
TAMS32 STOCHASTIC PROCESSES

Komplettering 3

Torkel Erhardsson

29 september 2015

• Wide sense stationary ARMA processes: existence and representation
as linear processes

• Autocorrelation functions for wide sense stationary ARMA processes

• Spectral densities for wide sense stationary ARMA processes

• Appendix: linear homogenous difference equations with constant co-
efficients

1



1 Linear processes

Recall that Kronecker’s delta is defined for all integers i, j ∈ Z by:

δi,j =

{

1, if i = j;
0, if i 6= j.

(1.1)

A process {Vt; t ∈ Z} is called white noise in discrete time, if it is wide
sense stationary with mean 0 and autocorrelation function

RV (τ) = σ2δ0,τ =

{

σ2, if τ = 0;
0, if τ 6= 0.

(1.2)

Definition 1.1 Let {Vt; t ∈ Z} be white noise in discrete time. Define, for
each t ∈ Z, the random variable

Yt =
∞
∑

k=0

ckVt−k = l.i.m.
r→∞

r
∑

k=0

ckVt−k, (1.3)

where {ck; k = 0, 1, . . .} are real numbers such that
∑∞

k=0 c
2
k < ∞ (this

condition guarantees that the mean square limit exists, by Theorem 5.1 in
Kompletteringshäfte 2). Then, the process {Yt; t ∈ Z} is called a linear
process.

Theorem 1.1 A linear process {Yt; t ∈ Z} is wide sense stationary, with
mean µY = 0 and autocorrelation function

RY (τ) = σ2

∞
∑

k=0

ckck+|τ | ∀τ ∈ Z. (1.4)

Proof: By Theorem 4.1 in Kompletteringshäfte 2,

E(Yt) =
∞
∑

k=0

ckE(Vt−k) = 0 ∀t ∈ Z,

and, for τ = 0, 1, . . .,

E(YtYt+τ ) =
∞
∑

k=0

∞
∑

l=0

ckclE(Vt−kVt+τ−l)

=
∞
∑

k=0

∞
∑

l=0

ckclσ
2RV (t+ τ − l − t+ k) = σ2

∞
∑

k=0

ckck+τ ∀t ∈ Z.
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For τ = −1,−2, . . ., we get (using the previous result):

E(YtYt+τ ) = E(Yt+τYt+τ+|τ |) = σ2

∞
∑

k=0

ckck+|τ | ∀t ∈ Z.

Since the autocorrelation function does not depend on t, the process is wide
sense stationary.

The systematic study of linear processes started with the Ph. D. The-
sis of Herman Wold: A Study in the Analysis of Stationary Time Series,
Almqvist och Wicksell, Uppsala, 1936. We remark that a linear process
{Yt; t ∈ Z} such that the numbers {ck; k = 0, 1, . . .} satisfy the stronger con-
dition that

∑∞
k=0 |ck| < ∞, is in fact the output from a stable and causal

LTI (a linear time-invariant filter), with impulse response {ck; k = 0, 1, . . .},
for which the input is the white noise process {Vt; t ∈ Z}. In this case, the
conclusions of Theorem 1.1 follow from Theorem 11.5 in Yates & Goodman.

Since the linear process representation

Yn =
∞
∑

k=0

ckVn−k ∀n ∈ Z

contains infinitely many coefficients, one might think that it would not
often in practice be useful for stochastic modelling. However, there are im-
portant classes of linear processes which depend only on a finite number of
parameters. In the following, we will consider one such class, called the au-
toregressive moving average (ARMA) processes. We begin by studying two
special cases: the autoregressive (AR) processes, and the moving average
(MA) processes, respectively.

2 Wide sense stationary AR processes

Definition 2.1 A stochastic process {Yn;n ∈ Z} is called an autoregres-
sive process of order p, or an AR(p)-process, if

p
∑

i=0

aiYn−i = Xn ∀n ∈ Z, (2.1)

where {Xn;n ∈ Z} is a white noise.
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Figur 1: A realisation of an ARMA process.

Equation (2.1) is called an AR(p) equation. The polynomial

A(s) =

p
∑

k=0

aks
k

is called an AR polynomial (by convention, for an AR polynomial we
always have a0 = 1). We first consider the following question: given a white
noise process {Xn;n ∈ Z} and an AR polynomial A(s), when does there
exist a process {Yn;n ∈ Z} which satisfies equation (2.1)?

Theorem 2.1 If the polynomial A(s) =
∑p

k=0 aks
k (where a0 = 1) has all

its roots outside the complex unit circle, then there exists a unique wide
sense stationary process {Yn;n ∈ Z} which satisfies the AR(p) equation

p
∑

i=0

aiYn−i = Xn ∀n ∈ Z, (2.2)

where {Xn;n ∈ Z} is a white noise. Moreover, {Yn;n ∈ Z} is a linear
process:

Yn =
∞
∑

k=0

ckXn−k ∀n ∈ Z, (2.3)
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where {ck; k = 0, 1, . . .} are the coefficients of the Maclaurin series expan-
sion of C(s) = 1

A(s)
,

1

A(s)
= C(s) =

∞
∑

k=0

cks
k ∀|s| < R2,

and R2 > 1. In particular,
∑∞

k=0 |ck| < ∞, so the limit in (2.3) exists. The
coefficients {ck; k = 0, 1, . . .} also satisfy the homogenous linear difference
equation

p
∑

i=0

aick−i = 0 ∀k = p, p+ 1, . . .

and the initial conditions

k
∑

i=0

aick−i = δ0,k ∀k = 0, 1, . . . , p− 1,

for which the unique solution can be obtained using Theorem 2.3 below.

