Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written A4 paper (two sides).
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate $4 ; 15-18$ points giving rate 5 .
Notation: 'A random variable X is distributed as...' is written as ' $X \in \ldots$ or $X \sim \ldots$ '

1 (3 points)

Let a two dimensional random vector $(X, Y)^{\prime}$ have a joint probability density function as follows

$$
f(x, y)= \begin{cases}e^{-x^{2} y}, & \text { if } x \geq 1 \text { and } y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Find the probability density function of $X^{2} Y$.
Solution. Let $U=X^{2} Y$ and $V=Y$. Then it is clear that $U \geq V>0$, and

$$
X=\sqrt{U / V}, \quad Y=V, \quad J=\left|\frac{\partial(x y)}{\partial(u v)}\right|=\frac{1}{2} u^{-1 / 2} v^{-1 / 2} .
$$

Therefore the joint probability density function of $(U, V)^{\prime}$ is

$$
f_{U, V}(u, v)=f\left(x^{-1}(u, v), y^{-1}(u, v)\right)|J|=f(\sqrt{u / v}, v)|J| \begin{cases}e^{-u} \cdot \frac{1}{2} u^{-1 / 2} v^{-1 / 2}, & \text { if } u \geq v>0 \\ 0, & \text { otherwise }\end{cases}
$$

The marginal probability density function of U is

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{0}^{u} e^{-u} \cdot \frac{1}{2} u^{-1 / 2} v^{-1 / 2} d v=e^{-u} \cdot \frac{1}{2} u^{-1 / 2} \int_{0}^{u} v^{-1 / 2} d v=e^{-u}, u>0
$$

2 (3 points)

Let a two dimensional random vector $(X, Y)^{\prime}$ have a joint probability density function as follows

$$
f(x, y)= \begin{cases}2, & \text { if } x \geq 0, y \geq 0 \text { and } x+y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(2.1) (1p) Find the marginal probability density function $f_{X}(x)$ of X.
(2.2) (2p) Compute the conditional expectation $E(Y \mid X=x)$.

Solution. (2.1) The marginal probability density function is

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{1-x} 2 d x=2(1-x), \quad 0 \leq x \leq 1
$$

(2.2) In order to compute $E(Y \mid X=x)$, the conditional probability density function is

$$
f_{Y \mid X=x}(y)=\frac{f(x, y)}{f_{X}(x)}=\frac{1}{1-x}, \quad x \geq 0, y \geq 0 \text { and } x+y \leq 1 .
$$

The conditional expectation can be then computed as

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y f_{Y \mid X=x}(y) d y=\int_{0}^{1-x} \frac{y}{1-x} d y=\frac{1}{1-x} \frac{1}{2}(1-x)^{2}=\frac{1-x}{2}, \quad 0 \leq x \leq 1
$$

3 (3 points)

Let $X_{1} \sim \operatorname{Exp}(1), X_{2} \sim \operatorname{Exp}(1), \ldots, X_{n} \sim \operatorname{Exp}(1), \ldots$ be a sequence of independent exponential random variables. Let

$$
S_{N}=X_{1}+X_{2}+\ldots+X_{N}
$$

where $N \sim P o(10)$ is a Poisson random variable which is independent of X_{1}, X_{2}, \ldots When $N=0$, we define $S_{0}=0$.
(3.1) (1p) Find the moment generating function $\psi_{S_{N}}(t)$ of S_{N}. (Hint: Moment generating function $\psi_{X}(t)=E\left(e^{t X}\right)$)
(3.2) (1p) Find the first moment $E\left(S_{N}\right)$ of S_{N}.
(3.3) (1p) Find the second moment $E\left(S_{N}^{2}\right)$ of S_{N}.

