Examiner: Xiangfeng Yang (013-285788). **Things allowed**: a calculator, a self-written A4 paper (two sides). **Scores rating (Betygsgränser)**: 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5. **Notation**: 'A random variable X is distributed as...' is written as ' $X \in ...$ or $X \sim ...$ '

1 (3 points)

(1.1) (1p) Let X be a continuous one-dimensional random variable with a probability density function $f_X(x), x \in \mathbb{R}$. Define $Y = X^2$, find the probability density function $f_Y(y)$ of Y. (1.2) (2p) Let X_1 and X_2 be independent Exp(1)-distributed random variables. Find the density function of $\frac{X_1}{X_1+X_2}$.

Solution. (1.1) It is from the many-to-one formula (#2.2 on p.23 book) that

$$f_Y(y) = f_X(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} + f_X(-\sqrt{y}) \cdot \frac{1}{2\sqrt{y}}.$$

(1.2) Let $U = \frac{X_1}{X_1+X_2}$ and $V = X_1 + X_2$, then it follows that $X_1 = U \cdot V$ and $X_2 = V - U \cdot V$. Furthermore, it is from $x_1 > 0$ and $x_2 > 0$ that

$$0 < u < 1, \qquad v > 0.$$

Therefore

$$f_{U,V}(u,v) = f_{X_1,X_2}(uv,v-uv) \cdot |\mathbf{J}| = e^{-uv} \cdot e^{-(v-uv)} \cdot v = ve^{-v}, \quad 0 < u < 1, v > 0.$$

Then

$$f_U(u) = \int_0^\infty f_{U,V}(u,v) dv = \int_0^\infty v e^{-v} dv = 1, \quad 0 < u < 1.$$

2 (3 points)

Let X be a Poisson random variable with a random parameter M as follows:

$$X|M = m \sim Po(m),$$
 with $M \sim Exp(1).$

- (2.1) (1p) Find the mean E(X) of X.
- (2.2) (1p) Find $E(X \cdot M)$.
- (2.3) (1p) Find the probability P(X = 1).

Solution. (2.1) E(X) = E(E(X|M)) = E(M) = 1. (2.2)

$$E(X \cdot M) = E(E(X \cdot M|M)) = E(ME(X|M)) = E(M^2) = \int_0^\infty x^2 e^{-x} dx = 2.$$

(2.3) It is from total probability that

$$P(X=1) = \int_0^\infty P(X=1|M=m) \cdot f_M(m) dm = \int_0^\infty e^{-m} m \cdot e^{-m} dm = \int_0^\infty m e^{-2m} dm = \frac{1}{4}.$$

3 (3 points)

Suppose that X is a random variable such that

$$E(X^n) = \frac{1}{4} + 2^{n-1}, \quad n = 1, 2, \dots$$

- (3.1) (2p) Find the moment generating function $\psi_X(t)$ of X.
- (3.2) (1p) Determine the probabilities P(X = k) for k = 0, 1, 2, ...

Solution. (3.1) The moment generating function is

$$\begin{split} \psi_X(t) &= E(e^{tX}) = \sum_{n=0}^\infty \frac{t^n E(X^n)}{n!} = 1 + \sum_{n=1}^\infty \frac{t^n E(X^n)}{n!} = 1 + \sum_{n=1}^\infty \frac{t^n (\frac{1}{4} + 2^{n-1})}{n!} \\ &= 1 + \frac{1}{4} \sum_{n=1}^\infty \frac{t^n}{n!} + \frac{1}{2} \sum_{n=1}^\infty \frac{(2t)^n}{n!} = 1 + \frac{1}{4} (e^t - 1) + \frac{1}{2} (e^{2t} - 1) \\ &= \frac{1}{4} + \frac{1}{4} e^t + \frac{1}{2} e^{2t}. \end{split}$$

(3.2) If one considers a random variable Y as: $P(Y = 0) = \frac{1}{4}$, $P(Y = 1) = \frac{1}{4}$ and $P(Y = 2) = \frac{1}{2}$, then the moment generating function of Y is

$$\psi_Y(t) = E(e^{tY}) = \frac{1}{4} + \frac{1}{4}e^t + \frac{1}{2}e^{2t}.$$

The fact $\psi_X(t) = \psi_Y(t)$ implies that X and Y have the same distribution, namely $P(X = 0) = \frac{1}{4}$, $P(X = 1) = \frac{1}{4}$ and $P(X = 2) = \frac{1}{2}$.

