Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written A4 paper (two sides).
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5 .
Notation: 'A random variable $X$ is distributed as...' is written as ' $X \in \ldots$ or $X \sim \ldots$ '

## 1 (3 points)

(1.1) (1p) Let $X$ be a continuous one-dimensional random variable with a probability density function $f_{X}(x), x \in \mathbb{R}$. Define $Y=X^{2}$, find the probability density function $f_{Y}(y)$ of $Y$.
(1.2) (2p) Let $X_{1}$ and $X_{2}$ be independent $\operatorname{Exp}(1)$-distributed random variables. Find the density function of $\frac{X_{1}}{X_{1}+X_{2}}$.

Solution. (1.1) It is from the many-to-one formula ( $\# 2.2$ on p. 23 book) that

$$
f_{Y}(y)=f_{X}(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}+f_{X}(-\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}
$$

(1.2) Let $U=\frac{X_{1}}{X_{1}+X_{2}}$ and $V=X_{1}+X_{2}$, then it follows that $X_{1}=U \cdot V$ and $X_{2}=V-U \cdot V$. Furthermore, it is from $x_{1}>0$ and $x_{2}>0$ that

$$
0<u<1, \quad v>0
$$

Therefore

$$
f_{U, V}(u, v)=f_{X_{1}, X_{2}}(u v, v-u v) \cdot|\mathbf{J}|=e^{-u v} \cdot e^{-(v-u v)} \cdot v=v e^{-v}, \quad 0<u<1, v>0
$$

Then

$$
f_{U}(u)=\int_{0}^{\infty} f_{U, V}(u, v) d v=\int_{0}^{\infty} v e^{-v} d v=1, \quad 0<u<1
$$

## 2 (3 points)

Let $X$ be a Poisson random variable with a random parameter $M$ as follows:

$$
X \mid M=m \sim \operatorname{Po}(m), \quad \text { with } M \sim \operatorname{Exp}(1)
$$

(2.1) (1p) Find the mean $E(X)$ of $X$.
(2.2) (1p) Find $E(X \cdot M)$.
(2.3) (1p) Find the probability $P(X=1)$.

Solution. (2.1) $E(X)=E(E(X \mid M))=E(M)=1$.

$$
\begin{equation*}
E(X \cdot M)=E(E(X \cdot M \mid M))=E(M E(X \mid M))=E\left(M^{2}\right)=\int_{0}^{\infty} x^{2} e^{-x} d x=2 \tag{2.2}
\end{equation*}
$$

(2.3) It is from total probability that

$$
P(X=1)=\int_{0}^{\infty} P(X=1 \mid M=m) \cdot f_{M}(m) d m=\int_{0}^{\infty} e^{-m} m \cdot e^{-m} d m=\int_{0}^{\infty} m e^{-2 m} d m=\frac{1}{4}
$$

## 3 (3 points)

Suppose that $X$ is a random variable such that

$$
E\left(X^{n}\right)=\frac{1}{4}+2^{n-1}, \quad n=1,2, \ldots
$$

(3.1) (2p) Find the moment generating function $\psi_{X}(t)$ of $X$.
(3.2) (1p) Determine the probabilities $P(X=k)$ for $k=0,1,2, \ldots$

Solution. (3.1) The moment generating function is

$$
\begin{aligned}
\psi_{X}(t) & =E\left(e^{t X}\right)=\sum_{n=0}^{\infty} \frac{t^{n} E\left(X^{n}\right)}{n!}=1+\sum_{n=1}^{\infty} \frac{t^{n} E\left(X^{n}\right)}{n!}=1+\sum_{n=1}^{\infty} \frac{t^{n}\left(\frac{1}{4}+2^{n-1}\right)}{n!} \\
& =1+\frac{1}{4} \sum_{n=1}^{\infty} \frac{t^{n}}{n!}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(2 t)^{n}}{n!}=1+\frac{1}{4}\left(e^{t}-1\right)+\frac{1}{2}\left(e^{2 t}-1\right) \\
& =\frac{1}{4}+\frac{1}{4} e^{t}+\frac{1}{2} e^{2 t} .
\end{aligned}
$$