Proof: We will prove that the process {Yn;n ∈ Z}, as defined in (2.3),
satisfies equation (2.2), but not that it is the unique wide sense stationary
process to do so. We will need the following lemma about power series.

Lemma 2.2 Let A(s) =
∑∞

k=0 aks
k and C(s) =

∑∞
k=0 bks

k be power seri-
es which are absolutely convergent for |s| < R1 and |s| < R2, respectively.
Then, D(s) = A(s)C(s) has an absolutely convergent Maclaurin series ex-
pansion:

D(s) = A(s)C(s) =
∞
∑

k=0

dks
k ∀|s| < min(R1, R2),

where

dk =
k

∑

i=0

aick−i ∀k = 0, 1, . . . (2.4)

For a proof of Lemma 2.2, see a basic course in analysis. We apply the
lemma as follows: let A(s) =

∑p
k=0 aks

k (the AR polynomial), and let

C(s) =
1

A(s)
=

∞
∑

k=0

cks
k ∀|s| < R2,
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where R2 > 1 is the smallest of the moduli of the roots of A(s). (In words,
the power series on the right hand side is the Maclaurin series expansion of
C(s) = 1

A(s)
, which is absolutely convergent for |s| < R2.) Lemma 2.2 now

gives:

1 = A(s)C(s) =
∞
∑

k=0

dks
k ∀|s| < R2,

where

dk =
k

∑

i=0

aick−i ∀k = 0, 1, . . . (2.5)

The uniqueness theorem for the coefficients of absolutely convergent power
series (see a basic course in analysis) now gives us the following infinite
system of linear equations for the coefficients {ck; k = 0, 1, . . .}:

a0c0 = 1

a0c1 + a1c0 = 0

a0c2 + a1c1 + a2c0 = 0
... (2.6)

a0cn + a1cn−1 + . . .+ apcn−p =

p
∑

i=0

aick−i = 0 ∀k = p, p+ 1, . . . ,

where a0 = 1. The last line in (2.6) is a homogenous linear difference equa-
tion for {ck; k = 0, 1, . . .} with constant coefficients, for which the unique
solution can be obtained using Theorem 2.3 below.

We now prove that the process {Yt; t ∈ Z}, defined in (2.3), satisfies
equation (2.2). For each n ∈ Z, it holds that

p
∑

i=0

aiYn−i =

l.i.m.
r→∞

r
∑

k=0

ckXn−k + a1l.i.m.
r→∞

r
∑

k=0

ckXn−1−k + . . .+ apl.i.m.
r→∞

r
∑

k=0

ckXn−p−k =

l.i.m.
r→∞

(
r

∑

k=0

ckXn−k + a1

r
∑

k=0

ckXn−1−k + . . .+ ap

r
∑

k=0

ckXn−p−k) =

l.i.m.
r→∞

p
∑

i=0

ai

r
∑

k=0

ckXn−i−k,
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where, using (2.6), for r ≥ p,

p
∑

i=0

ai

r
∑

k=0

ckXn−i−k = Xna0c0 +Xn−1 (a0c1 + a1c0) + . . .+Xn−r

p
∑

i=0

aicr−i

+

p
∑

i=0

ai

r
∑

k=r−i+1

ckXn−i−k = Xn + 0 +

p
∑

i=0

ai

r
∑

k=r−i+1

ckXn−i−k.

Next, for i = 0, . . . , p, let Ui =
∑r

k=r−i+1 ckXn−i−k. It holds that

E(Ui) =
r

∑

k=r−i+1

ckE(Xn−i−k) = 0,

and

V (

p
∑

i=0

aiUi) ≤
p

∑

i=0

a2iV (Ui) + 2

p−1
∑

i=0

p
∑

j=i+1

|aiaj||C(Ui, Uj)|

≤
p

∑

i=0

a2iV (Ui) + 2

p−1
∑

i=0

p
∑

j=i+1

|aiaj|
√

V (Ui)V (Uj),

where we used the Cauchy inequality (see Kompletteringshäfte 2). Also,

V (Ui) =
r

∑

k=r−i+1

c2kV (Xn−i−k) = σ2

r
∑

k=r−i+1

c2k,

which converges to 0 as r → ∞, since
∑r

k=r−i+1 c
2
k < ∞. These facts toget-

her give that

l.i.m.
r→∞

p
∑

i=0

ai

r
∑

k=r−i+1

ckXn−i−k = 0,

so {Yt; t ∈ Z} satisfies (2.2).

In order to compute explicitly the coefficients {ck; k = 0, 1, . . .}, the
following theorem can be used. (For a proof, see the Appendix.)

Theorem 2.3 Assume that the real numbers {ck; k = 0, 1, . . .} satisfy the
homogenous linear difference equation with constant coefficients:

p
∑

i=0

aick−i = 0 ∀k = p, p+ 1, . . . ,
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where a1, . . . , ap are real numbers, and ap 6= 0. It then holds that

ck =
r

∑

ν=1

Pν(k)u
k
ν k = 0, 1, . . . , (2.7)

where {uν ; ν = 1, . . . , r} are the distinct roots of the characteristic poly-
nomial ϕ(s) = a0s

p+a1s
p−1+. . .+ap, {mν ; ν = 1, . . . , r} are the multiplici-

ties of the distinct roots, and each Pν(s) is a polynomial of degree mν−1. The
m1+m2+ . . .+mν = p coefficients of the polynomials {Pν(s); ν = 1, . . . , r}
can be determined from p initial conditions, like those in (2.6).