Solution. (3.1) It is from Theorem 6.3 (Page. 84 book) that the moment generating function is

$$
\psi_{S_{N}}(t)=g_{N}\left(\psi_{X}(t)\right)=e^{10\left(\frac{1}{1-t}-1\right)}, \text { for } t<1
$$

where the probability generating function $g_{N}(t)$ of N is (see Page. 63 book)

$$
g_{N}(t)=e^{10(t-1)}
$$

and the moment generating function $\psi_{X}(t)$ of each X_{i} is (see Page. 67 book)

$$
\psi_{X}(t)=\frac{1}{1-t}, \text { for } t<1
$$

(3.2) It is from Theorem 3.3 (Page. 64 book) that

$$
E\left(S_{N}\right)=\psi_{S_{N}}^{\prime}(0)=\left[e^{-10} e^{10(1-t)^{-1}} \cdot 10(1-t)^{-2}\right]_{t=0}=10
$$

(3.3) It is from Theorem 3.3 (Page. 64 book) that

$$
E\left(S_{N}^{2}\right)=\psi_{S_{N}}^{\prime \prime}(0)=\left[10 e^{-10}\left(e^{10(1-t)^{-1}} \cdot 10(1-t)^{-4}+e^{10(1-t)^{-1}} \cdot 2(1-t)^{-3}\right)\right]_{t=0}=120
$$

4 (3 points)

Suppose that the running times (in seconds) in a $100-$ meter LiU race are distributed as $U(10.0,16.0$) (namely, an uniform random variable on the interval $(10.0,16.0)$). Suppose that there are 6 competitors in a $100-\mathrm{meter} \mathrm{LiU}$ race, find the probability that the winner is at most 3 seconds faster than the slowest runner?
Solution. Let $X_{1}, X_{2}, \ldots, X_{6}$ denote the running times of these 6 competitors, then the winner is
$X_{(1)}=\min \left\{X_{1}, X_{2}, \ldots, X_{6}\right\}$, and the slowest runner is $X_{(6)}=\max \left\{X_{1}, X_{2}, \ldots, X_{6}\right\}$. Therefore the probability that the winner is at most 3 seconds faster than the slowest runner $=P\left(X_{(6)}-X_{(1)} \leq 3\right)$.
Recall the definition "Range" $R_{6}:=X_{(6)}-X_{(1)}$, it is from Theorem 2.2 (Page. 106 book) that the probability density function of R_{6} is (it is clear that $f_{R_{6}}(r)=0$ when $r \geq 6$),

$$
f_{R_{6}}(r)=6(6-1) \int_{-\infty}^{\infty}(F(u+r)-F(u))^{4} f(u+r) f(u) d u, \quad 6>r>0
$$

Note that $f(x)=\frac{1}{6}$ for $10<x<16$ and

$$
F(x)= \begin{cases}0, & \text { if } x \leq 10 \\ \frac{x-10}{6}, & \text { if } 10<x<16 \\ 1, & \text { if } x \geq 16\end{cases}
$$

Therefore, for $0<r<6$,

$$
\begin{aligned}
f_{R_{6}}(r) & =6(6-1) \int_{-\infty}^{\infty}(F(u+r)-F(u))^{4} f(u+r) f(u) d u=6 \cdot 5 \int_{10}^{16}\left(F(u+r)-\frac{u-10}{6}\right)^{4} f(u+r) \frac{1}{6} d u \\
(\text { with } v=u+r) & =6 \cdot 5 \int_{10+r}^{16+r}\left(F(v)-\frac{(v-r)-10}{6}\right)^{4} f(v) \frac{1}{6} d v=6 \cdot 5 \int_{10+r}^{16}\left(F(v)-\frac{(v-r)-10}{6}\right)^{4} \cdot \frac{1}{6} \frac{1}{6} d v \\
& =6 \cdot 5 \int_{10+r}^{16}\left(\frac{v-10}{6}-\frac{(v-r)-10}{6}\right)^{4} \cdot \frac{1}{6} \frac{1}{6} d v=6 \cdot 5 \cdot \frac{1}{6^{2}} \int_{10+r}^{16}\left(\frac{r}{6}\right)^{4} d v=\frac{5 r^{4}}{6^{5}}(6-r) .
\end{aligned}
$$