(3.2) If one considers a random variable $Y$ as: $P(Y=0)=\frac{1}{4}, P(Y=1)=\frac{1}{4}$ and $P(Y=2)=\frac{1}{2}$, then the moment generating function of $Y$ is

$$
\psi_{Y}(t)=E\left(e^{t Y}\right)=\frac{1}{4}+\frac{1}{4} e^{t}+\frac{1}{2} e^{2 t}
$$

The fact $\psi_{X}(t)=\psi_{Y}(t)$ implies that $X$ and $Y$ have the same distribution, namely $P(X=0)=\frac{1}{4}, P(X=1)=\frac{1}{4}$ and $P(X=2)=\frac{1}{2}$.

## 4 (3 points)

Suppose that $X_{1}, X_{2}$ and $X_{3}$ are independent $U(0,1)$ random variables, and let $\left(X_{(1)}, X_{(2)}, X_{(3)}\right)$ be the corresponding order statistic.
(4.1) (2p) Find the conditional probability density function $f_{X_{(3)} \mid X_{(1)}=y_{1}}\left(y_{3}\right)$ of $X_{(3)}$ given $X_{(1)}=y_{1}$.
(4.2) (1p) Find the probability $P\left(X_{(3)} \geq 2 X_{(1)}\right)$.

Solution. (4.1) It is from Theorem 3.1 (p. 110 book) that the joint probability density function of $\left(X_{(1)}, X_{(2)}, X_{(3)}\right)$ is

$$
f_{X_{(1)}, X_{(2)}, X_{(3)}}\left(y_{1}, y_{2}, y_{3}\right)=6, \quad 0<y_{1}<y_{2}<y_{3}<1
$$

Therefore, the joint probability density function of $\left(X_{(1)}, X_{(3)}\right)$ is

$$
f_{X_{(1)}, X_{(3)}}\left(y_{1}, y_{3}\right)=\int_{y_{1}}^{y_{3}} f_{X_{(1)}, X_{(2)}, X_{(3)}}\left(y_{1}, y_{2}, y_{3}\right) d y_{2}=6\left(y_{3}-y_{1}\right), \quad 0<y_{1}<y_{3}<1
$$

This further implies that the probability density function of $X_{(1)}$ is

$$
f_{X_{(1)}}\left(y_{1}\right)=\int_{y_{1}}^{1} f_{X_{(1)}, X_{(3)}}\left(y_{1}, y_{3}\right) d y_{3}=3\left(1-y_{1}\right)^{2}, \quad 0<y_{1}<1
$$

Thereofore

$$
\begin{gather*}
f_{X_{(3)} \mid X_{(1)}=y_{1}}\left(y_{3}\right)=\frac{f_{X_{(1)}, X_{(3)}}\left(y_{1}, y_{3}\right)}{f_{X_{(1)}}\left(y_{1}\right)}=\frac{2\left(y_{3}-y_{1}\right)}{\left(1-y_{1}\right)^{2}}, \quad 0<y_{1}<y_{3}<1 . \\
P\left(X_{(3)} \geq 2 X_{(1)}\right)=\int_{0}^{1 / 2}\left(\int_{2 y_{1}}^{1} f_{X_{(1)}, X_{(3)}}\left(y_{1}, y_{3}\right) d y_{3}\right) d y_{1}=6 \int_{0}^{1 / 2}\left(1 / 2-y_{1}\right) d y_{1}=3 / 4=0.75 . \tag{4.2}
\end{gather*}
$$

## 5 (3 points)

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime}$ be a two dimensional normal random variable $\mathbf{X} \sim N(\mu, \Lambda)$, where the mean vector is $\mu=(0,0)^{\prime}$ and the covariance matrix is $=\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$. Define a new two dimensional random variable as $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ with $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$.
(5.1) (1.5p) Find the distribution of $\mathbf{Y}$.
(5.2) (1.5p) Find the conditional distribution of $Y_{2}$ given $Y_{1}=1$.

