
Lecture 11

Markov Chains with Countably Many States

Classi�cation of States

De�nition (a) A state j ∈ S = Z+ (or N, Z . . .) is called accessible from state i ∈ S if

p
(n)
ij > 0 for some n ≥ 0.

(b) The states i ∈ S and j ∈ S are said to communicate if i is accessible from j and j is
accessible from i. We write i←→ j.

Remark Communication is an equivalence relation. The following holds.

� Re�exivity: i←→ i, i ∈ S.

� Symmetry: i←→ j ⇐⇒ j ←→ i, i, j ∈ S.

� Transitivity i←→ j and j ←→ k imply i←→ k, i, j, k ∈ S.

As a consequence S decomposes into equivalence classes of communicating states.

De�nition (a) A Markov chain (Xn, n ≥ 0) is called irreducible if S consists of precisely
one such equivalence class, namely S itself.

(b) A state i ∈ S is called absorbing if pii = 1.

(c) A state i ∈ S is called periodic with period d if d is the smallest natural number such

that for all n which are not a multiple of d we have p
(n)
ii = 1. If d = 1 then i is called

aperiodic.

Remark All states in a given equivalence class have the same period.

De�nition Transience and Recurrence (a) A state i ∈ S is called recurrent if

fi := P (X returns to i|X0 = i) = 1

. (b) A state i ∈ S is called transient if fi < 1.

Proposition (a) A state i ∈ S is recurrent if and only if
∑

n∈N p
(n)
ii = 1, i. e.

(b) a state i ∈ S is transient if and only if
∑

n∈N p
(n)
ii < 1.

De�nition Let i ∈ S be recurrent and Ti := min{n > 0 : Xn = i}.
(a) A state i ∈ S is called positive recurrent if E[Ti|X0 = i] <∞.

(b) A state i ∈ S is called null recurrent if E[Ti|X0 = i] =∞.

Proposition (a) In a given equivalence class all states are either transient or positive
recurrent or null recurrent.

(b) In the case of just �nitely many states, for example if S = {0, . . . ,M}, any recurrent
state is positive recurrent.

Example Ehrenfest model (see Lecture 2).



Marco Baldovin, research gate, modi�ed

The Ehrenfest model has �nitely many states S = {0, . . . ,M}, is irreducible and hence
positive recurrent, and has period d = 2.

Example Symmetric random walk on Z, that is pi i−1 = pi i+1 = 1
2
, i ∈ Z, is null recurrent

(left as advanced exercise) and has period d = 2.

course book, p. 3, ∆x = 1, p = q = 1
2

Stationarity and Limiting Distribution

As in the case with �nitely many states we obtain for S = Z+ (or similarly for S = N,
S = Z, . . .)

p(n+1) ≡
(
p
(n+1)
0 , p

(n+1)
1 , . . .

)
:= (P (Xn+1 = 0) , P (Xn+1 = 1) , . . .)

= p(n) ·P (multiplication of in�nite line vector and in�nite transition matrix)

which is meaningfully de�ned by

p
(n+1)
j =

∑
i∈S

p
(n)
i pij , j ∈ S.

De�nition A distribution π∗ = (π∗i , i ∈ S) is called stationary with respect to (Xn, n ≥
0) if

π∗j =
∑
i∈S

π∗i pij , j ∈ S,

or short π∗ = π∗ ·P.

Remarks (1) Existence and uniqueness of π∗ is not clear without further analysis.



(2) If π∗ exists then π∗ is unique and it holds

E[Ti|X0 = i] =
1

π∗i
, i ∈ S.

(3) If p(0) = π∗ then p(1) = π∗ ·P = π∗ and, in general,

p(n) = π∗ ·P · · · n times · · ·P = π∗ , n ∈ Z+.

De�nition A distribution π∞ = (π∞i , i ∈ S) is called limiting distribution of (Xn, n ≥ 0)

if for arbitrary initial distribution p(0) ≡
(
p
(0)
0 , p

(0)
1 , . . .

