
TAMS46: Probability Theory (Second Course)
∣∣∣ Provkod: TEN1 ∣∣∣ 21 August 2023, 08:00-12:00

Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written A4 paper (two sides).
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5.
Notation: ‘A random variable X is distributed as...’ is written as ‘X ∈ ... or X ∼ ... ’

1 (3 points)

Let a two dimensional random vector (X,Y )′ have a joint probability density function as follows

f(x, y) =

{
e−x2y, if x ≥ 1 and y > 0,

0, otherwise.

Find the probability density function of X2Y.

Solution. Let U = X2Y and V = Y. Then it is clear that U ≥ V > 0, and

X =
√
U/V , Y = V, J = |∂(x y)

∂(u v)
| = 1

2
u−1/2v−1/2.

Therefore the joint probability density function of (U, V )′ is

fU,V (u, v) = f(x−1(u, v), y−1(u, v))|J | = f(
√
u/v, v)|J |

{
e−u · 1

2u
−1/2v−1/2, if u ≥ v > 0,

0, otherwise.

The marginal probability density function of U is

fU (u) =

∫ ∞

−∞
fU,V (u, v)dv =

∫ u

0

e−u · 1
2
u−1/2v−1/2dv = e−u · 1

2
u−1/2

∫ u

0

v−1/2dv = e−u, u > 0.

2 (3 points)

Let a two dimensional random vector (X,Y )′ have a joint probability density function as follows

f(x, y) =

{
2, if x ≥ 0, y ≥ 0 and x+ y ≤ 1,

0, otherwise.

(2.1) (1p) Find the marginal probability density function fX(x) of X.
(2.2) (2p) Compute the conditional expectation E(Y |X = x).

Solution. (2.1) The marginal probability density function is

fX(x) =

∫ ∞

−∞
f(x, y)dy =

∫ 1−x

0

2dx = 2(1− x), 0 ≤ x ≤ 1.

(2.2) In order to compute E(Y |X = x), the conditional probability density function is

fY |X=x(y) =
f(x, y)

fX(x)
=

1

1− x
, x ≥ 0, y ≥ 0 and x+ y ≤ 1.

The conditional expectation can be then computed as

E(Y |X = x) =

∫ ∞

−∞
yfY |X=x(y)dy =

∫ 1−x

0

y

1− x
dy =

1

1− x

1

2
(1− x)2 =

1− x

2
, 0 ≤ x ≤ 1.
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3 (3 points)

Let X1 ∼ Exp(1), X2 ∼ Exp(1), . . . , Xn ∼ Exp(1), . . . be a sequence of independent exponential random variables. Let

SN = X1 +X2 + . . .+XN ,

where N ∼ Po(10) is a Poisson random variable which is independent of X1, X2, . . . . When N = 0, we define S0 = 0.
(3.1) (1p) Find the moment generating function ψSN

(t) of SN . (Hint: Moment generating function ψX(t) = E(etX))
(3.2) (1p) Find the first moment E(SN ) of SN .
(3.3) (1p) Find the second moment E(S2

N ) of SN .

Solution. (3.1) It is from Theorem 6.3 (Page. 84 book) that the moment generating function is

ψSN
(t) = gN (ψX(t)) = e10(

1
1−t−1), for t < 1.

where the probability generating function gN (t) of N is (see Page. 63 book)

gN (t) = e10(t−1),

and the moment generating function ψX(t) of each Xi is (see Page. 67 book)

ψX(t) =
1

1− t
, for t < 1.

(3.2) It is from Theorem 3.3 (Page. 64 book) that

E(SN ) = ψ′
SN

(0) =
[
e−10e10(1−t)−1

· 10(1− t)−2
]
t=0

= 10.

(3.3) It is from Theorem 3.3 (Page. 64 book) that

E(S2
N ) = ψ′′

SN
(0) =

[
10e−10(e10(1−t)−1

· 10(1− t)−4 + e10(1−t)−1

· 2(1− t)−3)
]
t=0

= 120.

4 (3 points)

Suppose that the running times (in seconds) in a 100-meter LiU race are distributed as U(10.0, 16.0) (namely, an
uniform random variable on the interval (10.0, 16.0)). Suppose that there are 6 competitors in a 100-meter LiU race,
find the probability that the winner is at most 3 seconds faster than the slowest runner?