Example 2.4 Consider the AR(1) equation

Yn + aYn−1 = Xn ∀n ∈ Z, (2.8)

where |a| < 1. The AR polynomial is A(s) = 1 + as, with the only root
s1 = − 1

a
, so by Theorem 2.1, there exists a unique wide sense stationary

stochastic process

Yn =
∞
∑

k=0

ckXn−k ∀n ∈ Z

satisfying (2.8). The coefficients {ck; k = 0, 1, . . .} satisfy the homogenous
linear difference equation with constant coefficients

cn + acn−1 = 0 ∀n = 1, 2, . . . ,

and the initial condition c0 = 1.
We can use Theorem 2.3 to explicitly compute {ck; k = 0, 1, . . .}.

The characteristic polynomial is ϕ(s) = s+ a, with the only root u1 = −a,
so

ck = c(−a)k k = 0, 1, . . . (2.9)

where c = P1(s) is a polynomial of degree 0 (a constant). Using the initial
condition, we get:

c0 = c(−a)0 = c = 1.

Summing up, we obtain:

Yn =
∞
∑

k=0

(−a)kXn−k ∀n ∈ Z. (2.10)
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It is interesting to note that for the wide sense stationary AR(p)
process {Yn;n ∈ Z} defined in Theorem 2.1, the autocorrelation function
satisfies exactly the same homogenous linear difference equation as the co-
efficients {ck; k = 0, 1, . . .}, but with a different set of initial conditions.

Theorem 2.5 Assume that the polynomial A(s) =
∑p

k=0 aks
k (where a0 =

1) has all its roots outside the complex unit circle, and let {Yn;n ∈ Z} be
the unique wide sense stationary process, defined in (2.3), which satisfies
equation (2.2). Then, the autocorrelation function of {Yn;n ∈ Z} satisfies
the homogenous linear difference equation

p
∑

i=0

aiRY (k − i) = 0 ∀k = p, p+ 1, . . .

as well as the initial conditions

p
∑

i=0

aiRY (k − i) = σ2δ0,k ∀k = 0, 1, . . . , p− 1.

Proof:Multiplying both sides of equation (2.2) with Yn−j, where j = 0, 1, . . .,
gives:

p
∑

i=0

aiYn−iYn−j = Yn−jXn ∀n ∈ Z.

Taking the expected value on both sides gives

p
∑

i=0

aiRY (j − i) = E(Yn−jXn) ∀n ∈ Z.

Using the representation (2.3), and Theorem 4.1 in Kompletteringshäfte 2,
we get:

E(Yn−jXn) = E(
∞
∑

k=0

ckXn−j−kXn) =
∞
∑

k=0

ckE(Xn−j−kXn)

= c0E(Xn−jXn) = σ2δ0,j ∀n ∈ Z.

(Recall that c0 = 1.) In particular, RY satisfies the homogenous linear
difference equation

p
∑

i=0

aiRY (k − i) = 0 ∀k = p, p+ 1, . . .
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and the initial conditions

p
∑

i=0

aiRY (k − i) = σ2δ0,k ∀k = 0, 1, . . . , p− 1.

Example 2.6 Consider again the AR(1) equation

Yn + aYn−1 = Xn ∀n ∈ Z, (2.11)

where |a| < 1. It was shown in Example 2.4 that the unique wide sense
stationary process which satisfies (2.11) is

Yn =
∞
∑

k=0

(−a)kXn−k ∀n ∈ Z.

The autocorrelation function of {Yn;n ∈ Z} satisfies the same homogenous
linear difference equation with constant coefficients as do {ck; k = 0, 1, . . .},
namely:

RY (k) + aRY (k − 1) = 0 ∀k = 1, 2, . . . ,

but with a different initial condition:

a0RY (0) + a1RY (−1) = RY (0) + aRY (1) = σ2.

Using Theorem 2.3, we get

RY (k) = d(−a)k ∀k = 0, 1, . . .

where d is a constant, for which the initial condition yields the equation

RY (0) + aRY (1) = d+ ad(−a) = d(1− a2) = σ2.

Summing up, and using again the fact that RY (−k) = RY (k), we obtain:

RY (k) =
σ2(−a)|k|

1− a2
∀k ∈ Z.

We remark that for this example, the autocorrelation function can also be
easily computed using Theorem 1.1. (Do this yourself and check that the
same answer is obtained!)
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3 Moving average (MA) processes

Definition 3.1 A stochastic process {Yn;n ∈ Z} is called a moving ave-
rage process of order q, or a MA(q)-process, if

Yn =

q
∑

i=0

biXn−i ∀n ∈ Z, (3.1)

where {Xn;n ∈ Z} is white noise.