)
:= (P (X0 = 0) , P (X0 = 1) , . . .)

it holds that
lim
n→∞

p
(n)
i = π∞i , i ∈ S.

Remarks (1) If π∞ is a limiting distribution then π∞ is also a stationary distribution
since

π∞P = lim
n→∞

p(n)P = lim
n→∞

p(n+1) = π∞ .

(2) If a limiting distribution π∞ exists then, by de�nition, it is unique. In this case there
exists a unique stationary distribution π∗ and we have π∞ = π∗. Su�cient conditions on
the converse are formulated in the following theorem.

Theorem Let X = (Xn, n ≥ 0) be an irreducible and aperiodic Markov chain. Assume
that there exists a stationary distribution π∗. Then π∗ is the limiting distribution of
X = (Xn, n ≥ 0), i. e. we have

lim
n→∞

p
(n)
i = π∗i , i ∈ S,

for any initial distribution p(0).

Remark The crucial question is now the following. Under which condition does a sta-
tionary distribution π∗ exist?

Theorem Let X = (Xn, n ≥ 0) be an irreducible and positive recurrent Markov chain.
Then there exists a stationary distribution π∗.

Remark (Link to Lecture 2) An irreducible Markov chain with �nitely many states is
alway positive recurrent. If the chain is, in addition, aperiodic then it has a unique
stationary distribution π∗.

De�nition A Markov chain X = (Xn, n ≥ 0) is called ergodic if it is irreducible, aperi-
odic, and positive recurrent

Main Theorem, Ergodic Theorem An ergodic Markov chain X = (Xn, n ≥ 0) has
a unique stationary distribution π∗ which is, at the same time, the limiting distribution,
that is,

lim
n→∞

p
(n)
i = π∗i , i ∈ S,

for any initial distribution p(0). The probabilites π∗i , i ∈ S, can be calculated as the
unique solution of the system π∗ = π∗P satisfying π∗i ≥ 0, i ∈ S, and

∑
i∈S π

∗
i = 1.



From Random Walk to Di�usion on the Real Line

The following material has been taken from the course book, pp. 3-9. Even the way
of writing has been taken over, for example y is a random variable with outcomes y,
〈y〉 ≡ E[y] and p(m,N) ≡ p

(N)
0m .

Step 1: The Markov Chain Model

Our aim is to answer the following question: What is the probability p(m,N) that a not
necessarily symmetric random walk will be at position m after N steps?

course book, p. 3

For m < N there are many ways to start at 0, go through N jumps to nearest neighbor
sites, and end up at m. But since all these possibilities are independent of each other we
have to add up their probabilities. For all these ways we know that the random walk
must have made m+ l jumps to the right and l jumps to the left; and since m+ 2l = N,
the random walk must have made

� (N +m)/2 jumps to the right and

� (N −m)/2 jumps to the left.

So whenever N is even, so is m. The probability for making exactly (N +m)/2 jumps to
the right and exactly (N −m)/2 jumps to the left is

p
1
2
(N+m)q

1
2
(N−m) .

The number of ways to make (N +m)/2 out of N jumps to the right (and consequently
N − (N + m)/2 = (N −m)/2 jumps to the left), where the order of the jumps does not
matter (and repetitions are not allowed):

N !(
N+m

2

)
!
(
N−m

2

)
!
.

The probability of being at position m after N jumps is therefore given as

p(m,N) =
N !(

N+m
2

)
!
(
N−m

2

)
!
p

1
2
(N+m)(1− p)

1
2
(N−m),

which is the binomial distribution. If we know the probability distribution p(m,N) we
can calculate all the moments of m at �xed time N . Let us denote the number of jumps
to the right as

r = (N +m)/2

and write

p(m,N) = pN(r) =
N !

r!(N − r)!
prqN−r



and calculate the moments of pN(r). For this purpose we use the property of the binomial
distribution that pN(r) is the coe�cient of ur in (pu+ q)N . With this trick it is easy, for
instance, to convince ourselves that pN(r) is properly normalized to one

N∑
r=0

pN(r) =

[
N∑
r=0

(
N
r

)
urprqN−r

]
u=1

=
[
(pu+ q)N

]
u=1

= 1 .