Solution. (5.1) $\mathbf{Y}$ can be written as $\mathbf{Y}=\mathbf{B X}$ with $\mathbf{B}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$. Therefore the distribution of $\mathbf{Y}$ is $\mathbf{Y} \sim N\left(\mathbf{B} \mu, \mathbf{B} \Lambda \mathbf{B}^{\prime}\right)=N\left(\binom{0}{0},\left(\begin{array}{ll}7 & 1 \\ 1 & 3\end{array}\right)\right)$.
(5.2) According to \#(6.2) (p.127, book), the conditional distribution $Y_{2}$ given $Y_{1}=1$ is still normal with

$$
E\left(Y_{2} \mid Y_{1}=1\right)=\rho \frac{\sigma_{Y_{2}}}{\sigma_{Y_{1}}}=\frac{1}{7}, \text { and } \operatorname{Var}\left(Y_{2} \mid Y_{1}=1\right)=\sigma_{Y_{2}}^{2}\left(1-\rho^{2}\right)=\frac{20}{7},
$$

where $\sigma_{Y_{1}}^{2}=7, \sigma_{Y_{2}}^{2}=3$ and $1=\operatorname{cov}\left(Y_{1}, Y_{2}\right)=\rho \sigma_{Y_{1}} \sigma_{Y_{2}}$, namely $\rho=1 / \sqrt{21}$. That is

$$
Y_{2} \left\lvert\, Y_{1}=1 \sim N\left(\frac{1}{7}, \frac{20}{7}\right) .\right.
$$

## 6 (3 points)

Let $X_{1}, X_{2}, \ldots$ be i.i.d. (independent and identically distributed) random variables with finite mean $\mu=E\left(X_{i}\right) \neq 0$ and finite variance $\sigma^{2}=\operatorname{Var}\left(X_{i}\right) \neq 0$. Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ for $n \geq 1$.
(6.1) (1p)

Does $\frac{S_{n}-n \mu}{S_{n}+n \mu}$ converge in probability? If yes, then find the limit; if no, then explain why.
(6.2) (2p)

Does $\sqrt{n} \cdot \frac{S_{n}-n \mu}{S_{n}+n \mu}$ converge in distribution? If yes, then find the limit; if no, then explain why.

Solution. (6.1) Yes! It is from LLN (p.162, book) that $\frac{S_{n}}{n} \xrightarrow{p} \mu$, therefore Cramér's theorem (p.168,book) implies

$$
\frac{S_{n}-n \mu}{S_{n}+n \mu}=\frac{\frac{S_{n}}{n}-\mu}{\frac{S_{n}}{n}+\mu} \xrightarrow{p} \frac{\mu-\mu}{\mu+\mu}=0 .
$$

(6.2) Yes! It is from LLN (p.162, book) that $\frac{S_{n}}{n} \xrightarrow{p} \mu$, and from CLT (p.162, book) that $\frac{S_{n}-n \mu}{\sqrt{n}} \xrightarrow{d} N(0,1)$, therefore Cramér's theorem (p.168,book) implies

$$
\sqrt{n} \cdot \frac{S_{n}-n \mu}{S_{n}+n \mu}=\sigma \cdot \frac{\frac{S_{n}-n \mu}{\sigma \sqrt{n}}}{\frac{S_{n}}{n}+\mu} \xrightarrow{d} \sigma \cdot \frac{N(0,1)}{\mu+\mu}=N\left(0, \frac{\sigma^{2}}{4 \mu^{2}}\right) .
$$

Discrete Distributions
Followingis a list of discrete distributions, abbreviations, their probability functions, means, variances, and characteristic functions. An asterisk $\left({ }^{*}\right)$ indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.
Probability function $E X \quad \operatorname{Var} X \quad \varphi_{X}(t)$



$0 \quad$
1
$p q$
$n p q$
0



$0 \quad 0$
0
$p$
ह
01 $2 \quad-$ $\qquad$
-12 $p(a)=1$ $p(-1)=p(1)=\frac{1}{2}$ O
$p(k)=\binom{n}{k} p^{k} q^{n-k}, k=0,1, \ldots, n ; q=1-p$ $p(k)=p q^{k}, k=0,1,2, \ldots ; q=1-p$
 ,$\ldots$
$k=0,1, \ldots, N p ;$ $k=0,1, \ldots$,
$\quad q=1-p ;$
$n-k=0, \ldots, N q$