The equation (3.1) is called an MA equation. The polynomial

B(s) =

q
∑

k=0

bks
k

is called an MA polynomial.
By definition, a moving average process is the output from a FIR

(finite impulse response) filter, with impulse response {bk; k = 0, . . . , q},
where the input is a white noise process. Therefore, the process {Yn;n ∈ Z}
is wide sense stationary for any values of the coefficients {bk; k = 0, . . . , q};
see Theorem 11.5 in Yates & Goodman. Also, by definition, {Yn;n ∈ Z} is
a linear process.

Theorem 3.1 A MA(q) process {Yt; t ∈ Z} is wide sense stationary with
mean µY = 0, and has the autocorrelation function

RY (τ) =











σ2
(

b0b|τ | + b1b|τ |+1 + . . .+ bq−|τ |bq
)

, |τ | = 0, . . . , q − 1;

σ2b0bq, |τ | = q;

0, |τ | > q.

(3.2)

Proof: Since the process is linear, by Theorem 1.1 it is wide sense stationary
with mean µY = 0, and autocorrelation function

RY (τ) = σ2

q
∑

k=0

bkbk+|τ | = σ2

q−|τ |
∑

k=0

bkbk+|τ | ∀τ ∈ Z.

Comparing the autocorrelation function of a wide sense stationary
AR(p) process with that of an MA(q) process, we see that the first function
decreases to 0 geometrically as |τ | → ∞, while the second function has a
symmetric ”cut-off”: it is 0 for |τ | > q.
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4 Autoregressive moving average (ARMA)

processes

Definition 4.1 A stochastic process {Yn;n ∈ Z} is called an autoregres-
sive moving average process of order (p, q), or an ARMA(p, q) pro-
cess, if

p
∑

i=0

aiYn−i =

q
∑

i=0

biXn−i ∀n ∈ Z (4.1)

where {Xn;n ∈ Z} is white noise.

Theorem 4.1 If the polynomial A(s) =
∑p

k=0 aks
k (where a0 = 1) has all

its roots outside the complex unit circle, then there exists a unique wide sense
stationary process {Yn;n ∈ Z} which satisfies equation (4.1). Moreover,
{Yn;n ∈ Z} is a linear process:

Yn =
∞
∑

k=0

ckXn−k ∀n ∈ Z, (4.2)

where {ck; k = 0, 1, . . .} are the coefficients in the Maclaurin series expan-

sion of C(s) = B(s)
A(s)

,

B(s)

A(s)
= C(s) =

∞
∑

k=0

cks
k ∀|s| < R2,

where R2 > 1. In particular,
∑∞

k=0 |ck| < ∞, so the limit in (2.3) exists. The
coefficients {ck; k = 0, 1, . . .} also satisfy the homogenous linear difference
equation

p
∑

i=0

aick−i = 0 ∀k ≥ max(p, q + 1)

and the initial conditions

k
∑

i=0

aick−i = bk ∀k = 0, 1, . . . ,max(p, q + 1)− 1,

where bk = 0 for k = q + 1, q + 2, . . .. The unique solution of the difference
equation can be obtained using Theorem 2.3.
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Proof: Very similar to the proof of Theorem 2.1 Let A(s) =
∑p

k=0 aks
k, let

B(s) =
∑p

k=0 bks
k, and let C(s) = B(s)

A(s)
, the Maclaurin series expansion of

which is absolutely convergent for |s| < R2, where R2 > 1 is the smallest of
the moduli of the roots of A(s):

C(s) =
B(s)

A(s)
=

∞
∑

k=0

cks
k ∀|s| < R2.

Lemma 2.2 now gives:

B(s) =

p
∑

k=0

bks
k = A(s)C(s) =

∞
∑

k=0

dks
k ∀|s| < R2,

where

dk =
k

∑

i=0

aick−i ∀k = 0, 1, . . . . (4.3)

Identifying the coefficients of the power series gives us the following infinite
system of linear equations for the coefficients {ck; k = 0, 1, . . .}:

a0c0 = b0

a0c1 + a1c0 = b1

a0c2 + a1c1 + a2c0 = b2
... (4.4)

k
∑

i=0

aick−i = bk k ≤ min(p, q)

p
∑

i=0

aick−i = bk p ≤ k ≤ q

k
∑

i=0

aick−i = 0 q + 1 ≤ k ≤ p

p
∑

i=0

aick−i = 0 k ≥ max(p, q + 1).

The last line in (4.4) is a homogenous linear difference equation for {ck; k =
0, 1, . . .} with constant coefficients, for which the unique solution can be
obtained using Theorem 2.3. The solution is

ck =
r

∑

ν=1

Pν(k)u
k
ν , k ≥ max(0, q + 1− p). (4.5)
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where {uν ; ν = 1, . . . , r} are the distinct roots of the characteristic polyno-
mial ϕ(s) = a0s

p+a1s
p−1+ . . .+ap, {mν ; ν = 1, . . . , r} are the multiplicities

of the distinct roots, and each Pν(s) is a polynomial of degree mν − 1. The
p coefficients of the polynomials {Pν(s); ν = 1, . . . , r}, and the coeffici-
ents {ck; k = 0, . . . ,max(0, q + 1 − p) − 1}, can be determined from the
max(p, q + 1) initial conditions given in (4.4). The proof that the process
{Yt; t ∈ Z}, defined in (4.2), satisfies (4.1), is similar to the corresponding
proof for AR processes, and is therefore omitted.

As before, for the wide sense stationary ARMA(p, q) process {Yn;n ∈
Z} defined in Theorem 4.2, the autocorrelation function satisfies the same
homogenous linear difference equation as the coefficients {ck; k = 0, 1, . . .},
but with a different set of initial conditions.

