Examiner: Xiangfeng Yang (013-285788). **Things allowed**: a calculator, an English-Swedish dictionary. **Scores rating (Betygsgränser)**: 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5.

1 (3 points)

Let X be a continuous random variable with a density function $f_X(x) = \sqrt{\frac{2}{\pi}} \cdot x^2 \cdot e^{-x^2/2}$ for x > 0 (otherwise the density function is zero). Let $Y = X^2$. Find the density function $f_Y(y)$ of Y.

Solution. Let $Y = g(X) = X^2$, then $g^{-1}(y) = \sqrt{y}$ for y > 0 and $J = y^{-1/2}/2$. Then

$$f_Y(y) = f_X(g^{-1}(y)) \cdot |J| = \sqrt{\frac{2}{\pi}} \cdot y \cdot e^{-y/2} \cdot \frac{y^{-1/2}}{2} = \sqrt{\frac{1}{2\pi}} \cdot y^{1/2} \cdot e^{-y/2}, \text{ for } y > 0. \quad \text{(otherwise it is zero)}$$

2 (3 points)

Let $X_n \sim Ge(2/n)$ and $Y_n \sim Po(2n)$ for $n = 2, 3, 4, \ldots$

(2.1) (1.5p) Prove that X_n/n converges in distribution as $n \to \infty$, and determine the limiting distribution. (2.2) (1.5p) Prove that X_n/Y_n converges in distribution as $n \to \infty$, and determine the limiting distribution.

Solution. (2.1) The characteristic function of X_n/n is

$$\varphi_{X_n/n}(t) = \varphi_{X_n}(t/n) = \frac{\frac{2}{n}e^{it/n}}{1 - (1 - 2/n)e^{it/n}} = \frac{1}{(1 - e^{it/n}) \cdot n/2 \cdot e^{-it/n} + 1}$$
$$= \frac{1}{(e^{-it/n} - 1) \cdot n/2 + 1} = \frac{1}{(-it/n + o(1/n)) \cdot n/2 + 1}$$
$$\to \frac{1}{-it/2 + 1} = \varphi_{Exp(1/2)}(t).$$

(2.2) The characteristic function of $Y_n/(2n)$ is

$$\varphi_{Y_n/(2n)}(t) = \varphi_{Y_n}(t/(2n)) = \exp\{2n(e^{it/(2n)} - 1)\} = \exp\{2n(it/(2n) + o(1/n))\} \to e^{it} = \varphi_1(t)$$

Therefore $Y_n/(2n)$ converges to 1. Therefore, it is from the Cramér-Slutsky's theorem that,

$$\frac{X_n}{Y_n} = \frac{X_n/(2n)}{Y_n/(2n)} \to \frac{\frac{1}{2} \cdot Exp(1/2)}{1} = \frac{1}{2} \cdot Exp(1/2).$$

3 (3 points)

Let $N \sim Fs(p)$, and let X_1, X_2, \ldots be independent Exp(1) random variables which are independent of N. Find the moment generating function $\psi_{S_N}(t)$ of $S_N = X_1 + X_2 + \ldots + X_N$.

Solution. It is from Theorem 6.3 of the book that the moment generating function is, with q = 1 - p,

$$\psi_{S_N}(t) = g_N(\psi_X(t)) = \frac{p/(1-t)}{1-q/(1-t)} = \frac{1}{1-t/p} = \psi_{Exp(1/p)}(t)$$

4 (3 points)

Let X_1, X_2, \ldots, X_n be independent random variables with a common distribution function F(X) (that is, $F(x) = P(X_i \le x)$). Let $X_{(1)} = \min\{X_1, X_2, \ldots, X_n\}$ and $X_{(n)} = \max\{X_1, X_2, \ldots, X_n\}$. Find the joint distribution function $F_{X_{(1)}, X_{(n)}}(x, y)$ of $(X_{(1)}, X_{(n)})$.

Solution. First,

$$P(X_{(1)} > x, X_{(n)} \le y) = \begin{cases} P(x < X_k \le y, \text{ for } k = 1, 2, \dots, n) = (F(y) - F(x))^n, & \text{if } x < y, \\ 0, & \text{if } x \ge y. \end{cases}$$

Therefore,

$$\begin{aligned} F_{X_{(1)},X_{(n)}}(x,y) &= F_{X_{(n)}}(y) - P(X_{(1)} > x, X_{(n)} \le y) \\ &= \begin{cases} F(y)^n - (F(y) - F(x))^n, & \text{if } x < y, \\ F(y)^n, & \text{if } x \ge y. \end{cases} \end{aligned}$$

5 (3 points)

