
TAMS46: Probability Theory (Second Course)
∣∣∣ Provkod: TEN1 ∣∣∣ 29 October 2022, 14:00-18:00

Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written A4 paper (two sides).
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5.
Notation: ‘A random variable X is distributed as...’ is written as ‘X ∈ ... or X ∼ ... ’

1 (3 points)

(1.1) (1p) Let X be a continuous one-dimensional random variable with a probability density function fX(x), x ∈ R.
Define Y = X2, find the probability density function fY (y) of Y.
(1.2) (2p) Let X1 and X2 be independent Exp(1)-distributed random variables. Find the density function of X1

X1+X2
.

Solution. (1.1) It is from the many-to-one formula (#2.2 on p.23 book) that

fY (y) = fX(
√
y) · 1

2
√
y
+ fX(−√

y) · 1

2
√
y
.

(1.2) Let U = X1

X1+X2
and V = X1 +X2, then it follows that X1 = U · V and X2 = V − U · V. Furthermore, it is from

x1 > 0 and x2 > 0 that
0 < u < 1, v > 0.

Therefore
fU,V (u, v) = fX1,X2

(uv, v − uv) · |J| = e−uv · e−(v−uv) · v = ve−v, 0 < u < 1, v > 0.

Then

fU (u) =

∫ ∞

0

fU,V (u, v)dv =

∫ ∞

0

ve−vdv = 1, 0 < u < 1.

2 (3 points)

Let X be a Poisson random variable with a random parameter M as follows:

X|M = m ∼ Po(m), with M ∼ Exp(1).

(2.1) (1p) Find the mean E(X) of X.
(2.2) (1p) Find E(X ·M).
(2.3) (1p) Find the probability P (X = 1).

Solution. (2.1) E(X) = E(E(X|M)) = E(M) = 1.
(2.2)

E(X ·M) = E(E(X ·M |M)) = E(ME(X|M)) = E(M2) =

∫ ∞

0

x2e−xdx = 2.

(2.3) It is from total probability that

P (X = 1) =

∫ ∞

0

P (X = 1|M = m) · fM (m)dm =

∫ ∞

0

e−mm · e−mdm =

∫ ∞

0

me−2mdm =
1

4
.
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3 (3 points)

Suppose that X is a random variable such that

E(Xn) =
1

4
+ 2n−1, n = 1, 2, . . . .

(3.1) (2p) Find the moment generating function ψX(t) of X.
(3.2) (1p) Determine the probabilities P (X = k) for k = 0, 1, 2, . . . .

Solution. (3.1) The moment generating function is

ψX(t) = E(etX) =

∞∑
n=0

tnE(Xn)

n!
= 1 +

∞∑
n=1

tnE(Xn)

n!
= 1 +

∞∑
n=1

tn( 14 + 2n−1)

n!

= 1 +
1

4

∞∑
n=1

tn

n!
+

1

2

∞∑
n=1

(2t)n

n!
= 1 +

1

4
(et − 1) +

1

2
(e2t − 1)

=
1

4
+

1

4
et +

1

2
e2t.

(3.2) If one considers a random variable Y as: P (Y = 0) = 1
4 , P (Y = 1) = 1

4 and P (Y = 2) = 1
2 , then the moment

generating function of Y is

ψY (t) = E(etY ) =
1

4
+

1

4
et +

1

2
e2t.

The fact ψX(t) = ψY (t) implies that X and Y have the same distribution, namely P (X = 0) = 1
4 , P (X = 1) = 1

4 and
P (X = 2) = 1

2 .

4 (3 points)

Suppose that X1, X2 and X3 are independent U(0, 1) random variables, and let (X(1), X(2), X(3)) be the corresponding
order statistic.
(4.1) (2p) Find the conditional probability density function fX(3)|X(1)=y1

(y3) of X(3) given X(1) = y1.
(4.2) (1p) Find the probability P (X(3) ≥ 2X(1)).