4 (3 points)

Suppose that X_1, X_2 and X_3 are independent U(0, 1) random variables, and let $(X_{(1)}, X_{(2)}, X_{(3)})$ be the corresponding order statistic.

(4.1) (2p) Find the conditional probability density function $f_{X_{(3)}|X_{(1)}=y_1}(y_3)$ of $X_{(3)}$ given $X_{(1)}=y_1$.

(4.2) (1p) Find the probability $P(X_{(3)} \ge 2X_{(1)})$.

Solution. (4.1) It is from Theorem 3.1 (p.110 book) that the joint probability density function of $(X_{(1)}, X_{(2)}, X_{(3)})$ is

$$f_{X_{(1)},X_{(2)},X_{(3)}}(y_1,y_2,y_3) = 6, \qquad 0 < y_1 < y_2 < y_3 < 1.$$

Therefore, the joint probability density function of $(X_{(1)}, X_{(3)})$ is

$$f_{X_{(1)},X_{(3)}}(y_1,y_3) = \int_{y_1}^{y_3} f_{X_{(1)},X_{(2)},X_{(3)}}(y_1,y_2,y_3) dy_2 = 6(y_3-y_1), \qquad 0 < y_1 < y_3 < 1.$$

This further implies that the probability density function of $X_{(1)}$ is

$$f_{X_{(1)}}(y_1) = \int_{y_1}^1 f_{X_{(1)}, X_{(3)}}(y_1, y_3) dy_3 = 3(1 - y_1)^2, \quad 0 < y_1 < 1.$$

Thereofore

$$f_{X_{(3)}|X_{(1)}=y_1}(y_3) = \frac{f_{X_{(1)},X_{(3)}}(y_1,y_3)}{f_{X_{(1)}}(y_1)} = \frac{2(y_3-y_1)}{(1-y_1)^2}, \quad 0 < y_1 < y_3 < 1.$$

(4.2)

$$P(X_{(3)} \ge 2X_{(1)}) = \int_0^{1/2} \left(\int_{2y_1}^1 f_{X_{(1)}, X_{(3)}}(y_1, y_3) dy_3 \right) dy_1 = 6 \int_0^{1/2} (1/2 - y_1) dy_1 = 3/4 = 0.75.$$

5 (3 points)

Let $\mathbf{X} = (X_1, X_2)'$ be a two dimensional normal random variable $\mathbf{X} \sim N(\mu, \Lambda)$, where the mean vector is $\mu = (0, 0)'$ and the covariance matrix is $= \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$. Define a new two dimensional random variable as $\mathbf{Y} = (Y_1, Y_2)'$ with $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$.

(5.1) (1.5p) Find the distribution of **Y**.

(5.2) (1.5p) Find the conditional distribution of Y_2 given $Y_1 = 1$.

Solution. (5.1) **Y** can be written as $\mathbf{Y} = \mathbf{B}\mathbf{X}$ with $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Therefore the distribution of **Y** is $\mathbf{Y} \sim N(\mathbf{B}\mu, \mathbf{B}\Lambda\mathbf{B}') = N\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 & 1 \\ 1 & 3 \end{pmatrix}$).