Let $N \sim Ge(p)$ and $X = (-1)^N$. Compute the mean E(X) and the variance Var(X). Solution.

$$E(X) = E(E(X|N)) = \sum_{k=0}^{\infty} E(X|N=k) \cdot P(N=k) = \sum_{k=0}^{\infty} E((-1)^{k}|N=k) \cdot P(N=k) = \sum_{k=0}^{\infty} (-1)^{k} pq^{k}$$

$$= p \sum_{k=0}^{\infty} (-q)^{k} = p/(1+q) = p/(1+(1-p)) = p/(2-p).$$

$$Var(X) = E(X^{2}) - (E(X))^{2} = 1 - (p/(2-p))^{2} = \frac{4-4p}{(2-p)^{2}},$$

$$(X^{2}) = E(E(X^{2}|N)) = \sum_{k=0}^{\infty} c(-1)^{2k} \cdot P(N=k) = \sum_{k=0}^{\infty} c(N=k) = 1$$

where $E(X^2) = E(E(X^2|N)) = \sum_{k=0}^{\infty} (-1)^{2k} \cdot P(N=k) = \sum_{k=0}^{\infty} P(N=k) =$

6 (3 points)

(6.1) (1.5p) Let $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ be two independent normal random variables. Prove that $X_1 + X_2$ is also a normal random variable.

(6.2) (1.5p) Let $X_3 \sim N(\mu_3, \sigma_3^2)$ and $X_4 \sim N(\mu_4, \sigma_4^2)$ be two normal random variables (which might not be independent). Does $X_3 + X_4$ have to be a normal random variable? If yes, then prove it. If not, then construct a counterexample. (Hint: note that any constant c should be regarded as a normal random variable with mean c and variance 0.)

Solution. (6.1) The characteristic functions of X_1 and X_2 are (see Appendix B):

$$\varphi_{X_1}(t) = e^{i\mu_1 t - \sigma_1^2 t^2/2}$$
 and $\varphi_{X_2}(t) = e^{i\mu_2 t - \sigma_2^2 t^2/2}$

It is from the independence that

$$\varphi_{X_1+X_2}(t) = E(e^{it(X_1+X_2)}) = \varphi_{X_1}(t) \cdot \varphi_{X_2}(t) = e^{i(\mu_1+\mu_2)t - (\sigma_1^2 + \sigma_2^2)t^2/2}$$

Therefore, $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

(6.2) $X_3 + X_4$ does NOT have to be normal. A counterexample is: let $X_3 \sim N(0,1)$ and Z be independent with P(Z = -1) = P(Z = 1) = 1/2, and define $X_4 = Z \cdot X_3$. Then $X_4 \sim N(0,1)$: why? because

$$P(X_4 \le x) = P(Z \cdot X_3 \le x) = \frac{1}{2}P(X_3 \le x) + \frac{1}{2}P(-X_3 \le x)$$

= $\frac{1}{2}P(N(0,1) \le x) + \frac{1}{2}P(-N(0,1) \le x)$ (note that $P(-N(0,1) \le x) = P(N(0,1) \le x)$)
= $P(N(0,1) \le x)$.

Now one can see that $X_3 + X_4$ is NOT a normal random variable since:

$$P(X_3 + X_4 = 0) = P(X_3 \cdot (1 + Z) = 0) = P(Z = -1) = 1/2.$$

Followingis a list of discrete distribu An asterisk (*) indicates that the e	ttions, abbreviations, their probability functions, i expression is too complicated to present here; in s	means, va some case	ariances, and es a closed fo	l characteristic functio ormula does not even	ons. exist.
Distribution, notation	Probability function	E X	$\operatorname{Var} X$	$\varphi_X(t)$	
One point $\delta(a)$	p(a) = 1	в	0	e^{ita}	
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$\cos t$	
Bernoulli $\operatorname{Be}(p), 0 \leq p \leq 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	d	bd	$q + pe^{it}$	
Binomial Bin $(n, p), n = 1, 2, \dots, 0 \le p \le 1$	$p(k) = {n \choose k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	du	bdu	$(q + pe^{it})^n$	
Geometric $\operatorname{Ge}(p), \ 0 \leq p \leq 1$	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{d}{d}$	$\frac{q}{p^2}$	$\frac{p}{1-qe^{it}}$	
First success $\operatorname{Fs}(p), 0 \leq p \leq 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	$\frac{1}{p}$	$p^{\frac{q}{2}}$	$\frac{pe^{it}}{1-qe^{it}}$	
Negative binomial NBin $(n, p), n = 1, 2, 3, \dots, 0 \le p \le 1$	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2, \dots;$ q = 1 - p	$\frac{d}{b}u$	$n \frac{q}{p^2}$	$\big(\frac{p}{1-q^{e^{it}}}\big)^n$	
Poisson $Po(m), m > 0$	$p(k) = e^{-m} \; rac{m^k}{k!}, \; k = 0, 1, 2, \ldots$	m	m	$e^{m(e^{it}-1)}$	
Hypergeometric $H(N, n, p), n = 0, 1, \dots, N,$ $N = 1, \frac{2}{N}, \dots, 1$ $p = 0, \frac{1}{N}, \frac{2}{N}, \dots, 1$	$p(k) = \frac{\binom{Np}{k}\binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	du	$npq \frac{N-n}{N-1}$	*	

