Examiner: Xiangfeng Yang (013-285788). **Things allowed**: a calculator, a self-written A4 paper (two sides). **Scores rating (Betygsgränser)**: 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5. **Notation**: 'A random variable X is distributed as...' is written as ' $X \in ...$ or $X \sim ...$ '

1 (3 points)

Let $X \sim U(0,1)$ and $Y \sim Exp(1)$ be independent random variables. Find the probability density function of X + Y.

Solution. It is clear that $f_X(x) = 1$ for 0 < x < 1, and $f_Y(y) = e^{-y}$ for y > 0. Then it is directly from the convolution formula that

$$f_{X+Y}(u) = \int_{-\infty}^{\infty} f_X(x) f_Y(u-x) dx = \int_0^1 1 \cdot f_Y(u-x) dx$$
$$= \begin{cases} \int_0^1 1 \cdot e^{-(u-x)} dx, & \text{if } u \ge 1 \\ \\ \int_0^u 1 \cdot e^{-(u-x)} dx, & \text{if } 0 < u < 1 \end{cases}$$
$$= \begin{cases} e^{-u}(e-1), & \text{if } u \ge 1 \\ \\ 1 - e^{-u}, & \text{if } 0 < u < 1. \end{cases}$$

One remarks: one can also use transformation and define for example U = X + Y and V = Y, then find the joint density $f_{U,V}(u, v)$ of (U, V), and derive the marginal density $f_U(u)$.

2 (3 points)

Let (X, Y)' have a joint probability density function as follows

$$f(x,y) = \begin{cases} c \cdot x \cdot y, & \text{if } 0 < y < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

(2.1) (1p) Find the value of c such that f(x, y) is indeed a density function.

(2.2) (1p) Compute the conditional expectation E(Y|X = x) for 0 < x < 1.

(2.3) (1p) Compute the conditional expectation E(X|Y = y) for 0 < y < 1.

Solution. (2.1)

$$1 = \int_0^1 \left(\int_0^x c \cdot x \cdot y dy \right) dx = \int_0^1 c \cdot x \cdot \left(\int_0^x y dy \right) dx = \int_0^1 c \cdot x \cdot x^2 / 2dx = c/8 \implies c = 8.$$

(2.2) The marginal probability density function is

$$f_X(x) = \int_0^x c \cdot x \cdot y dy = cx^3/2 \text{ for } 0 < x < 1.$$

Therefore, the conditional probability density function is

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{c \cdot x \cdot y}{cx^3/2} = \frac{2y}{x^2}, & \text{if } 0 < y < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

The conditional expectation can be then computed as

$$E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X=x}(y) dy = \int_{0}^{x} y \frac{2y}{x^{2}} dy = \frac{2}{x^{2}} \int_{0}^{x} y^{2} dy = \frac{2x}{3}.$$

(2.3) The marginal probability density function is

$$f_Y(y) = \int_y^1 c \cdot x \cdot y dx = cy(1-y^2)/2 \text{ for } 0 < y < 1.$$

Therefore, the conditional probability density function is

$$f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{c \cdot x \cdot y}{cy(1-y^2)/2} = \frac{2x}{(1-y^2)}, & \text{if } 0 < y < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

The conditional expectation can be then computed as

$$E(X|Y=y) = \int_{-\infty}^{\infty} x f_{X|Y=y}(x) dx = \int_{y}^{1} x \frac{2x}{(1-y^2)} dx = \frac{2}{(1-y^2)} \int_{y}^{1} x^2 dx = \frac{2}{3} \cdot \frac{1-y^3}{1-y^2}.$$

3 (3 points)

Let the probability generating function $g_{X,Y}(s,t)$ of (X,Y)' be given as

$$g_{X,Y}(s,t) = E(s^X t^Y) = \exp\{(s-1) + 2(t-1) + 3(st-1)\}.$$

- (3.1) (1p) Find the probability generating function $g_X(s)$ of X and P(X = n) for $n \ge 0$.
- (3.2) (1p) Find the probability generating function $g_Y(t)$ of Y and P(Y = n) for $n \ge 0$.
- (3.3) (1p) Find the probability generating function $g_{X+Y}(u)$ of X + Y.