Theorem 4.2 Assume that the polynomial A(s) =
∑p

k=0 aks
k (where a0 =

1) has all its roots outside the complex unit circle, and let {Yn;n ∈ Z} be
the unique wide sense stationary process, defined in (4.2), which satisfies
equation (4.1). Then, the autocorrelation function of {Yn;n ∈ Z} satisfies
the homogenous linear difference equation

p
∑

i=0

aiRY (k − i) = 0 ∀k ≥ max(p, q + 1)

and the initial conditions
p

∑

i=0

aiRY (k − i) = σ2

q
∑

i=k

bici−k ∀k = 0, . . . ,max(p, q + 1)− 1.

Proof:Multiplying both sides of equation (4.1) with Yn−j, where j = 0, 1, . . .,
gives:

p
∑

i=0

aiYn−iYn−j =

q
∑

i=0

biYn−jXn−i ∀n ∈ Z.

Taking the expected value on both sides gives

p
∑

i=0

aiRY (j − i) =

q
∑

i=0

biE(Yn−jXn−i) ∀n ∈ Z,

where, using the representation (4.2), the right hand side equals

q
∑

i=0

bi

∞
∑

l=0

clE(Xn−jXn−i−l) = σ2

q
∑

i=j

bici−j ∀n ∈ Z.
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In particular, RY satisfies the homogenous linear difference equation

p
∑

i=0

aiRY (k − i) = 0 ∀k ≥ max(p, q + 1),

and the initial conditions
p

∑

i=0

aiRY (k − i) = σ2

q
∑

i=k

bici−k ∀k = 0, . . . ,max(p, q + 1)− 1.

5 The spectral density of a linear process

Recall that for a discrete time wide sense stationary stochastic process
{Yn;n ∈ Z} such that

∞
∑

k=1

|RY (k)| < ∞, (5.1)

the spectral density is defined by

SY (f) =
∞
∑

k=−∞

RY (k)e
−j2πfk ∀ − 1

2
≤ f ≤ 1

2
, (5.2)

where j =
√
−1. This expression is also known as the discrete Fourier

transform of the autocorrelation function. Conversely, given the spectral
density, the autocorrelation function is obtained by

RY (k) =

∫ 1/2

−1/2

SY (f)e
j2πfkdf ∀k ∈ Z.

Theorem 5.1 Let {Yn;n ∈ Z} be a linear process

Yn =
∞
∑

k=0

ckVn−k ∀n ∈ Z, (5.3)

such that
∑∞

k=0 |ck| < ∞, where {Vn;n ∈ Z} is white noise, and let C(s) =
∑∞

k=0 cks
k. Then,

SY (f) = σ2
∣

∣C
(

e−j2πf
)
∣

∣

2 ∀ − 1

2
≤ f ≤ 1

2
. (5.4)
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Proof: The white noise process {Vn;n ∈ Z} has autocorrelation function
RV (k) = σ2δ0,k. Since

∑∞
k=1 |RV (k)| = σ2 < ∞, the spectral density is

SV (f) = σ2

∞
∑

k=−∞

δ0,ke
−j2πfk = σ2 ∀ − 1

2
≤ f ≤ 1

2
.

In words, white noise has constant spectral density. Since {Yn;n ∈ Z} is the
output of a stable LTI with impulse response {ck; k = 0, 1, . . .} for which
the input is the white noise process {Vn;n ∈ Z} (see Section 1), the claim
(5.4) follows from Theorem 11.6 in Yates & Goodman.

Example 5.2 An ARMA(p, q) process {Yt; t ∈ Z} has spectral density

SY (f) = σ2

∣

∣

∣

∣

∣

B
(

e−j2πf
)

A (e−j2πf )

∣

∣

∣

∣

∣

2

= σ2

∣

∣

∣

∣

∑q
k=0 bke

−j2πfk

∑p
k=0 ake

−j2πfk

∣

∣

∣

∣

2

∀ − 1

2
≤ f ≤ 1

2
. (5.5)

This follows from the representation of {Yt; t ∈ Z} as a linear process; see
Theorem 4.1.

Example 5.3 Consider again the AR(1) equation

Yn + aYn−1 = Xn ∀n ∈ Z, (5.6)

where |a| < 1. It was shown in Example 2.4 that the unique wide sense
stationary process which satisfies (5.6) is

Yn =
∞
∑

k=0

(−a)kXn−k ∀n ∈ Z.

In Example 2.6, it was shown that the autocorrelation function of {Yn;n ∈
Z} is

RY (k) =
σ2(−a)|k|

1− a2
∀k ∈ Z.

By Example 5.2, the spectral density of {Yn;n ∈ Z} is

SY (f) =
σ2

|1 + ae−j2πf |2
∀ − 1

2
≤ f ≤ 1

2
, (5.7)

where
∣

∣1 + ae−j2πf
∣

∣

2
=

(

1 + ae−j2πf
) (

1 + aej2πf
)

= 1 + aej2πf + ae−j2πf + a2

16



= 1 + a2 + a
(

ej2πf + e−j2πf
)

= 1 + a2 + 2a cos (2πf) ∀ − 1

2
≤ f ≤ 1

2
,

leading to

SY (f) =
σ2

1 + a2 + 2a cos(2πf)
∀ − 1

2
≤ f ≤ 1

2
.