Discrete Distributions

282

An asterisk (*) indicate	s that the expression is too complicated to j	present here	; in some cases a close	d formula does not even
Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Uniform/Rectangular U(a, b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
U(0,1) U(-1,1)	$f(x) = 1, \ 0 < x < 1$ $f(x) = \frac{1}{2}, \ x < 1$	- <mark>1</mark> -	3 <mark>1- 12</mark>	$\frac{e^{it}-1}{it}$
Triangular Tri (a,b)	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$ a < x < b	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2}-e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$
$\operatorname{Tri}(-1,1)$	$f(x) = 1 - x , \ x < 1$	0	- I 0	$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$
Exponential $Exp(a), a > 0$	$f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$	a	a^2	$\frac{1}{1-ait}$
Gamma $\Gamma(p,a), \ a > 0, \ p > 0$	$f(x) = rac{1}{\Gamma(p)} x^{p-1} rac{1}{a^p} e^{-x/a}, \; x > 0$	ра	pa^2	$\frac{1}{(1-ait)^p}$
Chi-square $\chi^2(n), n = 1, 2, 3, \dots$	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0$	u	2n	$\frac{1}{(1-2it)^{n/2}}$
Laplace $L(a), a > 0$	$f(x)=rac{1}{2a}e^{- x /a}, \ -\infty < x < \infty$	0	$2a^2$	$\frac{1}{1+a^2t^2}$
Beta $\beta(r,s), r,s > 0$	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	$\frac{r}{r+s}$	$\frac{rs}{(r+s)^2(r+s+1)}$	*
	0 < x < 1			

nces, and characteristic functions. abbreviations their densities "" distributions. list of s Following is a

Continuous Distributions

Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Weibull $W(lpha,eta), lpha,eta>0$	$f(x) = rac{1}{lpha eta} x^{(1/eta) - 1} e^{-x^{1/eta} / lpha}, \; x > 0$	$lpha^eta\Gamma(eta+1)$	$a^{2eta}ig(\Gamma(2eta+1)\ -\Gamma(eta+1)^2ig)$	*
Rayleigh Ra $(\alpha), \alpha > 0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $\begin{split} & N(\mu,\sigma^2), \\ & -\infty < \mu < \infty, \sigma > 0 \end{split}$	$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(x-\mu)^2/\sigma^2},$	Ц	σ^2	$e^{i\mu t-rac{1}{2}t^2\sigma^2}$
	$-\infty < x < \infty$			
N(0,1)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty$	0	Ι	$e^{-t^{2}/2}$
Log-normal $LN(\mu, \sigma^2), -\infty < \mu < \infty, \ \sigma > 0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2 / \sigma^2}, \ x > 0$	$e^{\mu+rac{1}{2}\sigma^2}$	$e^{2\mu} \left(e^{2\sigma^2} - e^{\sigma^2} ight)$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = rac{\Gamma(rac{n+1}{2})}{\sqrt{\pi n} \Gamma(rac{n}{2})} \cdot drac{1}{(1+rac{n-1}{2})^{(n+1)/2}}, \ -\infty < x < \infty$	0	$\frac{n}{n-2},n>2$	*
(Fisher's) F $F(m \ n) \ m \ n = 1$ 2	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$rac{n}{n-2},$	$rac{n^2(m+2)}{m(n-2)(n-4)} - \left(rac{n}{n-2} ight)^2,$	*
···· (= (+	x > 0	n > 2	n > 4	

284

Continuous Distributions (continued)

B Some Distributions and Their Characteristics

Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
C(m,a)	$f(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + (x-m)^2}, \ -\infty < x < \infty$	Ŕ	Ā	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, -\infty < x < \infty$	R	R	$e^{- t }$
Pareto	$f(x)=rac{lpha k^lpha}{x^{lpha+1}},\ x>k$	$\frac{\alpha k}{\alpha - 1}, \alpha > 1$	$\frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \alpha > 2,$	*
$\operatorname{Pa}(k,\alpha), k > 0, \alpha > 0$				

Continuous Distributions (continued)