Examiner: Xiangfeng Yang (013-285788). **Things allowed**: a calculator, a self-written A4 paper (two sides). **Scores rating (Betygsgränser)**: 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5. **Notation**: 'A random variable X is distributed as...' is written as ' $X \in ...$ or $X \sim ...$ '

1 (3 points)

(1.1) (1p) Let X be a continuous one-dimensional random variable with a probability density function $f_X(x), x \in \mathbb{R}$. Define $Y = X^2$, find the probability density function $f_Y(y)$ of Y. (1.2) (2p) Let X_1 and X_2 be independent Exp(1)-distributed random variables. Find the density function of $\frac{X_1}{X_1+X_2}$.

2 (3 points)

Let X be a Poisson random variable with a random parameter M as follows:

 $X|M = m \sim Po(m),$ with $M \sim Exp(1).$

(2.1) (1p) Find the mean E(X) of X.
(2.2) (1p) Find E(X ⋅ M).
(2.3) (1p) Find the probability P(X = 1).

3 (3 points)

Suppose that X is a random variable such that

$$E(X^n) = \frac{1}{4} + 2^{n-1}, \quad n = 1, 2, \dots$$

(3.1) (2p) Find the moment generating function $\psi_X(t)$ of X.

(3.2) (1p) Determine the probabilities P(X = k) for k = 0, 1, 2, ...

$4 \quad (3 \text{ points})$

Suppose that X_1, X_2 and X_3 are independent U(0, 1) random variables, and let $(X_{(1)}, X_{(2)}, X_{(3)})$ be the corresponding order statistic.

(4.1) (2p) Find the conditional probability density function $f_{X_{(3)}|X_{(1)}=y_1}(y_3)$ of $X_{(3)}$ given $X_{(1)}=y_1$.

(4.2) (1p) Find the probability $P(X_{(3)} \ge 2X_{(1)})$.

5 (3 points)

Let $\mathbf{X} = (X_1, X_2)'$ be a two dimensional normal random variable $\mathbf{X} \sim N(\mu, \Lambda)$, where the mean vector is $\mu = (0, 0)'$ and the covariance matrix is $= \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$. Define a new two dimensional random variable as $\mathbf{Y} = (Y_1, Y_2)'$ with $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$.

(5.1) (1.5p) Find the distribution of **Y**.

(5.2) (1.5p) Find the conditional distribution of Y_2 given $Y_1 = 1$.

6 (3 points)

Let X_1, X_2, \ldots be i.i.d. (independent and identically distributed) random variables with finite mean $\mu = E(X_i) \neq 0$ and finite variance $\sigma^2 = Var(X_i) \neq 0$. Let $S_n = X_1 + X_2 + \ldots + X_n$ for $n \geq 1$. (6.1) (1p)

Does $\frac{S_n - n\mu}{S_n + n\mu}$ converge in probability? If yes, then find the limit; if no, then explain why.

Does $\sqrt{n} \cdot \frac{S_n - n\mu}{S_n + n\mu}$ converge in distribution? If yes, then find the limit; if no, then explain why.

Following is a list of discrete distribution An asterisk (*) indicates that the ϵ	Followingis a list of discrete distributions, abbreviations, their probability functions, means, variances, and characteristic functions. An asterisk $(*)$ indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.	means, v some cas	variances, and ses a closed fo	characteristic functions. rmula does not even exis
Distribution, notation	Probability function	E X	$\operatorname{Var} X$	$\varphi_X(t)$
One point $\delta(a)$	p(a) = 1	в	0	e^{ita}
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$\cos t$
Bernoulli $Be(p), 0 \le p \le 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	d	bd	$q + p e^{it}$
Binomial Bin $(n, p), n = 1, 2, \dots, 0 \le p \le 1$	$p(k) = {n \choose k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	du	bdu	$(q + pe^{it})^n$
Geometric $\operatorname{Ge}(p), \ 0 \leq p \leq 1$	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{d}{b}$	$\frac{q}{p^2}$	$\frac{p}{1-qe^{it}}$
First success $Fs(p), 0 \le p \le 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{p e^{it}}{1 - q e^{it}}$
Negative binomial NBin $(n, p), n = 1, 2, 3, \ldots, 0 \le p \le 1$	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2, \dots;$ q = 1 - p	$\frac{d}{b}u$	$nrac{q}{p^2}$	$(rac{p}{1-qe^{it}})^n$
Poisson $Po(m), m > 0$	$p(k) = e^{-m} \frac{m^k}{k!}, \ k = 0, 1, 2, \dots$	ш	m	$e^{m(e^{it}-1)}$
Hypergeometric $H(N,n,p), n = 0, 1, \dots, N,$ $N = 1, 2, \dots,$ $p = 0, \frac{1}{N}, \frac{2}{N}, \dots, 1$	$p(k) = \frac{\binom{Np}{k}\binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	du	$\frac{1-N}{n-1}$	*