Solution. Let X1, X2, . . . , X6 denote the running times of these 6 competitors, then the winner is
X(1) = min{X1, X2, . . . , X6}, and the slowest runner is X(6) = max{X1, X2, . . . , X6}. Therefore the probability that the
winner is at most 3 seconds faster than the slowest runner = P (X(6) −X(1) ≤ 3).
Recall the definition “Range” R6 := X(6) −X(1), it is from Theorem 2.2 (Page. 106 book) that the probability density
function of R6 is (it is clear that fR6(r) = 0 when r ≥ 6),

fR6(r) = 6(6− 1)

∫ ∞

−∞
(F (u+ r)− F (u))4f(u+ r)f(u)du, 6 > r > 0.

Note that f(x) = 1
6 for 10 < x < 16 and

F (x) =


0, if x ≤ 10,
x−10

6 , if 10 < x < 16,

1, if x ≥ 16.

Therefore, for 0 < r < 6,

fR6
(r) = 6(6− 1)

∫ ∞

−∞
(F (u+ r)− F (u))4f(u+ r)f(u)du = 6 · 5

∫ 16

10

(F (u+ r)− u− 10

6
)4f(u+ r)

1

6
du

(with v = u+ r) = 6 · 5
∫ 16+r

10+r

(F (v)− (v − r)− 10

6
)4f(v)

1

6
dv = 6 · 5

∫ 16

10+r

(F (v)− (v − r)− 10

6
)4 · 1

6

1

6
dv

= 6 · 5
∫ 16

10+r

(
v − 10

6
− (v − r)− 10

6
)4 · 1

6

1

6
dv = 6 · 5 · 1

62

∫ 16

10+r

(
r

6
)4dv =

5r4

65
(6− r).
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So,

P (the winner is at most 3 seconds faster than the slowest runner) = P (R6 ≤ 3)

=

∫ 3

0

fR6
(r)dr =

∫ 3

0

5r4

65
(6− r)dr =

1

64

∫ 3

0

5r4dr − 5

66

∫ 3

0

6r5dr

=
1

64
· 35 − 5

66
· 36 =

7

64
= 0.109375.

5 (3 points)

Let (X,Y )′ be two dimensional normal random vector. Suppose that the variance V (X) of X is equal to the variance
V (Y ) of Y. Are X − Y and X + Y independent random variables? Why?

Solution. Step 1: Since (X,Y )′ is a two dimensional normal random vector, it is from “Definition I” and “Theorem 3.1”
(Page. 121 book) that (X − Y,X + Y )′ is also a two dimensional normal random vector.

Step 2: Since (X − Y,X + Y )′ is a two dimensional normal random vector, the independence of X − Y and X + Y is
equivalent to cov(X − Y,X + Y ) = 0.

Step 3: The covariance can be computed as

cov(X − Y,X + Y ) = cov(X,X) + cov(X,Y )− cov(Y,X)− cov(Y, Y ) = cov(X,X)− cov(Y, Y ) = V (X)− V (Y ) = 0.

Theretofore, Yes, X − Y and X + Y are independent!

6 (3 points)

(6.1) (1p) Let {X1, X2, . . . , Xn, . . .} be a sequence of random variables with

P (Xn = π) = 1− 1√
n
, P (Xn = n) =

1√
n
, for n ≥ 1.

Prove that Xn converge to π in probability.
(6.2) (2p) Let {Y1, Y2, . . . , Yn, . . .} be a sequence of random variables with

P (Yn = π) = 1− 1

n2
, P (Yn = n) =

1

n2
, for n ≥ 1.

Prove that Yn converge to π almost surely.

Solution. (6.1) For any ϵ > 0, it follows that for large n,

P (|Xn − π| < ϵ) = P (Xn = π) = 1− 1√
n
→ 0, as n→ ∞,

which proves that Xn converge to π in probability.
(6.2) For any ϵ > 0, let us consider the events {|Yn − π| > ϵ}n≥1. The fact that

∞∑
n=1

P (|Yn − π| > ϵ) = (or ≤)

∞∑
n=1

P (Yn = n) =

∞∑
n=1

1

n2
<∞

implies (based on Borel-Cantelli lemma, Theorem 7.1, Page. 205 book) that P (|Yn − π| > ϵ i.o.) = 0, which is equivalent
to Yn → π almost surely (see statement (7.2) Page. 205 book).
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