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e MARTINGALES AND OPTIONAL STOPPING



1 Definition of a martingale

Definition 1.1 Let {Z,},_, be a random sequence. A random sequence
{X, 1}, is called a martingale with respect to {Z,} ~_, if: (i) E(|X,]) < o0
for each n > 0; (i) X,, = gn(Zo, Z1, - .., Zyn) for some function g,, for each
n > 0; and

(ZZZ) E(Xn’Zlea“-aZn—l) :Xn—l n 2 1. (11)
Condition (1) is called the martingale property.

Another way to express condition (i¢) is to say that the value of X, is
determined by the value of (Zy, ..., Z,), for each n > 1.

Example 1.1 Let {Z,},~, be independent random variables with E(|Z,|)
oo and E(Z,) = 0. Define Xy = 0 and

N

Then {X,} 2, is a martingale with respect to {Z,} —,. To prove this, we
check the conditions in Definition 1.1. Condition (7) holds, since

E(|Xal) = !ZZI <EZIZI ZE(|Zi|)<OO

Condition (iz) obviously also holds (why?). Finally, condition (7ii) holds,
since

E(Xn|ZO7 Zl7 ey Zn—l) - E(Zn + Xn—1|Z0a Zla ey Zn—l) -
— E(Zo|Z0, Zrs s Zont) 4 E(Xt| Zos Zos oo Zont) =
= E(Zn) + X1 =0+ X1 = X1

Next, we will state and prove some important theorems about mar-
tingales. The following lemma, called the generalized law of iterated
expectations, will be useful.

Lemma 1.2 Let X be a random variable such that E[|X|] < co. Let Y and
W be random variables such thatY = g(W) for some function g. Then,

E(X|Y) = E(E(X[W)]Y).



Proof: We consider only the case when X and W (and therefore also Y') are
discrete. Fix y, and let A, = {w; g(w) = y}. What is the conditional pmf of
W given Y = y? Clearly, for each w € A,,

PUW =w}n{Y =y}) _ POW = w)
P(Y =y) PY =y)’
while P(W = w|Y =y) =0 for each w ¢ A,. This gives:

E(X|Y =y)=> azP(X =z|V =y)

PW =wlY =y) =

-5 {X;(:c;mw—y} Z by U= ) 0 =)
_IEZR w; —ﬂf!W iv)yf;(sz)
:wgygzp(xzxwzw)%

= 3 BXW = w) i = — WY =)

wEAy

Theorem 1.3 Let the random sequence {X,},~, be a martingale with re-
spect to {Z,}, . Then,
(1) E(Xpim|Zo, Zvy. .. Zn) = X, Vn > 0,m > 0;

(17) E(X,) = E(Xy) Vn > 0.
Proof: For (i), we use Lemma 1.2 repeatedly: first with X = X,,,,,, YV =
(Z(), Zl, ceey Zn) and W = (Z(), Zl, ceey Zn+m—1)a then with X = Xn+m—17
Y = (2o, Z1,...,Z,) and W = (Zy, Z1, ..., Znim—2), and so on. Using the
martingale property, we get:

E(Xniml|Zo, Z1, ..., Zyn) = E(E(XpsmlZoys Z1s - -+ s Znem—1)|Z0y Z1y o« o Z)

= E<Xn+m—1|ZO> Zl7 SRR Zn) = E(E(Xn+m—1|207 Zl; R Zn+m—2)|ZO> Zl7 SRR Zn)

- E<Xn+mf2’ZO; Zl; ey Zn) = ...= E(Xn|Zo, Zh ey Zn) - Xn
(i) follows from (i) and the law of iterated expectations by taking the ex-
pectation on both sides. .



Theorem 1.4 Let the random sequence {X,},~, be a martingale with re-
spect to {Z,} >~ . Then, {X,} , is also a martingale with respect to {X,,}
(that is, with respect to itself ).

Proof: Since {X,} , is a martingale with respect to {Z,} -, condition

(7) in Definition 1.1 is satisfied. Also, condition (ii) is trivially satisfied,
since X,, = X,, for each n > 1. For (iiz), we observe that, for each n > 1,
we can use Lemma 1.2, with X = X, Y = (X, X1,...,X,1), and W =
(Zo, Z1, ..., Zp_1). This gives:

E(X,|Xo, X1, ..., Xn1) = E(E(X,|Z0, Z1,y -y Zne1)| X0y X1y - ooy Xi1)
= BE(Xp1| X0, X1, ..., Xpo1) = X1

A random sequence {X,,} -, which is a martingale with respect to
{X,}2, (that is, with respect to itself) will be called a martingale, for
short.