(5.2) According to #(6.2) (p.127, book), the conditional distribution Y_2 given $Y_1 = 1$ is still normal with

$$E(Y_2|Y_1=1) = \rho \frac{\sigma_{Y_2}}{\sigma_{Y_1}} = \frac{1}{7}$$
, and $Var(Y_2|Y_1=1) = \sigma_{Y_2}^2(1-\rho^2) = \frac{20}{7}$,

where $\sigma_{Y_1}^2 = 7, \sigma_{Y_2}^2 = 3$ and $1 = cov(Y_1, Y_2) = \rho \sigma_{Y_1} \sigma_{Y_2}$, namely $\rho = 1/\sqrt{21}$. That is

$$Y_2|Y_1 = 1 \sim N(\frac{1}{7}, \frac{20}{7}).$$

	-	-	-	

6 (3 points)

Let X_1, X_2, \ldots be i.i.d. (independent and identically distributed) random variables with finite mean $\mu = E(X_i) \neq 0$ and finite variance $\sigma^2 = Var(X_i) \neq 0$. Let $S_n = X_1 + X_2 + \ldots + X_n$ for $n \geq 1$. (6.1) (1p)

Does
$$\frac{S_n - n\mu}{S_n + n\mu}$$
 converge in probability? If yes, then find the limit; if no, then explain why

(6.2) (2p)

Does $\sqrt{n} \cdot \frac{S_n - n\mu}{S_n + n\mu}$ converge in distribution? If yes, then find the limit; if no, then explain why.

Solution. (6.1) Yes! It is from LLN (p.162, book) that $\frac{S_n}{n} \xrightarrow{p} \mu$, therefore Cramér's theorem (p.168, book) implies

$$\frac{S_n - n\mu}{S_n + n\mu} = \frac{\frac{S_n}{n} - \mu}{\frac{S_n}{n} + \mu} \xrightarrow{p} \frac{\mu - \mu}{\mu + \mu} = 0.$$

(6.2) Yes! It is from LLN (p.162, book) that $\frac{S_n}{n} \xrightarrow{p} \mu$, and from CLT (p.162, book) that $\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} N(0,1)$, therefore Cramér's theorem (p.168, book) implies

$$\sqrt{n} \cdot \frac{S_n - n\mu}{S_n + n\mu} = \sigma \cdot \frac{\frac{S_n - n\mu}{\sigma\sqrt{n}}}{\frac{S_n}{n} + \mu} \xrightarrow{d} \sigma \cdot \frac{N(0, 1)}{\mu + \mu} = N(0, \frac{\sigma^2}{4\mu^2}).$$

Followingis a list of discrete distribu An asterisk (*) indicates that the e	ttions, abbreviations, their probability functions, i expression is too complicated to present here; in s	means, va some case	ariances, and es a closed fo	l characteristic functio ormula does not even	ons. exist.
Distribution, notation	Probability function	E X	$\operatorname{Var} X$	$\varphi_X(t)$	
One point $\delta(a)$	p(a) = 1	в	0	e^{ita}	
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$\cos t$	
Bernoulli $\operatorname{Be}(p), 0 \leq p \leq 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	d	bd	$q + pe^{it}$	
Binomial Bin $(n, p), n = 1, 2, \dots, 0 \le p \le 1$	$p(k) = {n \choose k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	du	bdu	$(q + pe^{it})^n$	
Geometric $\operatorname{Ge}(p), \ 0 \leq p \leq 1$	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{d}{d}$	$\frac{q}{p^2}$	$\frac{p}{1-qe^{it}}$	
First success $\operatorname{Fs}(p), 0 \leq p \leq 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	$\frac{1}{p}$	$p^{\frac{q}{2}}$	$\frac{pe^{it}}{1-qe^{it}}$	
Negative binomial NBin $(n, p), n = 1, 2, 3, \dots, 0 \le p \le 1$	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2, \dots;$ q = 1 - p	$\frac{d}{b}u$	$n \frac{q}{p^2}$	$\big(\frac{p}{1-q^{e^{it}}}\big)^n$	
Poisson $Po(m), m > 0$	$p(k) = e^{-m} \; rac{m^k}{k!}, \; k = 0, 1, 2, \ldots$	m	m	$e^{m(e^{it}-1)}$	
Hypergeometric $H(N, n, p), n = 0, 1, \dots, N,$ $N = 1, \frac{2}{N}, \dots, 1$ $p = 0, \frac{1}{N}, \frac{2}{N}, \dots, 1$	$p(k) = \frac{\binom{Np}{k}\binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	du	$npq \frac{N-n}{N-1}$	*	