Continuous Distributions

Continuous Distributions (continued)

| Distribution, notation | Density | $E X$ | $\operatorname{Var} X$ | $\varphi_{X}(t)$ |
| :---: | :---: | :---: | :---: | :---: |
| Weibull $W(\alpha, \beta), \alpha, \beta>0$ | $f(x)=\frac{1}{\alpha \beta} x^{(1 / \beta)-1} e^{-x^{1 / \beta} / \alpha}, x>0$ | $\alpha^{\beta} \Gamma(\beta+1)$ | $\begin{aligned} & a^{2 \beta}(\Gamma(2 \beta+1) \\ & \left.\quad-\Gamma(\beta+1)^{2}\right) \end{aligned}$ | * |
| Rayleigh $\operatorname{Ra}(\alpha), \alpha>0$ | $f(x)=\frac{2}{\alpha} x e^{-x^{2} / \alpha}, x>0$ | $\frac{1}{2} \sqrt{\pi \alpha}$ | $\alpha\left(1-\frac{1}{4} \pi\right)$ | * |
| Normal $\begin{aligned} & N\left(\mu, \sigma^{2}\right) \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$ | $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}},$ $-\infty<x<\infty$ | $\mu$ | $\sigma^{2}$ | $e^{i \mu t-\frac{1}{2} t^{2} \sigma^{2}}$ |
| $N(0,1)$ | $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2},-\infty<x<\infty$ | 0 | 1 | $e^{-t^{2} / 2}$ |
| Log-normal $\begin{aligned} & L N\left(\mu, \sigma^{2}\right), \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$ | $f(x)=\frac{1}{\sigma x \sqrt{2 \pi}} e^{-\frac{1}{2}(\log x-\mu)^{2} / \sigma^{2}}, x>0$ | $e^{\mu+\frac{1}{2} \sigma^{2}}$ | $e^{2 \mu}\left(e^{2 \sigma^{2}}-e^{\sigma^{2}}\right)$ | * |
| (Student's) $t$ $t(n), n=1,2, \ldots$ | $f(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n \Gamma\left(\frac{n}{2}\right)}} \cdot d \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{(n+1) / 2}},$ $-\infty<x<\infty$ | 0 | $\frac{n}{n-2}, n>2$ | * |
| $\begin{aligned} & \text { (Fisher's) } F \\ & \quad F(m, n), m, n=1,2, \end{aligned}$ | $f(x)=\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot \frac{x^{m / 2-1}}{\left(1+\frac{m x}{n}\right)^{(m+n) / 2}},$ $x>0$ | $\begin{aligned} & \frac{n}{n-2}, \\ & n>2 \end{aligned}$ | $\begin{array}{r} \frac{n^{2}(m+2)}{m(n-2)(n-4)}-\left(\frac{n}{n-2}\right)^{2}, \\ n>4 \end{array}$ | * |

Continuous Distributions (continued)

| Distribution, notation | Density | $E X$ | $\operatorname{Var} X$ | $\varphi_{X}(t)$ |
| :--- | :--- | :---: | :---: | :---: |
| Cauchy |  |  |  |  |
| $\quad C(m, a)$ | $f(x)=\frac{1}{\pi} \cdot \frac{a}{a^{2}+(x-m)^{2}},-\infty<x<\infty$ | $\nexists$ | $A$ | $e^{i m t-a\|t\|}$ |
| $\quad C(0,1)$ | $f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<\infty$ | $A$ | $A$ | $e^{-\|t\|}$ |
| Pareto | $f(x)=\frac{\alpha k^{\alpha}}{x^{\alpha+1}}, x>k$ | $\frac{\alpha k}{\alpha-1}, \alpha>1$ | $\frac{\alpha k^{2}}{(\alpha-2)(\alpha-1)^{2}}, \alpha>2$, | $*$ |
| $\operatorname{Pa}(k, \alpha), k>0, \alpha>0$ |  |  |  |  |