We finally remark that a random sequence {X,,} ~ is called a sub-
martingale with respect to {Z,} ~ if it satisfies (i) and (z7) in Defini-
tion 1.1, and

(ZM)/ E(Xn|Zo, Zl, ey Zn—l) Z Xn—l Vn Z 1. (12)

{X,}, is called a supermartingale with respect to {Z, },_, if it satisfies
(i), (i) and

(ZZZ)/, E(Xn|Zg, Zl, R Zn—l) S Xn—l Vn Z 1. (13)

Clearly, a random sequence is a martingale with respect to {Z,},_, if and
only if it is both a submartingale and a supermartingale with respect to

{Zn}nzo-
2 Doob’s inequality

Theorem 2.1 Let the random sequence {X,} —, be a martingale. Then,
for every e > 0 and for anyn > 1,

> <
P(Orgggn | Xi| > €) < =



Proof: For 0 < j < n we have

n
{omes b= of = U .
]:

where A; = {|Xo| < &, |X1] < €,...,]X;21] < €]X,| > €}. We define the
so-called indicator random variables for the events A;, as follows:

jo 1 if A; occurs
4 7 ) 0 otherwise.

Since 0 < Z?:o Ia, <1, we get

n n

E(X2) > B(X2Y In) =) BE(XI),

J=0 J=0

and since X2 = (X, + (X, — X;))? for each j = 0,...,n, we get

n

E(X2) > Y E(X]14)+ 2§:E(Xj(Xn — Xj)1a,)

J=0 J=0

+ Zn: E((Xp — X;)*1a,)

=0

> B(X714)+2)  E(X;(X, = X;)Ia).
j=0

j=0
Using the law of iterated expectations, and the fact that I,; is determined
by the value of (X, ..., X)),

E(X;(Xn — Xj)1a,) = B(E(X;14,(X, — X;)| X0, ..., Xj))
= BE(Xjla, E((Xn — X;)| X0, ..., Xj)),
where
E(X, — X)) Xo,...,X;) =E(Xn|Xo,....X;) - X;=X; - X; =0
by the martingale property. Hence we get

E(X2) > B(X!1s) > €Y E(l4)

J=0 J=0



since X7 > €* when Iy, = 1. Also E(I4;) = P (A;). Hence we have
> s -r(Us).
7=0 J=0

since the sets A; are disjoint. But P (U?:o Aj> = P (maxo<g<n | Xk| > €).
Hence we have proved

E(X?) > P X | >
(X5) > € (o?%' k|_6),
which is the assertion in the theorem. "

It should be noted that Doob’s inequality is stronger than Markov’s inequal-
ity, which states that, for each ¢ > 0,

E
P(IXa| =€) < Y > 0.

€

On the other hand, Markov’s inequality holds not only for martingales but
for any random sequence {X,} .

3 Stopping times and optional stopping

Definition 3.1 Let {Z,} ~, be a random sequence. A random variable T
taking values in {0,1,2,...} U{oc} is called a stopping time with respect
to {Zn},—o, tf I{T = n} = g.(Zo, Z1,...,Zy,) for some function g,, for
each n > 0. Here, I{T = n} is the indicator random variable for the event

{T = n}, defined by

I{T:n}:{ 1 if {T =n} occurs

0 otherwise.

In words, T is a stopping time with respect to {Z,},, if, for each n > 0,
it is possible to decide from the value of (Zy, Z1, ..., Z,) whether {T' = n}
occurs or not.

Example 3.1 Let {Z,} 7, be a random sequence, and let a € R. Then, the
random variable T, = inf{n > 1; 7, > a} is a stopping time with respect

to {Z,},—, since {T, = 0} never occurs, and

{T,=n}={Z1<a,Zy<a,....,Z,>a} Vn>1

6



On the other hand, the random variable S, = sup{n > 0; Z,, > a} is not a
stopping time with respect to {Z,} —, since it cannot always be decided
just from the value of (Zy, Z1, ..., Z,) whether {S, = n} occurs or not: if
Zn > a, the values of Z,, .1, Z,.9, ... also matter.

