
TAMS46: Probability Theory (Second Course)
∣∣∣ Provkod: TEN1 ∣∣∣ 05 January 2023, 14:00-18:00

Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written A4 paper (two sides).
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5.
Notation: ‘A random variable X is distributed as...’ is written as ‘X ∈ ... or X ∼ ... ’

1 (3 points)

Let X ∼ U(0, 1) and Y ∼ Exp(1) be independent random variables. Find the probability density function of X + Y.

Solution. It is clear that fX(x) = 1 for 0 < x < 1, and fY (y) = e−y for y > 0. Then it is directly from the convolution
formula that

fX+Y (u) =

∫ ∞

−∞
fX(x)fY (u− x)dx =

∫ 1

0

1 · fY (u− x)dx

=


∫ 1

0
1 · e−(u−x)dx, if u ≥ 1

∫ u

0
1 · e−(u−x)dx, if 0 < u < 1

=


e−u(e− 1), if u ≥ 1

1− e−u, if 0 < u < 1.

One remarks: one can also use transformation and define for example U = X + Y and V = Y, then find the joint density
fU,V (u, v) of (U, V ), and derive the marginal density fU (u).

2 (3 points)

Let (X,Y )′ have a joint probability density function as follows

f(x, y) =

{
c · x · y, if 0 < y < x < 1,

0, otherwise.

(2.1) (1p) Find the value of c such that f(x, y) is indeed a density function.
(2.2) (1p) Compute the conditional expectation E(Y |X = x) for 0 < x < 1.
(2.3) (1p) Compute the conditional expectation E(X|Y = y) for 0 < y < 1.

Solution. (2.1)

1 =

∫ 1

0

(∫ x

0

c · x · ydy
)
dx =

∫ 1

0

c · x ·
(∫ x

0

ydy

)
dx =

∫ 1

0

c · x · x2/2dx = c/8 =⇒ c = 8.

(2.2) The marginal probability density function is

fX(x) =

∫ x

0

c · x · ydy = cx3/2 for 0 < x < 1.

Therefore, the conditional probability density function is

fY |X=x(y) =
f(x, y)

fX(x)
=

{
c·x·y
cx3/2 = 2y

x2 , if 0 < y < x < 1,

0, otherwise.

The conditional expectation can be then computed as

E(Y |X = x) =

∫ ∞

−∞
yfY |X=x(y)dy =

∫ x

0

y
2y

x2
dy =

2

x2

∫ x

0

y2dy =
2x

3
.
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(2.3) The marginal probability density function is

fY (y) =

∫ 1

y

c · x · ydx = cy(1− y2)/2 for 0 < y < 1.

Therefore, the conditional probability density function is

fX|Y=y(x) =
f(x, y)

fY (y)
=

{
c·x·y

cy(1−y2)/2 = 2x
(1−y2) , if 0 < y < x < 1,

0, otherwise.

The conditional expectation can be then computed as

E(X|Y = y) =

∫ ∞

−∞
xfX|Y=y(x)dx =

∫ 1

y

x
2x

(1− y2)
dx =

2

(1− y2)

∫ 1

y

x2dx =
2

3
· 1− y3

1− y2
.

3 (3 points)

Let the probability generating function gX,Y (s, t) of (X,Y )′ be given as

gX,Y (s, t) = E(sXtY ) = exp{(s− 1) + 2(t− 1) + 3(st− 1)}.

(3.1) (1p) Find the probability generating function gX(s) of X and P (X = n) for n ≥ 0.
(3.2) (1p) Find the probability generating function gY (t) of Y and P (Y = n) for n ≥ 0.
(3.3) (1p) Find the probability generating function gX+Y (u) of X + Y.

Solution. (3.1) The probability generating function gX(s) of X is

gX(s) = E(sX) = gX,Y (s, 1) = exp{(s− 1) + 3(s− 1)} = exp{4(s− 1)}.

Therefore,

P (X = n) =
g
(n)
X (0)

n!
=

4ne−4

n!
.

(3.2) The probability generating function gY (t) of Y is

gY (t) = E(tY ) = gX,Y (1, t) = exp{2(t− 1) + 3(t− 1)} = exp{5(t− 1)}.

Therefore,

P (Y = n) =
g
(n)
Y (0)

n!
=

5ne−5

n!
.

(3.3) The probability generating function gX+Y (u) of X + Y is

gX+Y (u) = E(uX+Y ) = gX,Y (u, u) = exp{(u− 1) + 2(u− 1) + 3(u2 − 1)} = exp{3(u− 1) + 3(u2 − 1)}.

