Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, an English-Swedish dictionary.
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5 .

1 (3 points)

Let X and Y be independent $\operatorname{Exp}(1)$-distributed random variables. Show that $X /(X+Y)$ and $X+Y$ are independent, and find their density functions $f_{X /(X+Y)}(u)$ and $f_{X+Y}(v)$.

2 (3 points)

Let Y be a Binomial random variable with a random parameter X as follows:

$$
Y \mid X=x \sim \operatorname{Bin}(n, x), \quad \text { with } X \sim U(0,1) . \quad[\text { This can be also written as } Y \mid X \sim \operatorname{Bin}(n, X)]
$$

Compute the expectation $E(Y)$ of Y and the covariance $\operatorname{Cov}(X, Y)$ of X and Y.

3 (3 points)

Prove, with the aid of suitable transforms, that if $X \sim \operatorname{Bin}(n, p)$ and $Y \sim \operatorname{Bin}(m, p)$ are independent, then $X+Y \sim \operatorname{Bin}(n+m, p)$.

4 (3 points)

The random variables $X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent $U(0,1)$-distributed.
(4.1) Find the density function $f_{X_{(n)}}(x)$ of $X_{(n)}$, where $X_{(n)}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
(4.2) Find the probability $P\left(\frac{\max \left\{X_{(n)}, Y_{(n)}\right\}}{\min \left\{X_{(n)}, Y_{(n)}\right\}} \geq 2\right)$.

5 (3 points)

Let $\mathbf{X}=\binom{X_{1}}{X_{2}} \sim N(\mathbf{0}, \boldsymbol{\Lambda})$ with $\boldsymbol{\Lambda}=\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$, that is, the density function is $f_{\mathbf{X}}(\mathbf{x})=\frac{1}{2 \pi \cdot \sqrt{\operatorname{det}(\boldsymbol{\Lambda})}} \exp \left\{-\frac{1}{2} \mathbf{x}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{x}\right\}$.
Find the conditional density function $f_{X_{1}+X_{2} \mid X_{1}-X_{2}=0}(x)$ of $X_{1}+X_{2}$ given that $X_{1}-X_{2}=0$.
(Hints: you might need to use the inverse formula $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.)

6 (3 points)

(6.1) Let $P\left(Z_{n}=0\right)=1-\frac{1}{n}, P\left(Z_{n}=1\right)=\frac{1}{2 n}$ and $P\left(Z_{n}=-1\right)=\frac{1}{2 n}$ for $n \geq 1$. Prove that $Z_{n} \xrightarrow{p} 0$.
(6.2) Let Y be a Normal random variable with a random parameter X as follows:

$$
Y \mid X=x \sim N(0, x), \quad \text { with } X \sim P o(\lambda) . \quad[\text { This can be also written as } Y \mid X \sim N(0, X)]
$$

Prove that $Y / \sqrt{\lambda} \xrightarrow{d} N(0,1)$ as $\lambda \rightarrow \infty$.
(Hint: use the characteristic function of $Y / \sqrt{\lambda}$, and a fact $e^{x}=1+x+o(x)$ as $x \rightarrow 0$.)
Discrete Distributions
Followingis a list of discrete distributions, abbreviations, their probability functions, means, variances, and characteristic functions. An asterisk $\left({ }^{*}\right)$ indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.
Probability function $E X \quad \operatorname{Var} X \quad \varphi_{X}(t)$

$0 \quad$
1
$p q$
$n p q$
0

$0 \quad 0$
0
p
ह
01 $2 \quad-$ \qquad
-12 $p(a)=1$ $p(-1)=p(1)=\frac{1}{2}$ O
$p(k)=\binom{n}{k} p^{k} q^{n-k}, k=0,1, \ldots, n ; q=1-p$ $p(k)=p q^{k}, k=0,1,2, \ldots ; q=1-p$
 ,\ldots
$k=0,1, \ldots, N p ;$ $k=0,1, \ldots$,
$\quad q=1-p ;$
$n-k=0, \ldots, N q$

Continuous Distributions

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Weibull $W(\alpha, \beta), \alpha, \beta>0$	$f(x)=\frac{1}{\alpha \beta} x^{(1 / \beta)-1} e^{-x^{1 / \beta} / \alpha}, x>0$	$\alpha^{\beta} \Gamma(\beta+1)$	$\begin{aligned} & a^{2 \beta}(\Gamma(2 \beta+1) \\ & \left.\quad-\Gamma(\beta+1)^{2}\right) \end{aligned}$	*
Rayleigh $\operatorname{Ra}(\alpha), \alpha>0$	$f(x)=\frac{2}{\alpha} x e^{-x^{2} / \alpha}, x>0$	$\frac{1}{2} \sqrt{\pi \alpha}$	$\alpha\left(1-\frac{1}{4} \pi\right)$	*
Normal $\begin{aligned} & N\left(\mu, \sigma^{2}\right) \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}},$ $-\infty<x<\infty$	μ	σ^{2}	$e^{i \mu t-\frac{1}{2} t^{2} \sigma^{2}}$
$N(0,1)$	$f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2},-\infty<x<\infty$	0	1	$e^{-t^{2} / 2}$
Log-normal $\begin{aligned} & L N\left(\mu, \sigma^{2}\right), \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma x \sqrt{2 \pi}} e^{-\frac{1}{2}(\log x-\mu)^{2} / \sigma^{2}}, x>0$	$e^{\mu+\frac{1}{2} \sigma^{2}}$	$e^{2 \mu}\left(e^{2 \sigma^{2}}-e^{\sigma^{2}}\right)$	*
(Student's) t $t(n), n=1,2, \ldots$	$f(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n \Gamma\left(\frac{n}{2}\right)}} \cdot d \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{(n+1) / 2}},$ $-\infty<x<\infty$	0	$\frac{n}{n-2}, n>2$	*
$\begin{aligned} & \text { (Fisher's) } F \\ & \quad F(m, n), m, n=1,2, \end{aligned}$	$f(x)=\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot \frac{x^{m / 2-1}}{\left(1+\frac{m x}{n}\right)^{(m+n) / 2}},$ $x>0$	$\begin{aligned} & \frac{n}{n-2}, \\ & n>2 \end{aligned}$	$\begin{array}{r} \frac{n^{2}(m+2)}{m(n-2)(n-4)}-\left(\frac{n}{n-2}\right)^{2}, \\ n>4 \end{array}$	*

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Cauchy				
$\quad C(m, a)$	$f(x)=\frac{1}{\pi} \cdot \frac{a}{a^{2}+(x-m)^{2}},-\infty<x<\infty$	\nexists	A	$e^{i m t-a\|t\|}$
$\quad C(0,1)$	$f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<\infty$	A	A	$e^{-\|t\|}$
Pareto	$f(x)=\frac{\alpha k^{\alpha}}{x^{\alpha+1}}, x>k$	$\frac{\alpha k}{\alpha-1}, \alpha>1$	$\frac{\alpha k^{2}}{(\alpha-2)(\alpha-1)^{2}}, \alpha>2$,	$*$
$\operatorname{Pa}(k, \alpha), k>0, \alpha>0$				

