Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written A4 paper (two sides).
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5 .
Notation: 'A random variable X is distributed as...' is written as ' $X \in \ldots$ or $X \sim \ldots$ '

1 (3 points)

Let $X \sim U(0,1)$ and $Y \sim \operatorname{Exp}(1)$ be independent random variables. Find the probability density function of $X+Y$.
Solution. It is clear that $f_{X}(x)=1$ for $0<x<1$, and $f_{Y}(y)=e^{-y}$ for $y>0$. Then it is directly from the convolution formula that

$$
\begin{aligned}
f_{X+Y}(u) & =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(u-x) d x=\int_{0}^{1} 1 \cdot f_{Y}(u-x) d x \\
& = \begin{cases}\int_{0}^{1} 1 \cdot e^{-(u-x)} d x, & \text { if } u \geq 1 \\
\int_{0}^{u} 1 \cdot e^{-(u-x)} d x, & \text { if } 0<u<1\end{cases} \\
& = \begin{cases}e^{-u}(e-1), & \text { if } u \geq 1 \\
1-e^{-u}, & \text { if } 0<u<1\end{cases}
\end{aligned}
$$

One remarks: one can also use transformation and define for example $U=X+Y$ and $V=Y$, then find the joint density $f_{U, V}(u, v)$ of (U, V), and derive the marginal density $f_{U}(u)$.

2 (3 points)

Let $(X, Y)^{\prime}$ have a joint probability density function as follows

$$
f(x, y)= \begin{cases}c \cdot x \cdot y, & \text { if } 0<y<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

(2.1) (1p) Find the value of c such that $f(x, y)$ is indeed a density function.
(2.2) (1p) Compute the conditional expectation $E(Y \mid X=x)$ for $0<x<1$.
(2.3) (1p) Compute the conditional expectation $E(X \mid Y=y)$ for $0<y<1$.

Solution. (2.1)

$$
1=\int_{0}^{1}\left(\int_{0}^{x} c \cdot x \cdot y d y\right) d x=\int_{0}^{1} c \cdot x \cdot\left(\int_{0}^{x} y d y\right) d x=\int_{0}^{1} c \cdot x \cdot x^{2} / 2 d x=c / 8 \quad \Longrightarrow \quad c=8 .
$$

(2.2) The marginal probability density function is

$$
f_{X}(x)=\int_{0}^{x} c \cdot x \cdot y d y=c x^{3} / 2 \text { for } 0<x<1
$$

Therefore, the conditional probability density function is

$$
f_{Y \mid X=x}(y)=\frac{f(x, y)}{f_{X}(x)}= \begin{cases}\frac{c \cdot x \cdot y}{c x^{3} / 2}=\frac{2 y}{x^{2}}, & \text { if } 0<y<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

The conditional expectation can be then computed as

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y f_{Y \mid X=x}(y) d y=\int_{0}^{x} y \frac{2 y}{x^{2}} d y=\frac{2}{x^{2}} \int_{0}^{x} y^{2} d y=\frac{2 x}{3}
$$

(2.3) The marginal probability density function is

$$
f_{Y}(y)=\int_{y}^{1} c \cdot x \cdot y d x=c y\left(1-y^{2}\right) / 2 \text { for } 0<y<1
$$

Therefore, the conditional probability density function is

$$
f_{X \mid Y=y}(x)=\frac{f(x, y)}{f_{Y}(y)}= \begin{cases}\frac{c \cdot x \cdot y}{c y\left(1-y^{2}\right) / 2}=\frac{2 x}{\left(1-y^{2}\right)}, & \text { if } 0<y<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

The conditional expectation can be then computed as

$$
E(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X \mid Y=y}(x) d x=\int_{y}^{1} x \frac{2 x}{\left(1-y^{2}\right)} d x=\frac{2}{\left(1-y^{2}\right)} \int_{y}^{1} x^{2} d x=\frac{2}{3} \cdot \frac{1-y^{3}}{1-y^{2}}
$$

3 (3 points)

Let the probability generating function $g_{X, Y}(s, t)$ of $(X, Y)^{\prime}$ be given as

$$
g_{X, Y}(s, t)=E\left(s^{X} t^{Y}\right)=\exp \{(s-1)+2(t-1)+3(s t-1)\}
$$

(3.1) (1p) Find the probability generating function $g_{X}(s)$ of X and $P(X=n)$ for $n \geq 0$.
(3.2) (1p) Find the probability generating function $g_{Y}(t)$ of Y and $P(Y=n)$ for $n \geq 0$.
(3.3) (1p) Find the probability generating function $g_{X+Y}(u)$ of $X+Y$.