The �rst moment or expectation value of the random variable r is:

〈r〉 =
N∑
r=0

rpN(r)

=

[
N∑
r=0

r

(
N
r

)
urprqN−r

]
u=1

=

[
N∑
r=0

(
N
r

)
u

d

du

(
urprqN−r

)]
u=1

=

[
u

d

du

N∑
r=0

(
N
r

)
urprqN−r

]
u=1

=

[
u

d

du
(pu+ q)N

]
u=1

=
[
Nup(pu+ q)N−1

]
u=1

.

leading to
E[r] ≡ 〈r〉 = Np .

In the same manner, one can derive the following for the second moment.

E
[
r2
]
≡
〈
r2
〉

=

[(
u

d

du

)2

(pu+ q)N

]
u=1

= Np+N(N − 1)p2 .

From this one can calculate the variance or second central moment

Var[r] ≡ σ2
r :=

〈
(r− 〈r〉)2

〉
=
〈
r2
〉
− 〈r〉2

of the distribution, which is a measure of the width of the distribution

σ2
r = Npq .

The relative width of the distribution

σr
〈r〉

=

√
q

p
N−1/2

goes to zero with increasing number of performed steps, N . Recalling

m = 2r −N

we get the following results

〈m〉 = 2N

(
p− 1

2

)
and 〈

m2
〉

= 4Np(1− p) + 4N2

(
p− 1

2

)2

σ2 =
〈
m2
〉
− 〈m〉2 = 4Npq .



In the case of symmetric jump rates, this reduces to

〈m〉 = 0 and
〈
m2
〉

= N .

Step 2: The Markov chain Model for large N

Assuming N � 1 we can use Stirling's formula to approximate the factorials in the
binomial distribution

lnN ! =

(
N +

1

2

)
lnN −N +

1

2
ln 2π + O

(
N−1

)
Using Stirling's formula, we get

ln p(m,N) =

(
N +

1

2

)
lnN −

(
N +m

2
+

1

2

)
ln

[
N

2

(
1 +

m

N

)]
−
(
N −m

2
+

1

2

)
ln

[
N

2

(
1− m

N

)]
+
N +m

2
ln p+

N −m
2

ln q − 1

2
ln 2π .

Now we want to derive an approximation to the binomial distribution close to its maxi-
mum, which is also close to the expectation value 〈m〉. So let us write

m = 〈m〉+ δm = 2Np−N + δm

which leads to

N +m

2
= Np+

δm

2
and

N −m
2

= Nq − δm

2
.

Using these relations, we get

ln p(m,N) =

(
N +

1

2

)
lnN − 1

2
ln 2π

+

(
Np+

δm

2

)
ln p+

(
Nq − δm

2

)
ln q

−
(
Np+

δm

2
+

1

2

)
ln

[
Np

(
1 +

δm

2Np

)]
−
(
Nq − δm

2
+

1

2

)
ln

[
Nq

(
1− δm

2Nq

)]
=− 1

2
ln(2πNpq)−

(
Np+

δm

2
+

1

2

)
ln

(
1 +

δm

2Np

)
−
(
Nq − δm

2
+

1

2

)
ln

(
1− δm

2Nq

)
.

Expanding the logarithm

ln(1± x) = ±x− 1

2
x2 + O

(
x3
)



yields

ln p(m,N) ' −1

2
ln(2πNpq)− 1

2

(δm)2

4Npq
− δm(q − p)

4Npq
+

(δm)2 (p2 + q2)

16(Npq)2
.

We recall that the variance (squared width) of the binomial distribution is σ2 = 4Npq.
When we want to approximate the distribution in its center and up to �uctuations around
the mean value of the order (δm)2 = O (σ2) , we �nd for the last terms in the above
equation:

δm(q − p)
4Npq

= O
(
(Np)−1/2

)
and

(δm)2 (p2 + q2)

16(Npq)2
= O

(
(Np)−1

)
.