Solution. (3.1) The probability generating function $g_X(s)$ of X is

$$g_X(s) = E(s^X) = g_{X,Y}(s,1) = \exp\{(s-1) + 3(s-1)\} = \exp\{4(s-1)\}.$$

Therefore,

$$P(X=n) = \frac{g_X^{(n)}(0)}{n!} = \frac{4^n e^{-4}}{n!}$$

(3.2) The probability generating function $g_Y(t)$ of Y is

$$g_Y(t) = E(t^Y) = g_{X,Y}(1,t) = \exp\{2(t-1) + 3(t-1)\} = \exp\{5(t-1)\}.$$

Therefore,

$$P(Y=n) = \frac{g_Y^{(n)}(0)}{n!} = \frac{5^n e^{-5}}{n!}.$$

(3.3) The probability generating function $g_{X+Y}(u)$ of X+Y is

$$g_{X+Y}(u) = E(u^{X+Y}) = g_{X,Y}(u,u) = \exp\{(u-1) + 2(u-1) + 3(u^2-1)\} = \exp\{3(u-1) + 3(u^2-1)\}.$$

$4 \quad (3 \text{ points})$

Suppose that X_1, X_2, X_3 and X_4 are independent U(0, 1) random variables, and let $(X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)})$ be the corresponding order statistic. Find the probability $P(X_{(3)} + X_{(4)} \le 1)$.

Solution. It is from Theorem 3.1 (p.110 book) that the joint probability density function of $(X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)})$ is

$$f_{X_{(1)},X_{(2)},X_{(3)},X_{(4)}}(x_1,x_2,x_3,x_4) = 4! = 24, \qquad 0 < x_1 < x_2 < x_3 < x_4 < 1$$

Therefore, the joint probability density function of $(X_{(3)}, X_{(4)})$ is

$$\begin{aligned} f_{X_{(3)},X_{(4)}}(x_3,x_4) &= \int_0^{x_3} \left(\int_{x_1}^{x_3} f_{X_{(1)},X_{(2)},X_{(3)},X_{(4)}}(x_1,x_2,x_3,x_4) dx_2 \right) dx_1 \\ &= \int_0^{x_3} \left(24x_3 - 24x_1 \right) dx_1 = 24x_3^2 - 12x_3^2 = 12x_3^2, \text{ for } 0 < x_3 < x_4 < 1. \end{aligned}$$

Therefore, by drawing the region of (x_3, x_4) ,

$$P(X_{(3)} + X_{(4)} \le 1) = \int_0^{1/2} \left(\int_{x_3}^{1-x_3} f_{X_{(3)}, X_{(4)}}(x_3, x_4) dx_4 \right) dx_3 = \int_0^{1/2} \left(\int_{x_3}^{1-x_3} 12x_3^2 dx_4 \right) dx_3$$
$$= \int_0^{1/2} \left(12x_3^2 - 24x_3^3 \right) dx_3 = \frac{1}{8}.$$

5 (3 points)

Let X and Y be two random variables such that $X \sim N(3, 4^2)$ and $Y|X = x \sim N(10 + 20x, 5^2)$ (that is, the conditional distribution of Y given X = x is $N(10 + 20x, 5^2)$). Find the mean vector $\boldsymbol{\mu}$ and the covariance matrix **C** of the two dimensional random variable (X, Y)'.

Solution. The mean of X is directly from the problem E(X) = 3. The mean of Y can be computed as

$$E(Y) = E(E(Y|X)) = E(10 + 20X) = 10 + 20E(X) = 10 + 20 \cdot 3 = 70.$$

Therefore the mean vector is $\boldsymbol{\mu} = (3, 70)'$ For the covariance matrix, it is known that $V(X) = 4^2 = 16$. The variance of Y can be computed as

$$V(Y) = E(V(Y|X)) + V(E(Y|X)) = E(5^{2}) + V(10 + 20X) = 25 + 400V(X) = 25 + 400 \cdot 4^{2} = 6425$$

The covariance is computed as

$$cov(X,Y) = E(XY) - E(X)E(Y) = E(E(XY|X)) - 3 \cdot 70 = E(XE(Y|X)) - 210 = E(X(10+20X))) - 210$$
$$= E(10X + 20X^{2}) - 210 = 10E(X) + 20E(X^{2}) - 210$$
$$= 10 \cdot 3 + 20(3^{2} + 4^{2}) - 210 = 30 + 20 \cdot 25 - 210 = 320.$$

Therefore the covariance matrix is

$$\mathbf{C} = \begin{pmatrix} 16 & 320\\ 320 & 6425 \end{pmatrix}.$$

6 (3 points)

Let $X_n \sim Bin(n^2, 1/n)$. Use convergence of moment generating functions to show that

$$\frac{X_n - n}{\sqrt{n}} \xrightarrow{d} N(0, 1), \quad \text{as } n \to \infty.$$