So,
$P($ the winner is at most 3 seconds faster than the slowest runner $)=P\left(R_{6} \leq 3\right)$

$$
\begin{aligned}
& =\int_{0}^{3} f_{R_{6}}(r) d r=\int_{0}^{3} \frac{5 r^{4}}{6^{5}}(6-r) d r=\frac{1}{6^{4}} \int_{0}^{3} 5 r^{4} d r-\frac{5}{6^{6}} \int_{0}^{3} 6 r^{5} d r \\
& =\frac{1}{6^{4}} \cdot 3^{5}-\frac{5}{6^{6}} \cdot 3^{6}=\frac{7}{64}=0.109375 .
\end{aligned}
$$

5 (3 points)

Let $(X, Y)^{\prime}$ be two dimensional normal random vector. Suppose that the variance $V(X)$ of X is equal to the variance $V(Y)$ of Y. Are $X-Y$ and $X+Y$ independent random variables? Why?

Solution. Step 1: Since $(X, Y)^{\prime}$ ' is a two dimensional normal random vector, it is from "Definition I" and "Theorem 3.1" (Page. $12 \overline{1 \mathrm{book})}$ that ($X-Y, X+Y)^{\prime}$ is also a two dimensional normal random vector.

Step 2: Since $(X-Y, X+Y)^{\prime}$ is a two dimensional normal random vector, the independence of $X-Y$ and $X+Y$ is equivalent to $\operatorname{cov}(X-Y, X+Y)=0$.

Step 3: The covariance can be computed as

$$
\operatorname{cov}(X-Y, X+Y)=\operatorname{cov}(X, X)+\operatorname{cov}(X, Y)-\operatorname{cov}(Y, X)-\operatorname{cov}(Y, Y)=\operatorname{cov}(X, X)-\operatorname{cov}(Y, Y)=V(X)-V(Y)=0 .
$$

Theretofore, Yes, $X-Y$ and $X+Y$ are independent!

6 (3 points)

(6.1) (1p) Let $\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\}$ be a sequence of random variables with

$$
P\left(X_{n}=\pi\right)=1-\frac{1}{\sqrt{n}}, \quad P\left(X_{n}=n\right)=\frac{1}{\sqrt{n}}, \quad \text { for } n \geq 1 .
$$

Prove that X_{n} converge to π in probability.
(6.2)(2p) Let $\left\{Y_{1}, Y_{2}, \ldots, Y_{n}, \ldots\right\}$ be a sequence of random variables with

$$
P\left(Y_{n}=\pi\right)=1-\frac{1}{n^{2}}, \quad P\left(Y_{n}=n\right)=\frac{1}{n^{2}}, \quad \text { for } n \geq 1 .
$$

Prove that Y_{n} converge to π almost surely.
Solution. (6.1) For any $\epsilon>0$, it follows that for large n,

$$
P\left(\left|X_{n}-\pi\right|<\epsilon\right)=P\left(X_{n}=\pi\right)=1-\frac{1}{\sqrt{n}} \rightarrow 0, \text { as } n \rightarrow \infty
$$

which proves that X_{n} converge to π in probability.
(6.2) For any $\epsilon>0$, let us consider the events $\left\{\left|Y_{n}-\pi\right|>\epsilon\right\}_{n \geq 1}$. The fact that

$$
\sum_{n=1}^{\infty} P\left(\left|Y_{n}-\pi\right|>\epsilon\right)=(\text { or } \leq) \sum_{n=1}^{\infty} P\left(Y_{n}=n\right)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

implies (based on Borel-Cantelli lemma, Theorem 7.1, Page. 205 book) that $P\left(\left|Y_{n}-\pi\right|>\epsilon\right.$ i.o.) $=0$, which is equivalent to $Y_{n} \rightarrow \pi$ almost surely (see statement (7.2) Page. 205 book).
Discrete Distributions
Followingis a list of discrete distributions, abbreviations, their probability functions, means, variances, and characteristic functions. An asterisk $\left({ }^{*}\right)$ indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.
Probability function $E X \quad \operatorname{Var} X \quad \varphi_{X}(t)$