These terms can be neglected if Np→∞. We therefore obtain

p(m,N)→ 2√
2π4Npq

exp

[
−1

2

(δm)2

4Npq

]
.

Step 3: Deriving the Density of the Di�usion and the Di�usion PDE by Scaling

Let us write
x = m∆x, i.e., 〈x〉 = 〈m〉∆x
t = N∆t

D = 2pq
(∆x)2

∆t

so that we can interpret

p(m∆x,N∆t) =
2∆x√
2π2Dt

exp

[
−1

2

(x− 〈x〉)2

2Dt

]
as the probability of �nding the random walk in an interval of width 2∆x around a certain
position x at time t. We now require that

∆x→ 0, ∆t→ 0, and 2pq
(∆x)2

∆t
= D = const.

Here, D, with the units length 2/ time, is called the di�usion coe�cient of the walk. For
the probability that the random walk is in an interval of width dx around the position x
we get

p(x, t)dx =
1√

2π2Dt
exp

[
−1

2

(x− 〈x〉)2

2Dt

]
dx .

When we look closer at the de�nition of 〈x〉 above, we see that we have used another
assumption in the limiting procedure:

〈x〉(t) = ∆x〈m〉 = 2

(
p− 1

2

)
N∆x = 2

(
p− 1

2

)
∆x

∆t
t .

So our limiting procedure also has to include the requirement

∆x→ 0, ∆t→ 0 and
2
(
p− 1

2

)
∆x

∆t
= v = const.



As already discussed before, when p = 1/2 the average position of the walk is at zero for
all times and the velocity of the walk vanishes. Any asymmetry in the transition rates
(p 6= q) produces a velocity of the walk. However, when v = 0 we have 〈x〉 = 0 and
〈x2〉 = 2Dt. We can write down the probability density for the position of the random
walk at time t,

p(x, t) =
1√

2π2Dt
exp

[
−1

2

(x− vt)2

2Dt

]
with starting condition

p(x, 0) = δ(x)

and boundary conditions

p(x, t)
x→±∞−→ 0 .

By substitution one can con�rm that the above density is the solution of the following
partial di�erential equation:

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t) +D

∂2

∂x2
p(x, t)

which is Fick's equation for di�usion in the presence of a constant drift.

Rayleigh-Pearson Walk

The material has been taken from the course book, pp. 69-71. It concerns Lord Rayleigh's
contribution on the two-dimensional random walk: 'What is the probability for the ran-
dom walk to be at a distance between r and r + dr from his starting position after n
steps?' The solution is

p(r)dr =
2

n
e−r

2/nr dr.

To characterize the random walk we note that

� the steps occur at regularly spaced time points (discrete time),

� the walk is isotropic, and

� the jump distance has a distribution p(`)?

For dimension d one even gets for Fourier transform of the density

p̂n(r) =
1

(2π)d

�
ddke−(n/2d)k

2〈`2〉e−ik·r

=

(
d

2πn 〈`2〉

)d/2

exp

[
− dr2

2n 〈`2〉

]
.

Specializing to dimension 2 as well as 〈`2〉 = 1, we �nd Lord Rayleigh's result,

pn(r) = 2πrp̂n(r) =
2r

n
e−r

2/n .



from course book, p. 71

A Polymer Model

The material has been taken from the course book, pp. 71-72. The Rayleigh-Pearson
random walk also appears in a model in polymer physics. It describes a polymer as a
series of links of �xed length ` = `0, which are connected through random angles, and
crossings of these links in space are allowed. This is the Rayleigh-Pearson walk in d = 3
with p(`) = δ (`− `0) and the number of the repeat unit or monomer when we go along
the chain replacing time. For the length distribution of the end-to-end vector of a chain
of N links, we can write

pN(R) = 4πR2p̂N(R)

=
√

2/π

(
N`20

3

)−3/2
R2 exp

[
− 3R2

2N`20

]
From this, we �nd that the mean-square end-to-end distance of the polymer chain is

〈
R2
〉

=

� ∞
0

dR
√

2/π

(
N`20

3

)−3/2
R4 exp

[
− 3R2

2N`20

]
= N`20 .
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