(Hint: moment generating function of Binomial random variable is $\psi_{Bin(n,p)}(t) = [(1-p) + pe^t]^n$, and moment generating function of standard normal random variable is $\psi_{N(0,1)}(t) = e^{t^2/2}$. You might also need to use the expansions $e^x - 1 = x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ and $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots$)

Solution. The moment generating function of $\frac{X_n - n}{\sqrt{n}}$ is

$$\begin{split} \psi_{\frac{X_n-n}{\sqrt{n}}}(t) &= E \exp\{t \cdot \frac{X_n - n}{\sqrt{n}}\} = e^{-t\sqrt{n}} \cdot E \exp\{\frac{t}{\sqrt{n}}X_n\} = e^{-t\sqrt{n}} \cdot \psi_{X_n}(\frac{t}{\sqrt{n}}) \\ &= e^{-t\sqrt{n}} \cdot \left[(1 - \frac{1}{n}) + \frac{1}{n}e^{\frac{t}{\sqrt{n}}}\right]^{n^2} = e^{-t\sqrt{n}} \cdot \left[1 + \frac{1}{n}(e^{\frac{t}{\sqrt{n}}} - 1)\right]^{n^2} \\ &= e^{-t\sqrt{n}} \cdot \exp\left\{n^2 \ln\left(1 + \frac{1}{n}(e^{\frac{t}{\sqrt{n}}} - 1)\right)\right\} \quad (\text{use } e^x - 1 = x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots) \\ &= e^{-t\sqrt{n}} \cdot \exp\left\{n^2 \ln\left(1 + \frac{1}{n}(\frac{t}{\sqrt{n}} + \frac{t^2}{2n} + o(\frac{1}{n}))\right)\right\} \\ &= e^{-t\sqrt{n}} \cdot \exp\left\{n^2 \ln\left(1 + (\frac{t}{n^{3/2}} + \frac{t^2}{2n^2} + o(\frac{1}{n^2}))\right)\right\} \quad (\text{ use } \ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \ldots) \\ &= e^{-t\sqrt{n}} \cdot \exp\left\{n^2 \left(\frac{t}{n^{3/2}} + \frac{t^2}{2n^2} + o(\frac{1}{n^2})\right)\right\} \\ &= e^{-t\sqrt{n}} \cdot \exp\left\{n^2 \left(\frac{t}{n^{3/2}} + \frac{t^2}{2n^2} + o(\frac{1}{n^2})\right)\right\} \\ &= e^{-t\sqrt{n}} \cdot \exp\left\{t\sqrt{n} + \frac{t^2}{2} + o(1)\right\} = \exp\left\{\frac{t^2}{2} + o(1)\right\} \to e^{t^2/2} = \psi_{N(0,1)}(t), \end{split}$$

which completes the proof.

Followingis a list of discrete distribu An asterisk (*) indicates that the e	ttions, abbreviations, their probability functions, i expression is too complicated to present here; in s	means, va some case	ariances, and es a closed fo	l characteristic functio ormula does not even	ons. exist.
Distribution, notation	Probability function	E X	$\operatorname{Var} X$	$\varphi_X(t)$	
One point $\delta(a)$	p(a) = 1	в	0	e^{ita}	
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$\cos t$	
Bernoulli $\operatorname{Be}(p), 0 \leq p \leq 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	d	bd	$q + pe^{it}$	
Binomial Bin $(n, p), n = 1, 2, \dots, 0 \le p \le 1$	$p(k) = {n \choose k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	du	bdu	$(q + pe^{it})^n$	
Geometric $\operatorname{Ge}(p), \ 0 \leq p \leq 1$	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{d}{d}$	$\frac{q}{p^2}$	$\frac{p}{1-qe^{it}}$	
First success $\operatorname{Fs}(p), 0 \leq p \leq 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	$\frac{1}{p}$	$p^{\frac{q}{2}}$	$\frac{pe^{it}}{1-qe^{it}}$	
Negative binomial NBin $(n, p), n = 1, 2, 3, \dots, 0 \le p \le 1$	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2, \dots;$ q = 1 - p	$\frac{d}{b}u$	$n \frac{q}{p^2}$	$\big(\frac{p}{1-q^{e^{it}}}\big)^n$	
Poisson $Po(m), m > 0$	$p(k) = e^{-m} \; rac{m^k}{k!}, \; k = 0, 1, 2, \ldots$	m	m	$e^{m(e^{it}-1)}$	
Hypergeometric $H(N, n, p), n = 0, 1, \dots, N,$ $N = 1, \frac{2}{N}, \dots, 1$ $p = 0, \frac{1}{N}, \frac{2}{N}, \dots, 1$	$p(k) = \frac{\binom{Np}{k}\binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	du	$npq \frac{N-n}{N-1}$	*	