Solution. (3.1) The probability generating function $g_{X}(s)$ of X is

$$
g_{X}(s)=E\left(s^{X}\right)=g_{X, Y}(s, 1)=\exp \{(s-1)+3(s-1)\}=\exp \{4(s-1)\}
$$

Therefore,

$$
P(X=n)=\frac{g_{X}^{(n)}(0)}{n!}=\frac{4^{n} e^{-4}}{n!}
$$

(3.2) The probability generating function $g_{Y}(t)$ of Y is

$$
g_{Y}(t)=E\left(t^{Y}\right)=g_{X, Y}(1, t)=\exp \{2(t-1)+3(t-1)\}=\exp \{5(t-1)\}
$$

Therefore,

$$
P(Y=n)=\frac{g_{Y}^{(n)}(0)}{n!}=\frac{5^{n} e^{-5}}{n!}
$$

(3.3) The probability generating function $g_{X+Y}(u)$ of $X+Y$ is

$$
g_{X+Y}(u)=E\left(u^{X+Y}\right)=g_{X, Y}(u, u)=\exp \left\{(u-1)+2(u-1)+3\left(u^{2}-1\right)\right\}=\exp \left\{3(u-1)+3\left(u^{2}-1\right)\right\}
$$

4 (3 points)

Suppose that X_{1}, X_{2}, X_{3} and X_{4} are independent $U(0,1)$ random variables, and let $\left(X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}\right)$ be the corresponding order statistic. Find the probability $P\left(X_{(3)}+X_{(4)} \leq 1\right)$.
Solution. It is from Theorem 3.1 (p. 110 book) that the joint probability density function of $\left(X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}\right)$ is

$$
f_{X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=4!=24, \quad 0<x_{1}<x_{2}<x_{3}<x_{4}<1
$$

Therefore, the joint probability density function of $\left(X_{(3)}, X_{(4)}\right)$ is

$$
\begin{aligned}
f_{X_{(3)}, X_{(4)}}\left(x_{3}, x_{4}\right) & =\int_{0}^{x_{3}}\left(\int_{x_{1}}^{x_{3}} f_{X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) d x_{2}\right) d x_{1}=\int_{0}^{x_{3}}\left(\int_{x_{1}}^{x_{3}} 24 d x_{2}\right) d x_{1} \\
& =\int_{0}^{x_{3}}\left(24 x_{3}-24 x_{1}\right) d x_{1}=24 x_{3}^{2}-12 x_{3}^{2}=12 x_{3}^{2}, \text { for } 0<x_{3}<x_{4}<1
\end{aligned}
$$

Therefore, by drawing the region of $\left(x_{3}, x_{4}\right)$,

$$
\begin{aligned}
P\left(X_{(3)}+X_{(4)} \leq 1\right) & =\int_{0}^{1 / 2}\left(\int_{x_{3}}^{1-x_{3}} f_{X_{(3)}, X_{(4)}}\left(x_{3}, x_{4}\right) d x_{4}\right) d x_{3}=\int_{0}^{1 / 2}\left(\int_{x_{3}}^{1-x_{3}} 12 x_{3}^{2} d x_{4}\right) d x_{3} \\
& =\int_{0}^{1 / 2}\left(12 x_{3}^{2}-24 x_{3}^{3}\right) d x_{3}=\frac{1}{8}
\end{aligned}
$$

5 (3 points)

Let X and Y be two random variables such that $X \sim N\left(3,4^{2}\right)$ and $Y \mid X=x \sim N\left(10+20 x, 5^{2}\right)$ (that is, the conditional distribution of Y given $X=x$ is $N\left(10+20 x, 5^{2}\right)$). Find the mean vector $\boldsymbol{\mu}$ and the covariance matrix \mathbf{C} of the two dimensional random variable $(X, Y)^{\prime}$.