For an illustration, see Figures 2 and 3.
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Figur 2: SY (f) for an AR(1) process with a = −0.5, σ2 = 1.

6 Final remarks

One of Herman Wold’s most famous results is the Wold decomposition
theorem, which says that any wide sense stationary process {Yt; t ∈ Z}
can be written as a sum of a linear process and a so-called deterministic
wide sense stationary process:

Yn =
∞
∑

k=0

ckVn−k + Sn ∀n ∈ Z,

where {Vn;n ∈ Z} is a white noise process, and
∑∞

k=0 c
2
k < ∞. The process

{Sn;n ∈ Z} is deterministic in the sense that for each n ∈ Z, Sn is the mean
square limit of a sequence of linear combinations of random variables in the

17
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Figur 3: SY (f) for an AR(1) process with a = 0.5, σ2 = 1.

(infinite) set {Sm;m ≤ n− 1}. So, if {Sm;m ≤ n− 1} is known, then Sn is
also “known” in the sense that it can be approximated arbitrarily well (in
mean square) by a linear combination of elements in {Sm;m ≤ n− 1}.

The theory of linear processes, and of ARMA processes in particu-
lar, has seen a rapid development since the appearance of Wold’s Thesis.
They have been used to model an ever increasing number of phenomena
within the areas of science, technology and economics. Many generaliza-
tions and variations on ARMA processes have been suggested, for example
multivariate ARMA processes, ARIMA processes, RCA (random coefficient
autoregressive) processes, and ARCH-and GARCH (generalized autoregres-
sive conditionally heteroscedastic) processes, which have found use within
the area of mathematical finance. For more information, see:

• T.W. Anderson: Time Series Analysis. John Wiley and Sons, Inc. New
York 1971.

• G.E.P. Box & G.M. Jenkins: Time Series Analysis. Holden-Day, San
Francisco, 1970.

• P.J. Brockwell & R.A. Davis: Introduction to Time Series and Forecasting
Springer-Verlag, New York, 2002.

• U. Hjorth: Stochastic processes. Korrelations- och spektralteori. Stu-
dentlitteratur, Lund 1987.
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• K.J. Åström: Introduction to Stochastic Control Theory. Academic
Press, New York, 1970.
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A Appendix: Linear difference equations with

constant coefficients

Let y = {yn;n = 0, 1, . . .} be a real valued sequence (= a sequence of real
numbers). Denote by △ the (forward) difference operator, which is a
mapping from the real valued sequences to the real valued sequences, defined
by

△y = {(△y)n;n = 0, 1, . . .} = {yn+1 − yn;n = 0, 1, . . .} (A.1)

Denote by △k the kth power of △, defined (recursively) by

△ky = △(△k−1y) ∀k = 1, 2, 3, . . . . (A.2)

By induction, it can be shown that

△ky =
{

yn+k −
(

k

1

)

yn+k−1 + · · ·+ (−1)kyn;n = 0, 1, . . .
}

(A.3)

Definition A.1 An (ordinary) difference equation is an equation of
the following type:

G(n, yn, (△y)n, . . . , (△ky)n) = 0 ∀n = 0, 1, . . . , (A.4)

where G : Rk+2 → R a function. Equivalently, using (A.3), an ordinary
difference equation can be written in the following form:

F (n, yn, yn+1, . . . , yn+k) = 0 ∀n = 0, 1, . . . , (A.5)

where F : Rk+2 → R a function.

Definition A.2 If F in (A.5) takes the form

f0,nyn + f1,nyn+1 + · · ·+ fk,nyn+k = gn ∀n = 0, 1, . . . , (A.6)

where fi = {fi,n;n = 0, 1, . . .}, i = 0, 1, . . . , k, and g = {gn;n = 0, 1, . . .} are
real valued sequences, and neither f0 nor fk are identically 0, the equation is
called a linear (ordinary) difference equation of order k. For brevity,
we call an equation such as (A.6) a linear difference equation of order k.

Definition A.3 If g in (A.6) is identically 0, the linear difference equation
is called homogenous, otherwise inhomogenous.
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Definition A.4 If fi is equal to a constant ai for i = 0, 1, . . . k (that is, if
fi,n = ai for n = 0, 1, . . . and i = 0, 1, . . . k), the equation is called a linear
difference equation of order k with constant coefficients. In this case,
and if the equation is homogenous, it can be written in the form

a0yn + a1yn+1 + · · ·+ akyn+k = 0 ∀n = 0, 1, 2, . . . (A.7)

Consider now a real valued sequence y of the particular form

yn = un ∀n = 0, 1, 2, . . . ,

where u ∈ R. This sequence is a solution to (A.7) if and only if

a0u
n+a1u

n+1+· · ·+aku
n+k = un(a0+a1u

1+· · ·+aku
k) = 0 ∀n = 0, 1, 2, . . . ,

that is, if and only if u is a root of the polynomial

ϕ(u) = a0 + a1u+ · · ·+ aku
k,

which is known as the characteristic polynomial of the difference equa-
tion (A.7). The equation ϕ(u) = 0 is called the characteristic equation
of (A.7). We have shown the following lemma.

Lemma A.1 If u1 is a root of the characteristic polynomial ϕ(u) = a0 +
a1u+ · · ·+ aku

k, the real valued sequence

yn = cun
1 ∀n = 0, 1, 2, . . . , (A.8)

where c is a real constant, is a solution to the difference equation (A.7).