Discrete Distributions

282

An asterisk (*) indicate	s that the expression is too complicated to j	present here	; in some cases a close	d formula does not even
Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Uniform/Rectangular U(a, b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
U(0,1) U(-1,1)	$f(x) = 1, \ 0 < x < 1$ $f(x) = \frac{1}{2}, \ x < 1$	- <mark>1</mark> -	3 <mark>1- 12</mark>	$\frac{e^{it}-1}{it}$
Triangular Tri (a,b)	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$ a < x < b	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2}-e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$
$\operatorname{Tri}(-1,1)$	$f(x) = 1 - x , \ x < 1$	0	- I 0	$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$
Exponential $Exp(a), a > 0$	$f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$	a	a^2	$\frac{1}{1-ait}$
Gamma $\Gamma(p,a), \ a > 0, \ p > 0$	$f(x) = rac{1}{\Gamma(p)} x^{p-1} rac{1}{a^p} e^{-x/a}, \; x > 0$	ра	pa^2	$\frac{1}{(1-ait)^p}$
Chi-square $\chi^2(n), n = 1, 2, 3, \dots$	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0$	u	2n	$\frac{1}{(1-2it)^{n/2}}$
Laplace $L(a), a > 0$	$f(x)=rac{1}{2a}e^{- x /a}, \ -\infty < x < \infty$	0	$2a^2$	$\frac{1}{1+a^2t^2}$
Beta $\beta(r,s), r,s > 0$	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	$\frac{r}{r+s}$	$\frac{rs}{(r+s)^2(r+s+1)}$	*
	0 < x < 1			

nces, and characteristic functions. abbreviations their densities "" distributions. list of s Following is a

Continuous Distributions

Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Weibull $W(lpha,eta), lpha,eta>0$	$f(x) = rac{1}{lpha eta} x^{(1/eta) - 1} e^{-x^{1/eta} / lpha}, \; x > 0$	$lpha^eta\Gamma(eta+1)$	$a^{2eta}ig(\Gamma(2eta+1)\ -\Gamma(eta+1)^2ig)$	*
Rayleigh Ra $(\alpha), \alpha > 0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $\begin{split} & N(\mu,\sigma^2), \\ & -\infty < \mu < \infty, \sigma > 0 \end{split}$	$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(x-\mu)^2/\sigma^2},$	Ц	σ^2	$e^{i\mu t-rac{1}{2}t^2\sigma^2}$
	$-\infty < x < \infty$			
N(0,1)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty$	0	Ι	$e^{-t^{2}/2}$
Log-normal $LN(\mu, \sigma^2), -\infty < \mu < \infty, \ \sigma > 0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2 / \sigma^2}, \ x > 0$	$e^{\mu+rac{1}{2}\sigma^2}$	$e^{2\mu} \left(e^{2\sigma^2} - e^{\sigma^2} ight)$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = rac{\Gamma(rac{n+1}{2})}{\sqrt{\pi n} \Gamma(rac{n}{2})} \cdot drac{1}{(1+rac{n-1}{2})^{(n+1)/2}}, \ -\infty < x < \infty$	0	$\frac{n}{n-2},n>2$	*
(Fisher's) F $F(m \ n) \ m \ n = 1$ 2	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$rac{n}{n-2},$	$rac{n^2(m+2)}{m(n-2)(n-4)} - \left(rac{n}{n-2} ight)^2,$	*
···· (= (+	x > 0	n > 2	n > 4	

284

Continuous Distributions (continued)

B Some Distributions and Their Characteristics

Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
C(m,a)	$f(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + (x-m)^2}, \ -\infty < x < \infty$	Ŕ	Ā	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, -\infty < x < \infty$	R	R	$e^{- t }$
Pareto	$f(x)=rac{lpha k^lpha}{x^{lpha+1}},\ x>k$	$\frac{\alpha k}{\alpha - 1}, \alpha > 1$	$\frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \alpha > 2,$	*
$\operatorname{Pa}(k,\alpha), k > 0, \alpha > 0$				

Continuous Distributions (continued)