Solution. The mean of X is directly from the problem $E(X)=3$. The mean of Y can be computed as

$$
E(Y)=E(E(Y \mid X))=E(10+20 X)=10+20 E(X)=10+20 \cdot 3=70
$$

Therefore the mean vector is $\boldsymbol{\mu}=(3,70)^{\prime}$
For the covariance matrix, it is known that $V(X)=4^{2}=16$. The variance of Y can be computed as

$$
V(Y)=E(V(Y \mid X))+V(E(Y \mid X))=E\left(5^{2}\right)+V(10+20 X)=25+400 V(X)=25+400 \cdot 4^{2}=6425
$$

The covariance is computed as

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E(X Y)-E(X) E(Y)=E(E(X Y \mid X))-3 \cdot 70=E(X E(Y \mid X))-210=E(X(10+20 X)))-210 \\
& =E\left(10 X+20 X^{2}\right)-210=10 E(X)+20 E\left(X^{2}\right)-210 \\
& =10 \cdot 3+20\left(3^{2}+4^{2}\right)-210=30+20 \cdot 25-210=320
\end{aligned}
$$

Therefore the covariance matrix is

$$
\mathbf{C}=\left(\begin{array}{cc}
16 & 320 \\
320 & 6425
\end{array}\right)
$$

6 (3 points)

Let $X_{n} \sim \operatorname{Bin}\left(n^{2}, 1 / n\right)$. Use convergence of moment generating functions to show that

$$
\frac{X_{n}-n}{\sqrt{n}} \xrightarrow{d} N(0,1), \quad \text { as } n \rightarrow \infty
$$

(Hint: moment generating function of Binomial random variable is $\psi_{\operatorname{Bin}(n, p)}(t)=\left[(1-p)+p e^{t}\right]^{n}$, and moment generating function of standard normal random variable is $\psi_{N(0,1)}(t)=e^{t^{2} / 2}$. You might also need to use the expansions $e^{x}-1=x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$ and $\left.\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots\right)$

Solution. The moment generating function of $\frac{X_{n}-n}{\sqrt{n}}$ is

$$
\begin{aligned}
\psi_{\frac{x_{n}-n}{\sqrt{n}}}(t) & =E \exp \left\{t \cdot \frac{X_{n}-n}{\sqrt{n}}\right\}=e^{-t \sqrt{n}} \cdot E \exp \left\{\frac{t}{\sqrt{n}} X_{n}\right\}=e^{-t \sqrt{n}} \cdot \psi_{X_{n}}\left(\frac{t}{\sqrt{n}}\right) \\
& =e^{-t \sqrt{n}} \cdot\left[\left(1-\frac{1}{n}\right)+\frac{1}{n} e^{\frac{t}{\sqrt{n}}}\right]^{n^{2}}=e^{-t \sqrt{n}} \cdot\left[1+\frac{1}{n}\left(e^{\frac{t}{\sqrt{n}}}-1\right)\right]^{n^{2}} \\
& =e^{-t \sqrt{n}} \cdot \exp \left\{n^{2} \ln \left(1+\frac{1}{n}\left(e^{\frac{t}{\sqrt{n}}}-1\right)\right)\right\}\left(\text { use } e^{x}-1=x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right) \\
& =e^{-t \sqrt{n}} \cdot \exp \left\{n^{2} \ln \left(1+\frac{1}{n}\left(\frac{t}{\sqrt{n}}+\frac{t^{2}}{2 n}+o\left(\frac{1}{n}\right)\right)\right)\right\} \\
& =e^{-t \sqrt{n}} \cdot \exp \left\{n^{2} \ln \left(1+\left(\frac{t}{n^{3 / 2}}+\frac{t^{2}}{2 n^{2}}+o\left(\frac{1}{n^{2}}\right)\right)\right)\right\}\left(\text { use } \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots\right) \\
& =e^{-t \sqrt{n}} \cdot \exp \left\{n^{2}\left(\frac{t}{n^{3 / 2}}+\frac{t^{2}}{2 n^{2}}+o\left(\frac{1}{n^{2}}\right)\right)\right\} \\
& =e^{-t \sqrt{n}} \cdot \exp \left\{t \sqrt{n}+\frac{t^{2}}{2}+o(1)\right\}=\exp \left\{\frac{t^{2}}{2}+o(1)\right\} \rightarrow e^{t^{2} / 2}=\psi_{N(0,1)}(t)
\end{aligned}
$$

which completes the proof.
Discrete Distributions
Followingis a list of discrete distributions, abbreviations, their probability functions, means, variances, and characteristic functions. An asterisk $\left({ }^{*}\right)$ indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.
Probability function $E X \quad \operatorname{Var} X \quad \varphi_{X}(t)$