For the linear difference equation (A.7), it is easily seen that any
linear combination of two solutions to the equation is also a solution. This
proves the following theorem.

Theorem A.2 If the characteristic polynomial ϕ(u) = a0+a1u+ · · ·+aku
k

has k distinct roots u1, u2, . . . , uk, then the real valued sequence

yn = c1u
n
1 + c2u

n
2 + · · ·+ cku

n
k ∀n = 0, 1, 2, . . . (A.9)

where c1, c2, . . . , ck are real constants, is a solution to the difference equation
(A.7).
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Example A.3 Consider the linear homogenous difference equation with
constant coefficients

6yn − 11yn+1 + 6yn+2 − yn+3 = 0 ∀n = 0, 1, 2, . . . (A.10)

The corresponding characteristic polynomial is

ϕ(u) = 6− 11u+ 6u2 − u3.

This polynomial can be shown to have the roots u1 = 1, u2 = 2 and u3 = 3.
By Theorem A.2, any sequence of the type

yn = c1 + c22
n + ck3

n ∀n = 0, 1, 2, . . . , (A.11)

where c1, c2 and c3 are real constants, is a solution to the difference equation
(A.7). Assume now that we require that the solution to (A.7) should satisfy
the following initial conditions:

y0 = 3, y1 = 6, y2 = 14.

Then, by (A.11), the constants c1, c2 and c3 must satisfy the following
system of linear equations:

c1 + c2 + c3 = y0 = 3

c1 + 2c2 + 3c3 = y1 = 6

c1 + 4c2 + 9c3 = y2 = 14

This system has the unique solution

c1 = c2 = c3 = 1.

Hence, the only solution to (A.7) of the type (A.11) satisfying the given
initial conditions is

yn = 1 + 2n + 3n ∀n = 0, 1, 2, . . . .

Lemma A.4 If u1 is a root with multiplicity 2 of the characteristic
polynomial ϕ(u) = a0 + a1u+ · · ·+ aku

k, the real valued sequence

yn = cnun
1 ∀n = 0, 1, 2, . . . , (A.12)

where c is a real constant, is a solution to the difference equation (A.7).
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Proof: It is clear that

a0yn + a1yn+1 + a2yn+2 + · · ·+ akyn+k

= ca0nu
n
1 + ca1(n+ 1)un+1

1 + · · ·+ cak(n+ k)un+k
1

= cu1

(

a0nu
n−1
1 + a1(n+ 1)un

1 + · · ·+ ak(n+ k)un+k−1
1

)

= cu1Q
′
n(u1),

where Qn(u) = ϕ(u)un. Since u1 has multiplicity 2 as a root of the charac-
teristic polynomial, we can write

ϕ(u) = (u− u1)
2β(u),

where β(u) is a polynomial such that β(u1) 6= 0. This gives:

Q′
n(u) =

(

(u− u1)2β(u) + (u− u1)
2β′(u)

)

un + (u− u1)
2β(u)nun−1

= (u− u1)hn(u),

where hn(u) is another polynomial such that hn(u1) = 2β(u1) 6= 0. There-
fore, u1 is a root of the polynomial Q′

n(u) (with multiplicity 1).

Lemma A.5 If u1 is a root with multiplicity 2 of the characteristic poly-
nomial ϕ(u) = a0 + a1u+ · · ·+ aku

k, the real valued sequence

yn = (cn+ d)un
1 ∀n = 0, 1, 2, . . . , (A.13)

where c and d are real constants, is a solution to the difference equation
(A.7).

Proof: This follows from Lemma A.1, Lemma A.4, and the fact that any
linear combination of two solutions to the difference equation (A.7) is also
a solution.

Example A.6 Consider the linear homogenous difference equation with
constant coefficients

4yn + 4yn+1 − 3yn+2 − 2yn+3 + yn+4 = 0 n = 0, 1, 2, . . . (A.14)

The corresponding characteristic polynomial is

ϕ(u) = 4 + 4u− 3u2 − 2u3 + u4 = (u+ 1)2(u− 2)2.
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By Lemma A.5, any sequence of the type

yn = (A1n+ B1)(−1)n + (A2n+ B2)2
n ∀n = 0, 1, 2, . . . ,

where A1, A2, B1 and B2 are real constants, is a solution to the difference
equation (A.7). The four constants can be determined if we require that the
solution satisfies four initial conditions.

Lemma A.7 If u1 is a root with multiplicity m of the characteristic
polynomial ϕ(u) = a0 + a1u+ · · ·+ aku

k, the real valued sequence

yn = Pm(n)u
n
1 ∀n = 0, 1, 2, . . . , (A.15)

where Pm(·) is a real valued polynomial of degree m−1, is a solution to the
difference equation (A.7).