4 (3 points)

Suppose that X1, X2, X3 and X4 are independent U(0, 1) random variables, and let (X(1), X(2), X(3), X(4)) be the
corresponding order statistic. Find the probability P (X(3) +X(4) ≤ 1).

Solution. It is from Theorem 3.1 (p.110 book) that the joint probability density function of (X(1), X(2), X(3), X(4)) is

fX(1),X(2),X(3),X(4)
(x1, x2, x3, x4) = 4! = 24, 0 < x1 < x2 < x3 < x4 < 1.
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Therefore, the joint probability density function of (X(3), X(4)) is

fX(3),X(4)
(x3, x4) =

∫ x3

0

(∫ x3

x1

fX(1),X(2),X(3),X(4)
(x1, x2, x3, x4)dx2

)
dx1 =

∫ x3

0

(∫ x3

x1

24dx2

)
dx1

=

∫ x3

0

(24x3 − 24x1) dx1 = 24x23 − 12x23 = 12x23, for 0 < x3 < x4 < 1.

Therefore, by drawing the region of (x3, x4),

P (X(3) +X(4) ≤ 1) =

∫ 1/2

0

(∫ 1−x3

x3

fX(3),X(4)
(x3, x4)dx4

)
dx3 =

∫ 1/2

0

(∫ 1−x3

x3

12x23dx4

)
dx3

=

∫ 1/2

0

(
12x23 − 24x33

)
dx3 =

1

8
.

5 (3 points)

Let X and Y be two random variables such that X ∼ N(3, 42) and Y |X = x ∼ N(10 + 20x, 52) (that is, the conditional
distribution of Y given X = x is N(10 + 20x, 52)). Find the mean vector µ and the covariance matrix C of the two
dimensional random variable (X,Y )′.

Solution. The mean of X is directly from the problem E(X) = 3. The mean of Y can be computed as

E(Y ) = E(E(Y |X)) = E(10 + 20X) = 10 + 20E(X) = 10 + 20 · 3 = 70.

Therefore the mean vector is µ = (3, 70)′

For the covariance matrix, it is known that V (X) = 42 = 16. The variance of Y can be computed as

V (Y ) = E(V (Y |X)) + V (E(Y |X)) = E(52) + V (10 + 20X) = 25 + 400V (X) = 25 + 400 · 42 = 6425.

The covariance is computed as

cov(X,Y ) = E(XY )− E(X)E(Y ) = E(E(XY |X))− 3 · 70 = E(XE(Y |X))− 210 = E(X(10 + 20X)))− 210

= E(10X + 20X2)− 210 = 10E(X) + 20E(X2)− 210

= 10 · 3 + 20(32 + 42)− 210 = 30 + 20 · 25− 210 = 320.

Therefore the covariance matrix is

C =

(
16 320
320 6425

)
.

6 (3 points)

Let Xn ∼ Bin(n2, 1/n). Use convergence of moment generating functions to show that

Xn − n√
n

d−−→ N(0, 1), as n→ ∞.

(Hint: moment generating function of Binomial random variable is ψBin(n,p)(t) = [(1− p) + pet]n, and moment

generating function of standard normal random variable is ψN(0,1)(t) = et
2/2. You might also need to use the expansions

ex − 1 = x+ x2

2! +
x3

3! + . . . and ln(1 + x) = x− x2

2 + x3

3 + . . .)
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Solution. The moment generating function of Xn−n√
n

is

ψXn−n√
n

(t) = E exp{t · Xn − n√
n

} = e−t
√
n · E exp{ t√

n
Xn} = e−t

√
n · ψXn

(
t√
n
)

= e−t
√
n ·

[
(1− 1

n
) +

1

n
e

t√
n

]n2

= e−t
√
n ·

[
1 +

1

n
(e

t√
n − 1)

]n2

= e−t
√
n · exp

{
n2 ln

(
1 +

1

n
(e

t√
n − 1)

)}
(use ex − 1 = x+

x2

2!
+
x3

3!
+ . . .)

= e−t
√
n · exp

{
n2 ln

(
1 +

1

n
(
t√
n
+
t2

2n
+ o(

1

n
))

)}
= e−t

√
n · exp

{
n2 ln

(
1 + (

t

n3/2
+

t2

2n2
+ o(

1

n2
))

)}
( use ln(1 + x) = x− x2

2
+
x3

3
+ . . .)

= e−t
√
n · exp

{
n2

(
t

n3/2
+

t2

2n2
+ o(

1

n2
)

)}
= e−t

√
n · exp

{
t
√
n+

t2

2
+ o(1)

}
= exp

{
t2

2
+ o(1)

}
→ et

2/2 = ψN(0,1)(t),

which completes the proof.
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