$0 \quad$
1
$p q$
$n p q$
0

$0 \quad 0$
0
p
ह
01
-1 \qquad
-12

$p(-1)=p(1)=\frac{1}{2}$ O
$p(k)=\binom{n}{k} p^{k} q^{n-k}, k=0,1, \ldots, n ; q=1-p$ $d-\mathrm{I}=b!\cdots ' Z^{\prime} \mathrm{I}^{\prime} 0=y^{\prime}{ }_{y} b d=(y) d$ $p(k)=p q \cdot k=0,1,2, \ldots ; q=1-p$
$p(k)=p q^{k-1}, k=1,2, \ldots ; q=1-p$ $p(k)=\binom{n+k-1}{k} p^{n} q^{k}, \quad k=0,1,2, \ldots ;$
$q=1-p$

Continuous Distributions

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Weibull $W(\alpha, \beta), \alpha, \beta>0$	$f(x)=\frac{1}{\alpha \beta} x^{(1 / \beta)-1} e^{-x^{1 / \beta} / \alpha}, x>0$	$\alpha^{\beta} \Gamma(\beta+1)$	$\begin{aligned} & a^{2 \beta}(\Gamma(2 \beta+1) \\ & \left.\quad-\Gamma(\beta+1)^{2}\right) \end{aligned}$	*
Rayleigh $\operatorname{Ra}(\alpha), \alpha>0$	$f(x)=\frac{2}{\alpha} x e^{-x^{2} / \alpha}, x>0$	$\frac{1}{2} \sqrt{\pi \alpha}$	$\alpha\left(1-\frac{1}{4} \pi\right)$	*
Normal $\begin{aligned} & N\left(\mu, \sigma^{2}\right) \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}},$ $-\infty<x<\infty$	μ	σ^{2}	$e^{i \mu t-\frac{1}{2} t^{2} \sigma^{2}}$
$N(0,1)$	$f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2},-\infty<x<\infty$	0	1	$e^{-t^{2} / 2}$
Log-normal $\begin{aligned} & L N\left(\mu, \sigma^{2}\right), \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma x \sqrt{2 \pi}} e^{-\frac{1}{2}(\log x-\mu)^{2} / \sigma^{2}}, x>0$	$e^{\mu+\frac{1}{2} \sigma^{2}}$	$e^{2 \mu}\left(e^{2 \sigma^{2}}-e^{\sigma^{2}}\right)$	*
(Student's) t $t(n), n=1,2, \ldots$	$f(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n \Gamma\left(\frac{n}{2}\right)}} \cdot d \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{(n+1) / 2}},$ $-\infty<x<\infty$	0	$\frac{n}{n-2}, n>2$	*
$\begin{aligned} & \text { (Fisher's) } F \\ & \quad F(m, n), m, n=1,2, \end{aligned}$	$f(x)=\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot \frac{x^{m / 2-1}}{\left(1+\frac{m x}{n}\right)^{(m+n) / 2}},$ $x>0$	$\begin{aligned} & \frac{n}{n-2}, \\ & n>2 \end{aligned}$	$\begin{array}{r} \frac{n^{2}(m+2)}{m(n-2)(n-4)}-\left(\frac{n}{n-2}\right)^{2}, \\ n>4 \end{array}$	*

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Cauchy				
$\quad C(m, a)$	$f(x)=\frac{1}{\pi} \cdot \frac{a}{a^{2}+(x-m)^{2}},-\infty<x<\infty$	\nexists	A	$e^{i m t-a\|t\|}$
$\quad C(0,1)$	$f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<\infty$	A	A	$e^{-\|t\|}$
Pareto	$f(x)=\frac{\alpha k^{\alpha}}{x^{\alpha+1}}, x>k$	$\frac{\alpha k}{\alpha-1}, \alpha>1$	$\frac{\alpha k^{2}}{(\alpha-2)(\alpha-1)^{2}}, \alpha>2$,	$*$
$\operatorname{Pa}(k, \alpha), k>0, \alpha>0$				