Proof: Just as in the proof of Lemma A.4, we define the auxiliary function
Qn(u) = ϕ(u)un. Since u1 has multiplicity m as a root of the characteristic
polynomial,

ϕ(u) = (u− u1)
mβ(u),

where β(u) is a polynomial such that β(u1) 6= 0. The same argument as in
the proof of Lemma A.4 shows that

Q(u1) = Q′(u1) = · · · = Qm−1(u1) = 0. (A.16)

Next, we express the polynomial Pm(s) in the form

Pm(s) = b0 + b1s+ b2s(s− 1) + · · ·+ bm−1s(s− 1)(s− 2) . . . (s−m+ 2),

where b0, b1, . . . , bn are real numbers. Clearly, any polynomial of degreem−1
can be uniquely expressed in this way. Note also that

n(n− 1) · · · (n− j + 1) = 0 ∀n = 0, 1, . . . , j − 1,

for all j = 1, 2, . . .. We can now write:

yn = Pm(n)u
n
1 =

m−1
∑

j=0

bj
(

n(n− 1) · · · (n− j + 1)
)

un
1

=
m−1
∑

j=0

bju
j
1

[ dj

duj
un

]

u=u1

∀n = 0, 1, 2, . . .
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(please verify the last equality!) This finally leads to:

k
∑

i=0

aiyn+i =
k

∑

i=0

ai

m−1
∑

j=0

uj
1bj

[ dj

duj
un+i

]

u=u1

=

=
m−1
∑

j=0

uj
1bj

[ dj

duj

k
∑

i=0

aiu
n+i

]

u=u1

=

=
m−1
∑

j=0

uj
1bj

[ dj

duj
Qn(u)

]

u=u1

= 0 (A.17)

by (A.16).

We are now ready to state our main result concerning the general
solution of a linear homogenous difference equation of order k with constant
coefficients.

Theorem A.8 Let ϕ(u) = a0 + a1u + · · · + aku
k be the characteristic

polynomial of the linear honogenous difference equation (A.7). If ϕ(u) has r
distinct roots u1, u2, . . . , ur, with multiplicities {m1,m2, . . . ,mr}, then the
real valued sequence

yn =
r

∑

ν=1

Pν(n)u
n
ν ∀n = 0, 1, 2, . . . (A.18)

where, for each ν = 1, . . . , r, Pν(s) is a polynomial of degree mν − 1, is a
solution to the difference equation (A.7). Moreover, any solution to (A.7)
can be written in the form (A.18).

Proof: The first claim follows from Lemma A.7 and the fact that any linear
combination of two solutions to the difference equation (A.7) is also a so-
lution. The proof of the second claim, that any solution can be written in
this form, is omitted.

Example A.9 Consider the linear homogenous difference equation with
constant coefficients

yn + 3yn+1 + 3yn+2 + yn+3 = 0 ∀n = 0, 1, 2, . . .
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The corresponding characteristic polynomial is

ϕ(u) = 1 + 3u+ 3u2 + u3 = (u+ 1)3

By Theorem A.8, any sequence of the type

yn = (A2n
2 + A1n+ A0)(−1)n ∀n = 0, 1, 2, . . . , (A.19)

where A2, A1, and A0 are real constants, is a solution to the difference
equation. Let us require that the solution satisfies three initial conditions:
y0 = 1, y1 = 2, y2 = −9. Then, the constants A2, A1, and A0 must satisfy
the following linear system of equations:

A0(−1)0 = y0 = 1

(A21
2 + A11 + A0)(−1)1 = y1 = 2

(A22
2 + A12 + A0)(−1)2 = y2 = − 9

The system has the unique solution A0 = 1, A1 = −1, A2 = −2. Hence,
the only solution to the difference equation of the type (A.19) satisfying the
given initial conditions is

yn = (−2n2 − n+ 1)(−1)n ∀n = 0, 1, 2, . . . .

We remark that a characteristic polynomial ϕ(u) can have com-
plex roots. However, since the (constant) coefficients of the linear difference
equation (A.7) are real numbers, nonreal roots always occur in conjugate
pairs. Furthermore, since also the initial values are real numbers, it can
be shown by induction that the solution {yt; t = 0, 1, . . .} to the difference
equation must be a real valued sequence.

Example A.10 Consider the linear homogenous difference equation with
constant coefficients

yn + yn+2 = 0 ∀n = 0, 1, 2, . . .

The corresponding characteristic polynomial ϕ(u) = u2+1 has two complex
roots, which are complex conjugates:

u1 = i = eiπ/2 u2 = −i = e−iπ/2

By Theorem A.8, any sequence of the type

yn = c1e
inπ/2 + c2e

−inπ/2 ∀n = 0, 1, 2, . . . , (A.20)
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where c1 and c2 are (possibly complex) constants, is a solution to the diffe-
rence equation. Using Euler’s formulæ, this can be written as

yn = (c1 + c2) cos(nπ/2) + i(c1 − c2) sin(nπ/2) ∀n = 0, 1, 2, . . .

Since {yn;n = 0, 1, . . .} is a real valued sequence, we see (by choosing n = 0
and n = 1) that c1 and c2 must be complex conjugates. We can therefore
write:

yn = a cos(nπ/2) + b sin(nπ/2) ∀n = 0, 1, 2, . . . ,

where a = 2Re(c1) = 2Re(c2) and b = −2Im(c1) = 2Im(c2). Assume that
the solution should satisfy the initial conditions y0 = 1 och y1 = 0. Then,
we see that a = 1 och b = 0, so the only solution to the difference equation
of the type (A.20) satisfying the given initial conditions is

yn = cos(nπ/2) ∀n = 0, 1, 2, . . . .

The fact that this is a solution can also be seen as follows:

yn+2 = cos((n+ 2)π/2) = cos(nπ/2 + π) = − cos(nπ/2) ∀n = 0, 1, 2, . . .
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