Discrete Distributions

282

An asterisk (*) indicate	s that the expression is too complicated to j	present here	; in some cases a close	d formula does not even
Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Uniform/Rectangular U(a, b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
U(0,1) U(-1,1)	$f(x) = 1, \ 0 < x < 1$ $f(x) = \frac{1}{2}, \ x < 1$	- <mark>1</mark> -	3 <mark>1- 12</mark>	$\frac{e^{it}-1}{it}$
Triangular Tri (a,b)	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$ a < x < b	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2}-e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$
$\operatorname{Tri}(-1,1)$	$f(x) = 1 - x , \ x < 1$	0	- I 0	$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$
Exponential $Exp(a), a > 0$	$f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$	a	a^2	$\frac{1}{1-ait}$
Gamma $\Gamma(p,a), \ a > 0, \ p > 0$	$f(x) = rac{1}{\Gamma(p)} x^{p-1} rac{1}{a^p} e^{-x/a}, \; x > 0$	ра	pa^2	$\frac{1}{(1-ait)^p}$
Chi-square $\chi^2(n), n = 1, 2, 3, \dots$	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0$	u	2n	$\frac{1}{(1-2it)^{n/2}}$
Laplace $L(a), a > 0$	$f(x)=rac{1}{2a}e^{- x /a}, \ -\infty < x < \infty$	0	$2a^2$	$\frac{1}{1+a^2t^2}$
Beta $\beta(r,s), r,s > 0$	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	$\frac{r}{r+s}$	$\frac{rs}{(r+s)^2(r+s+1)}$	*
	0 < x < 1			

nces, and characteristic functions. abbreviations their densities "" distributions. list of s Following is a

Continuous Distributions

Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Weibull $W(lpha,eta), lpha,eta>0$	$f(x) = rac{1}{lpha eta} x^{(1/eta) - 1} e^{-x^{1/eta} / lpha}, \; x > 0$	$lpha^eta\Gamma(eta+1)$	$a^{2eta}ig(\Gamma(2eta+1)\ -\Gamma(eta+1)^2ig)$	*
Rayleigh Ra $(\alpha), \alpha > 0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $\begin{split} & N(\mu,\sigma^2), \\ & -\infty < \mu < \infty, \sigma > 0 \end{split}$	$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(x-\mu)^2/\sigma^2},$	Ц	σ^2	$e^{i\mu t-rac{1}{2}t^2\sigma^2}$
	$-\infty < x < \infty$			
N(0,1)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty$	0	Ι	$e^{-t^{2}/2}$
Log-normal $LN(\mu, \sigma^2), -\infty < \mu < \infty, \ \sigma > 0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2 / \sigma^2}, \ x > 0$	$e^{\mu+rac{1}{2}\sigma^2}$	$e^{2\mu} \left(e^{2\sigma^2} - e^{\sigma^2} ight)$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = rac{\Gamma(rac{n+1}{2})}{\sqrt{\pi n} \Gamma(rac{n}{2})} \cdot drac{1}{(1+rac{n-1}{2})^{(n+1)/2}}, \ -\infty < x < \infty$	0	$\frac{n}{n-2},n>2$	*
(Fisher's) F $F(m \ n) \ m \ n = 1$ 2	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$rac{n}{n-2},$	$rac{n^2(m+2)}{m(n-2)(n-4)} - \left(rac{n}{n-2} ight)^2,$	*
···· (= (+	x > 0	n > 2	n > 4	

284

Continuous Distributions (continued)

B Some Distributions and Their Characteristics

Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
C(m,a)	$f(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + (x-m)^2}, \ -\infty < x < \infty$	Ŕ	Ā	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, -\infty < x < \infty$	R	R	$e^{- t }$
Pareto	$f(x)=rac{lpha k^lpha}{x^{lpha+1}},\ x>k$	$\frac{\alpha k}{\alpha - 1}, \alpha > 1$	$\frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \alpha > 2,$	*
$\operatorname{Pa}(k,\alpha), k > 0, \alpha > 0$				

Continuous Distributions (continued)