find
that

∞∑
k=9

p(k) = 1−
8∑

k=0

p(k) = 0.0681 and
∞∑

k=10

p(k) = 0.0318.

Thus we choose
C = {k ∈ Z : k ≥ 10}.

Since our observation is x = 8 and 8 6∈ C, we can’t reject H0. It is possible that µ = 5.
Great news, right?!

(b) The power at µ = 10 can be calculated straight from the definition:

h(10) = P (H0 rejected |µ = 10) = P (X ∈ C |µ = 10)

=
∞∑

x=10

e−10
10x

x!
= 0.5421.

Answer: (a) We can’t reject H0. It could be that µ = 5 (we do not know). (b) 0.5421.



3. When measuring for 10 seconds, the expectation of Y = X(10) ∼ Po(10·λ) is E(Y ) = 10·λ.
We have observed y = 82, so it is reasonable to assume that E(Y ) > 15. Thus we can
use a normal approximation for Y . Moreover, V (Y ) = 10 · λ (the Poisson distribution is
funny..). Thus

Z =
Y − 10λ√

10λ̂

appr.∼ N(0, 1),

so we find a > 0 so that
0.90 = P (−a < Z < a).

Here we’ll use the estimate λ̂ = 8.2 (this will simplify matters).

x

y

a−a 0

α
2

α
2

So a = 1.645 is suitable. Then

−a < Z < a ⇔ −a < Y − 10λ√
10λ̂

< a ⇔ Y − a
√

10λ̂

10
< λ <

Y + a
√

10λ̂

10

so with the observation y = 82 and estimate λ̂ = 8.2, we obtain the (approximate)
confidence interval

Iλ = (6.7, 9.9).

Answer: Iλ = (7.04, 9.81).

4. (a) Let u = (1 2 5 0)T and let Y0 be an independent random observation at a = 2, r = 5
and h = 0. Let µ̂0 be the estimate for the expectation µ at the same point. A well
known test quantity is

T =
Y0 − µ̂0

S
√

1 + uT (XTX)−1u
∼ t(10− 4) = t(6).

We can box in this variable and solve for Y0:

−t < T < t ⇔ −t < Y0 − µ̂0

S
√

1 + uT (XTX)−1u
< t

⇔ µ̂0 − tS
√

1 + uT (XTX)−1u < Y0 < µ̂0 + tS
√

1 + uT (XTX)−1u,

where t = tα/2(6) = t0.005(6) = 1.9432. We can now calculate that

uT (XTX)−1u = 0.412,

so
√

1 + uT (XTX)−1u = 1.1883. As an observation of S, we use

s =

√
SSE

10− 4
=

√
4.35

6
= 0.725.



For µ̂0, we use the observation uT β̂ = 15.6755. Thus we obtain the prediction interval

IY0 =

(
15.6755∓ 1.9432 · 0.725 · 1.1883

)
= (14.0, 17.35).

(b) To test if β3 = 0, let H0 : β3 = 0 and H1 : β3 6= 0. Assume that H0 holds. Then

T =
β̂3 − 0

S
√
h33
∼ t(10− 4) = t(6),

where the distribution is clear since H0 holds. We need a critical region C such
that P (T ∈ C |H0) = 0.01 and since H1 is double sided, we choose symmetrically.

x

y

t0.025(5)−t0.025(5) 0

Reasonable

observations

if H0 holds.

C C

We find tα/2(6) = t0.005(6) = 3.7074 in a table. An observation of S
√
h33 is given by

the standard error d(β̂3) and thus we find that the observation

t =
0.28

0.56
= 0.5

does not belong to the critical region. So we can’t reject H0. The coefficient β2 might
be zero.

Answer:

(a) (14.0, 17.35).

(b) A significance test shows that we can’t conclude that β3 6= 0 at the significance
level 1%. The addition of growth hormone might not have any effect.

5. (a) We start by noting that the parameter space is Ωθ = {0, 1, 2, 3, 4, 5}. This means
that continuous methods are problematic and it might be better to just find the
ML-estimator directly. Why? Well, let us look at the likelihood function. Each Xi

has the probability function

pXi(k) =

{
1− θ

5
, k = 0,

θ
5
, k = 1,

where the outcome Xi = 1 means that we’ve found a tentaclified flamingo. Thus the
likelihood function is given by

L(θ) =
n∏
i=1

pXi(xk) =

(
1− θ

5

)n−∑xk
(
θ

5

)∑
xk

=

(
1− θ

5

)n(1−x)(
θ

5

)nx
.



In our case we have n = 7, but we’ll get to that. If we were to consider L(θ) as a
function of a continuous θ > 0, we could proceed as usual:

l(θ) = lnL(θ) = n(1− x) ln
5− θ

5
+ nx ln

θ

5
,

so

0 = l′(θ) = −n(1− x)

5− θ
+
nx

θ
⇔ θ = 5x.

We can verify that θ̂ = 5x actually is a maximum of l′(θ) by observing the sign
change of l′(θ), i.e., that we obtain ↗ max ↘ for the function l(θ), so this would

be our ML-estimate. However, there’s no way to guarantee that θ̂ ∈ Ωθ. We might
surmise though that what we’re looking for is close to 5x.

Using our sample (x1, . . . , x6) = (1, 0, 1, 0, 1, 1, 0), we see that

L(θ) =

(
1− θ

5

)3(
θ

5

)4

,

so doing the calculations we find that

L(θ) = 10−3 ·



0, θ = 0,

0.8192, θ = 1,

5.5296, θ = 2,

8.2944, θ = 3,

3.2768, θ = 4,

0, θ = 5.

We see that θ = 3 provides the highest probability, so by definition this is the MLE.

What happens with the continuous version? Well, we have 5x = 5 · 4

7
= 2.857.

Rounding it we’d obtain θ̂ = 3, but we would have to prove that this is the actual
MLE in that case.

(b) This is a rather tricky question. If you’d try and just use the estimator 5x (which
gives values very likely outside of the parameter space), it’s rather easy to show that
it is unbiased:

E(5X) = 5E(X) = 5
θ

5
,

where X has the same distribution as all the Xi:s in the average. But we can’t really
use this as our estimator. So what about the integer part of 5X? Well, the maximum
should (considering the investigation above) happen if we either round up or down,
so how would we know which one? Should we choose whichever is closest? What’s
to say that choosing in that way would yield the true MLE? So yeah.. difficult to
answer :).

Answer: (a) θ̂ = 3 (b) see above.



6. Since A is invertible, we know that detA 6= 0.

⇒) This direction is more or less trivial. If the components of Y are independent,
then C(Yi, Yj) = 0 for i 6= j and C(Yi, Yi) = σ2

i , so CY is obviously a diagonal matrix.

⇐) Now suppose that CY is a diagonal matrix, e.g.,
σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
n

 .

Since CY = AAT we know that CY is invertible, which implies that σ2
i 6= 0 for all i. The

inverse C−1Y is the diagonal matrix with the diagonal elements σ−2i . We thus obtain the
joint density function

fY (y) =
1

(2π)n/2
√

detCY
exp

(
−1

2
(y − µ)TC−1(y − µ)

)
=

1

(
√

2π)nσ1σ2 · · · σn
exp

(
−1

2

n∑
j=1

(yj − µj)σ−2j (yj − µj)

)

=
n∏
j=1

1

σj
√

2π
exp

(
−(yj − µj)2

2σ2
j

)
=

n∏
j=1

fYj(yj).

We have now shown that the joint density function is given by the product of the density
functions for Yj, which immediately implies that the components of Y are independent.

Answer: See above.