$0 \quad$
1
$p q$
$n p q$
0

$0 \quad 0$
0
p
ह
01 $2 \quad-$ \qquad
-12 $p(a)=1$ $p(-1)=p(1)=\frac{1}{2}$ O
$p(k)=\binom{n}{k} p^{k} q^{n-k}, k=0,1, \ldots, n ; q=1-p$ $p(k)=p q^{k}, k=0,1,2, \ldots ; q=1-p$
 ,\ldots
$k=0,1, \ldots, N p ;$ $k=0,1, \ldots$,
$\quad q=1-p ;$
$n-k=0, \ldots, N q$

Continuous Distributions

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Weibull $W(\alpha, \beta), \alpha, \beta>0$	$f(x)=\frac{1}{\alpha \beta} x^{(1 / \beta)-1} e^{-x^{1 / \beta} / \alpha}, x>0$	$\alpha^{\beta} \Gamma(\beta+1)$	$\begin{aligned} & a^{2 \beta}(\Gamma(2 \beta+1) \\ & \left.\quad-\Gamma(\beta+1)^{2}\right) \end{aligned}$	*
Rayleigh $\operatorname{Ra}(\alpha), \alpha>0$	$f(x)=\frac{2}{\alpha} x e^{-x^{2} / \alpha}, x>0$	$\frac{1}{2} \sqrt{\pi \alpha}$	$\alpha\left(1-\frac{1}{4} \pi\right)$	*
Normal $\begin{aligned} & N\left(\mu, \sigma^{2}\right) \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}},$ $-\infty<x<\infty$	μ	σ^{2}	$e^{i \mu t-\frac{1}{2} t^{2} \sigma^{2}}$
$N(0,1)$	$f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2},-\infty<x<\infty$	0	1	$e^{-t^{2} / 2}$
Log-normal $\begin{aligned} & L N\left(\mu, \sigma^{2}\right), \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma x \sqrt{2 \pi}} e^{-\frac{1}{2}(\log x-\mu)^{2} / \sigma^{2}}, x>0$	$e^{\mu+\frac{1}{2} \sigma^{2}}$	$e^{2 \mu}\left(e^{2 \sigma^{2}}-e^{\sigma^{2}}\right)$	*
(Student's) t $t(n), n=1,2, \ldots$	$f(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n \Gamma\left(\frac{n}{2}\right)}} \cdot d \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{(n+1) / 2}},$ $-\infty<x<\infty$	0	$\frac{n}{n-2}, n>2$	*
$\begin{aligned} & \text { (Fisher's) } F \\ & \quad F(m, n), m, n=1,2, \end{aligned}$	$f(x)=\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot \frac{x^{m / 2-1}}{\left(1+\frac{m x}{n}\right)^{(m+n) / 2}},$ $x>0$	$\begin{aligned} & \frac{n}{n-2}, \\ & n>2 \end{aligned}$	$\begin{array}{r} \frac{n^{2}(m+2)}{m(n-2)(n-4)}-\left(\frac{n}{n-2}\right)^{2}, \\ n>4 \end{array}$	*

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Cauchy				
$\quad C(m, a)$	$f(x)=\frac{1}{\pi} \cdot \frac{a}{a^{2}+(x-m)^{2}},-\infty<x<\infty$	\nexists	A	$e^{i m t-a\|t\|}$
$\quad C(0,1)$	$f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<\infty$	A	A	$e^{-\|t\|}$
Pareto	$f(x)=\frac{\alpha k^{\alpha}}{x^{\alpha+1}}, x>k$	$\frac{\alpha k}{\alpha-1}, \alpha>1$	$\frac{\alpha k^{2}}{(\alpha-2)(\alpha-1)^{2}}, \alpha>2$,	$*$
$\operatorname{Pa}(k, \alpha), k>0, \alpha>0$				