Theorem 3.2 Let S and T be stopping times with respect to the random
sequence {Z,},~ . Then, S+T, max{S, T} and min{S, T} are also stopping
times with respect to {Z,}, .

Proof: We prove only the second claim. Since

{max{S,T} = n} = ({S = n}N(Ui_o{T = k}))U({T = n}N(Ui_o{S = k1)),
and since S and T are stopping times, it can be decided from the value of

(Zo, Z1, ..., Zy,) whether {max{S,T} = n} occurs or not. 0

Next, we will show that a martingale which is “stopped” at a stop-
ping time T is still a martingale. To do this, we will need the following
lemma.

Lemma 3.3 Let the random sequence { X, },, be a martingale with respect
to{Z,}," - Let the random sequence {H,}, | be such that: (i) |H,| < C, <
oo for eachn > 1 (where C,, is a constant), and: (ii) H, = hy(Zo, ..., Zn-1)
for some function h.,, for each n > 1. Define the random sequence {Y,} -,
by Yo = Xy, and

Yo=Y Hi(X;—X;1)+Xo Wn>1
=1

Then, {Y,},~, is a martingale with respect to {Z,} .
Proof: Condition (7) in Definition 1.1 holds, since

E(Y,]) = |ZH (Xi — Xio1) SZE(‘Hi(Xi_Xi—l)’)

i=1

<Y GE(Xi— Xia|) =Y CE(IXi| +[Xi1]) < o0

i=1 =1

Condition (iz) clearly also holds (why?), and condition (éi7) holds since

E(Yn‘Zo, e 7Zn71) - E(Yn,1 + Hn(Xn — Xn71>’207 ey anl)
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=Y, 1+ E(Hn(Xn - Xn—1)|Z07 SRR Zn—l)
=Yy 1+ Hn(E(Xn|207 SRR Zn—l) - Xn—l) = Yn—l-

A typical application of Lemma 3.3 is given in the following exam-
ple.

Example 3.4 Let {Z,} ~ | beindependent random variables with E(|Z,|) <
oo and E(Z,) = 0. Each of these random variables is the outcome of a game.
Define Xo =0 and

Xn:anZl- Vn > 1.

Then, we know from Example 1.1 that {X,} ~, is a martingale. Suppose
that, immediately before the nth game, a player can decide to join the game
by betting an amount H,, which is bounded by a constant C' < oo, but may
depend on the outcomes of all the preceding games. The player’s net gain
from the nth game is then H,Z, = H,(X, — X,,_1), and the player’s total
net gain from the first n games is

=1

Lemma 3.3 says that “you can’t beat a fair game”: no matter how you
choose your bets {H,} ~ . your total net gain will be a martingale with
mean E(Yy) = E(Xy) = 0.

Theorem 3.5 Let the random sequence {X,,},~, be a martingale with re-
spect to {Z,}~ . Let T be a stopping time with respect to {Z,} . Define
the random sequence {Y,}~, by

Yn = Xmin{T,n} Vn > 0.

Then, {Y,}.~, is a martingale with respect to {Z,} .. It is called a stopped
martingale.

Proof: Let H, = I{T > n} for each n > 1. Then, the random sequence
{H,} >, satisfies the two conditions of Lemma 3.3 (condition (i) since
H, =1—-I{T <n—1}). Moreover,

Yo = Xuinirny = »_Hi(Xi = X;) + X0 Vn >0,
=1
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so the claim follows from Lemma 3.3. "

Theorem 3.6 (Optional stopping) Let the random sequence {X,,} >~ be
a martingale with respect to {Z,}, . Let T be a stopping time with respect
to{Z,},",. Assume that either: (i) T < a < oo (where a is a constant), or:
(it) E(X?) < C < oo for allm > 0 (where C' is a constant not depending
onn). Then,

E(Xy) = B(X,).

Proof: In the case when (i) holds,
E(XT) = E<Xmin{T,a}) = E(Xmin{T,0}> = E(XO),

where the second equality follows from Theorem 1.3 and the fact that a
stopped martingale is a martingale. The case when (ii) holds is omitted. =

Example 3.7 Let {Z,},~, be independent identically distributed random
variables, such that P(Z, = 1) = P(Z, = —1) = 1. Define X, = 0 and

The random sequence {X,} 7 is called a simple symmetric random
walk, and we know from Example 1.1 that it is a martingale. Let a < 0 < b,
and let 7' = inf{n > 1; X,, = a or X,, = b}. T is a stopping time (why?),
and T' < oo, since {Z,,},-, will contain at least one subsequence of length
b— a consisting only of 1s (prove this!), which will drive {X,,} 7, out of the
interval (a, b). Therefore, Xr can only take the values a or b. We would like
to compute P(Xr = b) = p.

