Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, an English-Swedish dictionary.
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5 .

1 (3 points)

Let X be a continuous random variable with a density function $f_{X}(x)=\sqrt{\frac{2}{\pi}} \cdot x^{2} \cdot e^{-x^{2} / 2}$ for $x>0$ (otherwise the density function is zero). Let $Y=X^{2}$. Find the density function $f_{Y}(y)$ of Y.

2 (3 points)

Let $X_{n} \sim G e(2 / n)$ and $Y_{n} \sim \operatorname{Po}(2 n)$ for $n=2,3,4, \ldots$.
(2.1) (1.5p) Prove that X_{n} / n converges in distribution as $n \rightarrow \infty$, and determine the limiting distribution.
(2.2) (1.5p) Prove that X_{n} / Y_{n} converges in distribution as $n \rightarrow \infty$, and determine the limiting distribution.

3 (3 points)

Let $N \sim F s(p)$, and let X_{1}, X_{2}, \ldots be independent $\operatorname{Exp}(1)$ random variables which are independent of N. Find the moment generating function $\psi_{S_{N}}(t)$ of $S_{N}=X_{1}+X_{2}+\ldots+X_{N}$.

4 (3 points)

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables with a common distribution function $F(X)$ (that is, $\left.F(x)=P\left(X_{i} \leq x\right)\right)$. Let $X_{(1)}=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ and $X_{(n)}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Find the joint distribution function $F_{X_{(1)}, X_{(n)}}(x, y)$ of $\left(X_{(1)}, X_{(n)}\right)$.

5 (3 points)

Let $N \sim G e(p)$ and $X=(-1)^{N}$. Compute the mean $E(X)$ and the variance $\operatorname{Var}(X)$.

6 (3 points)

(6.1) (1.5p) Let $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ be two independent normal random variables. Prove that $X_{1}+X_{2}$ is also a normal random variable.
(6.2) (1.5p) Let $X_{3} \sim N\left(\mu_{3}, \sigma_{3}^{2}\right)$ and $X_{4} \sim N\left(\mu_{4}, \sigma_{4}^{2}\right)$ be two normal random variables (which might not be independent).

Does $X_{3}+X_{4}$ have to be a normal random variable? If yes, then prove it. If not, then construct a counterexample.
(Hint: note that any constant c should be regarded as a normal random variable with mean c and variance 0 .)
Discrete Distributions
Followingis a list of discrete distributions, abbreviations, their probability functions, means, variances, and characteristic functions. An asterisk $\left({ }^{*}\right)$ indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.
Probability function $E X \quad \operatorname{Var} X \quad \varphi_{X}(t)$

$0 \quad$
1
$p q$
$n p q$
0

$0 \quad 0$
0
p
ह
01 $2 \quad-$ \qquad
-12 $p(a)=1$ $p(-1)=p(1)=\frac{1}{2}$ O
$p(k)=\binom{n}{k} p^{k} q^{n-k}, k=0,1, \ldots, n ; q=1-p$ $p(k)=p q^{k}, k=0,1,2, \ldots ; q=1-p$
 ,\ldots
$k=0,1, \ldots, N p ;$ $k=0,1, \ldots$,
$\quad q=1-p ;$
$n-k=0, \ldots, N q$

Continuous Distributions

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Weibull $W(\alpha, \beta), \alpha, \beta>0$	$f(x)=\frac{1}{\alpha \beta} x^{(1 / \beta)-1} e^{-x^{1 / \beta} / \alpha}, x>0$	$\alpha^{\beta} \Gamma(\beta+1)$	$\begin{aligned} & a^{2 \beta}(\Gamma(2 \beta+1) \\ & \left.\quad-\Gamma(\beta+1)^{2}\right) \end{aligned}$	*
Rayleigh $\operatorname{Ra}(\alpha), \alpha>0$	$f(x)=\frac{2}{\alpha} x e^{-x^{2} / \alpha}, x>0$	$\frac{1}{2} \sqrt{\pi \alpha}$	$\alpha\left(1-\frac{1}{4} \pi\right)$	*
Normal $\begin{aligned} & N\left(\mu, \sigma^{2}\right) \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}},$ $-\infty<x<\infty$	μ	σ^{2}	$e^{i \mu t-\frac{1}{2} t^{2} \sigma^{2}}$
$N(0,1)$	$f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2},-\infty<x<\infty$	0	1	$e^{-t^{2} / 2}$
Log-normal $\begin{aligned} & L N\left(\mu, \sigma^{2}\right), \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma x \sqrt{2 \pi}} e^{-\frac{1}{2}(\log x-\mu)^{2} / \sigma^{2}}, x>0$	$e^{\mu+\frac{1}{2} \sigma^{2}}$	$e^{2 \mu}\left(e^{2 \sigma^{2}}-e^{\sigma^{2}}\right)$	*
(Student's) t $t(n), n=1,2, \ldots$	$f(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n \Gamma\left(\frac{n}{2}\right)}} \cdot d \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{(n+1) / 2}},$ $-\infty<x<\infty$	0	$\frac{n}{n-2}, n>2$	*
$\begin{aligned} & \text { (Fisher's) } F \\ & \quad F(m, n), m, n=1,2, \end{aligned}$	$f(x)=\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot \frac{x^{m / 2-1}}{\left(1+\frac{m x}{n}\right)^{(m+n) / 2}},$ $x>0$	$\begin{aligned} & \frac{n}{n-2}, \\ & n>2 \end{aligned}$	$\begin{array}{r} \frac{n^{2}(m+2)}{m(n-2)(n-4)}-\left(\frac{n}{n-2}\right)^{2}, \\ n>4 \end{array}$	*

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Cauchy				
$\quad C(m, a)$	$f(x)=\frac{1}{\pi} \cdot \frac{a}{a^{2}+(x-m)^{2}},-\infty<x<\infty$	\nexists	A	$e^{i m t-a\|t\|}$
$\quad C(0,1)$	$f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<\infty$	A	A	$e^{-\|t\|}$
Pareto	$f(x)=\frac{\alpha k^{\alpha}}{x^{\alpha+1}}, x>k$	$\frac{\alpha k}{\alpha-1}, \alpha>1$	$\frac{\alpha k^{2}}{(\alpha-2)(\alpha-1)^{2}}, \alpha>2$,	$*$
$\operatorname{Pa}(k, \alpha), k>0, \alpha>0$				