Solution. (4.1) It is from Theorem 3.1 (p.110 book) that the joint probability density function of (X(1), X(2), X(3)) is

fX(1),X(2),X(3)
(y1, y2, y3) = 6, 0 < y1 < y2 < y3 < 1.

Therefore, the joint probability density function of (X(1), X(3)) is

fX(1),X(3)
(y1, y3) =

∫ y3

y1

fX(1),X(2),X(3)
(y1, y2, y3)dy2 = 6(y3 − y1), 0 < y1 < y3 < 1.

This further implies that the probability density function of X(1) is

fX(1)
(y1) =

∫ 1

y1

fX(1),X(3)
(y1, y3)dy3 = 3(1− y1)

2, 0 < y1 < 1.

Thereofore

fX(3)|X(1)=y1
(y3) =

fX(1),X(3)
(y1, y3)

fX(1)
(y1)

=
2(y3 − y1)

(1− y1)2
, 0 < y1 < y3 < 1.

(4.2)

P (X(3) ≥ 2X(1)) =

∫ 1/2

0

(∫ 1

2y1

fX(1),X(3)
(y1, y3)dy3

)
dy1 = 6

∫ 1/2

0

(1/2− y1)dy1 = 3/4 = 0.75.

Page 2/3



5 (3 points)

Let X = (X1, X2)
′ be a two dimensional normal random variable X ∼ N(µ,Λ), where the mean vector is µ = (0, 0)′ and

the covariance matrix is =

(
3 1
1 2

)
. Define a new two dimensional random variable as Y = (Y1, Y2)

′ with Y1 = X1 +X2

and Y2 = X1 −X2.
(5.1) (1.5p) Find the distribution of Y.
(5.2) (1.5p) Find the conditional distribution of Y2 given Y1 = 1.

Solution. (5.1) Y can be written as Y = BX with B =

(
1 1
1 −1

)
. Therefore the distribution of Y is

Y ∼ N(Bµ,BΛB′) = N(

(
0
0

)
,

(
7 1
1 3

)
).

(5.2) According to #(6.2) (p.127, book), the conditional distribution Y2 given Y1 = 1 is still normal with

E(Y2|Y1 = 1) = ρ
σY2

σY1

=
1

7
, and V ar(Y2|Y1 = 1) = σ2

Y2
(1− ρ2) =

20

7
,

where σ2
Y1

= 7, σ2
Y2

= 3 and 1 = cov(Y1, Y2) = ρσY1σY2 , namely ρ = 1/
√
21. That is

Y2|Y1 = 1 ∼ N(
1

7
,
20

7
).

6 (3 points)

Let X1, X2, . . . be i.i.d. (independent and identically distributed) random variables with finite mean µ = E(Xi) ̸= 0 and
finite variance σ2 = V ar(Xi) ̸= 0. Let Sn = X1 +X2 + . . .+Xn for n ≥ 1.
(6.1) (1p)

Does
Sn − nµ

Sn + nµ
converge in probability? If yes, then find the limit; if no, then explain why.

(6.2) (2p)

Does
√
n · Sn − nµ

Sn + nµ
converge in distribution? If yes, then find the limit; if no, then explain why.

Solution. (6.1) Yes! It is from LLN (p.162, book) that Sn

n

p−−→ µ, therefore Cramér’s theorem (p.168,book) implies

Sn − nµ

Sn + nµ
=

Sn

n − µ
Sn

n + µ

p−−→ µ− µ

µ+ µ
= 0.

(6.2) Yes! It is from LLN (p.162, book) that Sn

n

p−−→ µ, and from CLT (p.162, book) that Sn−nµ
σ
√
n

d−−→ N(0, 1), therefore

Cramér’s theorem (p.168,book) implies

√
n · Sn − nµ

Sn + nµ
= σ ·

Sn−nµ
σ
√
n

Sn

n + µ

d−−→ σ · N(0, 1)

µ+ µ
= N(0,

σ2

4µ2
).
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