To do this, consider the stopped martingale {Xmin{T,n}}Zo:O. Since
this martingale can only take values in the interval [a,b], condition (ii) in
Theorem 3.6 is satisfied (with C' = max{a? b?}). Theorem 3.6 therefore
gives:

E(Xuinirry) = E(X71) = aP(Xp = a) + bP(Xp =b) = a(l — p) + bp




Problems

. Let {X,,}.~, be independent and identically distributed random vari-
ables, with £(X,,) = p and V(X,,) = 02. Define

Wo=0,W, =) X;
i=1
and
Sp = (W, — n,u)2 — no’.

Show that {S,} ~, is a martingale. (That is: show that {S,} _, is a
martingale with respect to some suitably chosen underlying random
sequence, for example {X,,} 7. It then follows by Theorem 1.4 that
{Sn},—, is also a martingale with respect to itself.)

. Let X be a random variable such that E(]X|) < oo, and let {Z,},,
be a random sequence. Define the random sequence {X,,}~ ; by

X, = E(X|Zy, Z4,...,2,)  ¥n>0.

Show that {X,} -, is a martingale. (You need not show that the
condition E(|X,|) < oo holds.)

. Let {B(t);t > 0} be a Brownian motion. Let X,, = B(t,) for 0 =t, <
t1 <...<t, <...Show that {X,} 7, is a martingale.

. Let {X,,} 7, be a sequence of random variables. In many statistical
applications, it is assumed that {X,} -, are independent and iden-
tically distributed, and such that their pdf:s are either ¢ or ¢. This
means that the joint pdf of (Xg, Xi,...,X,,) is either

¢X0,X1 ,,,,, X (Io, L1y 7In) =1 (950) (0 (Il) RV (mn)

or
OX0,X1,., X (130,3717 . 713n) =9 (130) ¢ (361) R0 (Qin) .
The likelihood ratio L, is defined as

¥ (o) ¥ (1) -4 ()
¢ (0) ¢ (1) -~ & (zn)

where we assume that ¢ (z) > 0 for all . Show that L, is a martingale
with respect to {X,,}.—,, if {X,} -, are independent and identically

n=0"

distributed random variables with pdf ¢.

L, =

10



Remark: Under the condition just mentioned, it can be proven that
L, — 0, as n — 0 (you are not required to prove this). What does this
mean in terms of choosing between ¢ and ¢ as models for {X,},,
using the likelihood ratio as a criterion ?

. Prove the two remaining claims in Theorem 3.2.

. Just as in Example 3.7, let {Z,} -, be independent identically dis-
tributed random variables, such that P(Z, = 1) = P(Z, = —1) = 1.
Define Xo =0 and

Xn:ilZi Vn > 1.

The random sequence { X, } -, is a martingale with respect to {Z,} ;.
Let @ < 0 < b, and let T = inf{n > 0;X,, = aor X,, = b}. It
was pointed out in Example 3.7 that T' is a stopping time, and that
P(T < >)=1.

(a) Determine the constant ¢ so that {Y,} 2, defined by

n=0"’

Y,=0b-X,)(X,—a)+en  Vn>0,
is a martingale with respect to {Z,},~ ;.

(b) Use this martingale to show that E(T) = —ab. (Hint: T, =
min(7,n) is also a stopping time. Furthermore, you may use that
E(T,) — E(T), E(Xr,) - E(Xr), and E(X7 ) — FE(X37), as n —

00. No proofs of these results are required.)

. Let Zy =0, and let {Z,,}.7, be independent and identically distribut-
ed random variables, such that

(a) Verify that {X,} - is a martingale.

11



(b) Define the stopping time 7" = min{n > 1;X,, = 0}. Can you
prove, using the optional stopping theorem, that F(Xr) = E(X,)? If
not, what is the problem?

. Let {X,.},~, be a nonnegative martingale with E(X,) = 1, and let
a > 0. Prove that, for any fixed n > 0,

ISE

P(Xy > aforsome 0 <k <n)<

Hint: Use Markov’s inequality and the optional stopping theorem with
an appropriately chosen bounded stopping time.
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