Discrete Distributions

282

Following is a list of som An asterisk (*) indicates	Following is a list of some continuous distributions, abbreviations, their densities, means, variances, and characteristic function. An asterisk (*) indicates that the expression is too complicated to present here; in some cases a closed formula does not even e	their densiti present here	es, means, variances, a s; in some cases a close	and characteristic function ed formula does not even ϵ	e B
Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$	
Uniform/Rectangular					
U(a,b)	$f(x) = rac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$rac{e^{itb}-e^{ita}}{it(b-a)}$	
U(0,1)	$f(x) = 1, \ 0 < x < 1$	- <mark>1</mark> 2	$\frac{1}{12}$	$\frac{e^{it}-1}{it}$	
U(-1,1)	$f(x) = \frac{1}{2}, \ x < 1$	0	⊣Iთ	$\frac{\sin t}{t}$	
Triangular $\operatorname{Tri}(a,b)$	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2}-e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$	
	a < x < b				
$\operatorname{Tri}(-1,1)$	f(x) = 1 - x , x < 1	0	- 1 9	$\left(\frac{\sin \frac{t}{2}}{\frac{t}{2}} ight)^2$	
Exponential $\operatorname{Exp}(a), a > 0$	$f(x) = \frac{1}{a}e^{-x/a}, \ x > 0$	в	a^2	$\frac{1}{1-ait}$	
Gamma $\Gamma(p,a), a > 0, p > 0$	$f(x) = rac{1}{\Gamma(p)} x^{p-1} rac{1}{a^p} e^{-x/a}, \; x > 0$	pa	pa^2	$\frac{1}{(1-ait)^p}$	
Chi-square $\chi^2(n), n = 1, 2, 3, \dots$	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0$	u	2m	$\frac{1}{(1-2it)^{n/2}}$	
Laplace $L(a), a > 0$	$f(x)=rac{1}{2a}e^{- x /a}, \ -\infty < x < \infty$	0	$2a^2$	$\frac{1}{1+a^2t^2}$	
Beta $B(r, s) = s > 0$	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	$\frac{r}{r+s}$	$\frac{rs}{(r+s)^2(r+s+1)}$	*	
µ(1, 5), 1, 5 2 U	0 < x < 1				

:es, and characteristic functions. closed formula does not even exist. abbreviations their densities "" distributions. list of s Following is a

Continuous Distributions

Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Weibull $W(lpha,eta), lpha,eta>0$	$f(x) = rac{1}{lpha eta} x^{(1/eta) - 1} e^{-x^{1/eta} / lpha}, \; x > 0$	$lpha^eta\Gamma(eta+1)$	$a^{2eta}ig(\Gamma(2eta+1) \ -\Gamma(eta+1)^2ig)$	*
Rayleigh Ra $(\alpha), \ \alpha > 0$	$f(x)=rac{2}{lpha}xe^{-x^2/lpha},\ x>0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $N(\mu, \sigma^2), \\ -\infty < \mu < \infty, \sigma > 0$	$f(x) = rac{1}{\sigma\sqrt{2\pi}} e^{-rac{1}{2}(x-\mu)^2/\sigma^2},$	z	σ^2	$e^{i\mu t-rac{1}{2}t^2\sigma^2}$
	$-\infty < x < \infty$			
N(0,1)	$f(x)=rac{1}{\sqrt{2\pi}}e^{-x^2/2},-\infty< x<\infty$	0	1	$e^{-t^{2}/2}$
Log-normal $LN(\mu, \sigma^2), -\infty < \mu < \infty < \sigma > 0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2 / \sigma^2}, \ x > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$e^{2\mu} (e^{2\sigma^2} - e^{\sigma^2})$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = rac{\Gamma(rac{n+1}{2})}{\sqrt{\pi n} \Gamma(rac{n}{2})} \cdot drac{1}{(1+rac{n+2}{n})^{(n+1)/2}}, \ -\infty < x < \infty$	0	$\frac{n}{n-2},n>2$	*
(Fisher's) F	$f(x)=rac{\Gamma(rac{m+n}{2})(rac{m}{n})^{(n)/2}}{\Gamma(rac{2}{2})\Gamma(rac{2}{2})}\cdotrac{1}{2}$	$rac{n}{n-2},$	$\frac{n^2(m+2)}{m(n-2)(n-4)} - \left(\frac{n}{n-2}\right)^2,$	*
$F(m, w), m, n = 1, 2, \ldots$	x > 0	n > 2	n > 4	

284

Continuous Distributions (continued)

B Some Distributions and Their Characteristics

$\varphi_X(t)$		$e^{imt-a t }$	e - <u> +</u>	$\frac{1}{2}, \alpha > 2, *$
$\operatorname{Var} X$		R	R	$\frac{\alpha k}{\alpha-1}, \ \alpha>1 \frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \ \alpha>2,$
E X		$-\infty < x < \infty$ \exists	$\forall x < \infty$	
Density		$f(x)=rac{1}{\pi}\cdotrac{a^2+(x-m)^2}{a^2+(x-m)^2},\ -\infty< x<\infty$	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, \ -\infty < x < \infty$	$f(x)=rac{lpha k^lpha}{x^{lpha+1}},\;x>k$ 0
Distribution, notation Density	Cauchy	C(m,a)	C(0,1)	Pareto $P_{\alpha}(k \alpha) k > 0 \alpha > 0$

Continuous Distributions (continued)