1 (3 points)

Let a two dimensional random vector $(X, Y)^{\prime}$ have a joint probability density function as follows

$$
f(x, y)= \begin{cases}e^{-x^{2} y}, & \text { if } x \geq 1 \text { and } y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Find the probability density function of $X^{2} Y$.

2 (3 points)

Let a two dimensional random vector $(X, Y)^{\prime}$ have a joint probability density function as follows

$$
f(x, y)= \begin{cases}2, & \text { if } x \geq 0, y \geq 0 \text { and } x+y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(2.1) (1p) Find the marginal probability density function $f_{X}(x)$ of X.
(2.2) (2p) Compute the conditional expectation $E(Y \mid X=x)$.

3 (3 points)

Let $X_{1} \sim \operatorname{Exp}(1), X_{2} \sim \operatorname{Exp}(1), \ldots, X_{n} \sim \operatorname{Exp}(1), \ldots$ be a sequence of independent exponential random variables. Let

$$
S_{N}=X_{1}+X_{2}+\ldots+X_{N}
$$

where $N \sim \operatorname{Po}(10)$ is a Poisson random variable which is independent of X_{1}, X_{2}, \ldots When $N=0$, we define $S_{0}=0$. (3.1) (1p) Find the moment generating function $\psi_{S_{N}}(t)$ of S_{N}. (Hint: Moment generating function $\psi_{X}(t)=E\left(e^{t X}\right)$)
(3.2) (1p) Find the first moment $E\left(S_{N}\right)$ of S_{N}.
(3.3) (1p) Find the second moment $E\left(S_{N}^{2}\right)$ of S_{N}.

4 (3 points)

Suppose that the running times (in seconds) in a 100 -meter LiU race are distributed as $U(10.0,16.0)$ (namely, an uniform random variable on the interval $(10.0,16.0)$). Suppose that there are 6 competitors in a $100-\mathrm{meter} \mathrm{LiU}$ race, find the probability that the winner is at most 3 seconds faster than the slowest runner?

5 (3 points)

Let $(X, Y)^{\prime}$ be two dimensional normal random vector. Suppose that the variance $V(X)$ of X is equal to the variance $V(Y)$ of Y. Are $X-Y$ and $X+Y$ independent random variables? Why?

6 (3 points)

(6.1) (1p) Let $\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\}$ be a sequence of random variables with

$$
P\left(X_{n}=\pi\right)=1-\frac{1}{\sqrt{n}}, \quad P\left(X_{n}=n\right)=\frac{1}{\sqrt{n}}, \quad \text { for } n \geq 1
$$

Prove that X_{n} converge to π in probability.
(6.2)(2p) Let $\left\{Y_{1}, Y_{2}, \ldots, Y_{n}, \ldots\right\}$ be a sequence of random variables with

$$
P\left(Y_{n}=\pi\right)=1-\frac{1}{n^{2}}, \quad P\left(Y_{n}=n\right)=\frac{1}{n^{2}}, \quad \text { for } n \geq 1 .
$$

Prove that Y_{n} converge to π almost surely.
Discrete Distributions
Followingis a list of discrete distributions, abbreviations, their probability functions, means, variances, and characteristic functions. An asterisk $\left({ }^{*}\right)$ indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.
Probability function $E X \quad \operatorname{Var} X \quad \varphi_{X}(t)$

$0 \quad$
1
$p q$
$n p q$
0

$0 \quad 0$
0
p
ह
01 $2 \quad-$ \qquad
-12 $p(a)=1$ $p(-1)=p(1)=\frac{1}{2}$ O
$p(k)=\binom{n}{k} p^{k} q^{n-k}, k=0,1, \ldots, n ; q=1-p$ $p(k)=p q^{k}, k=0,1,2, \ldots ; q=1-p$
 ,\ldots
$k=0,1, \ldots, N p ;$ $k=0,1, \ldots$,
$\quad q=1-p ;$
$n-k=0, \ldots, N q$

Continuous Distributions

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Weibull $W(\alpha, \beta), \alpha, \beta>0$	$f(x)=\frac{1}{\alpha \beta} x^{(1 / \beta)-1} e^{-x^{1 / \beta} / \alpha}, x>0$	$\alpha^{\beta} \Gamma(\beta+1)$	$\begin{aligned} & a^{2 \beta}(\Gamma(2 \beta+1) \\ & \left.\quad-\Gamma(\beta+1)^{2}\right) \end{aligned}$	*
Rayleigh $\operatorname{Ra}(\alpha), \alpha>0$	$f(x)=\frac{2}{\alpha} x e^{-x^{2} / \alpha}, x>0$	$\frac{1}{2} \sqrt{\pi \alpha}$	$\alpha\left(1-\frac{1}{4} \pi\right)$	*
Normal $\begin{aligned} & N\left(\mu, \sigma^{2}\right) \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}},$ $-\infty<x<\infty$	μ	σ^{2}	$e^{i \mu t-\frac{1}{2} t^{2} \sigma^{2}}$
$N(0,1)$	$f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2},-\infty<x<\infty$	0	1	$e^{-t^{2} / 2}$
Log-normal $\begin{aligned} & L N\left(\mu, \sigma^{2}\right), \\ & -\infty<\mu<\infty, \sigma>0 \end{aligned}$	$f(x)=\frac{1}{\sigma x \sqrt{2 \pi}} e^{-\frac{1}{2}(\log x-\mu)^{2} / \sigma^{2}}, x>0$	$e^{\mu+\frac{1}{2} \sigma^{2}}$	$e^{2 \mu}\left(e^{2 \sigma^{2}}-e^{\sigma^{2}}\right)$	*
(Student's) t $t(n), n=1,2, \ldots$	$f(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n \Gamma\left(\frac{n}{2}\right)}} \cdot d \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{(n+1) / 2}},$ $-\infty<x<\infty$	0	$\frac{n}{n-2}, n>2$	*
$\begin{aligned} & \text { (Fisher's) } F \\ & \quad F(m, n), m, n=1,2, \end{aligned}$	$f(x)=\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot \frac{x^{m / 2-1}}{\left(1+\frac{m x}{n}\right)^{(m+n) / 2}},$ $x>0$	$\begin{aligned} & \frac{n}{n-2}, \\ & n>2 \end{aligned}$	$\begin{array}{r} \frac{n^{2}(m+2)}{m(n-2)(n-4)}-\left(\frac{n}{n-2}\right)^{2}, \\ n>4 \end{array}$	*

Continuous Distributions (continued)

Distribution, notation	Density	$E X$	$\operatorname{Var} X$	$\varphi_{X}(t)$
Cauchy				
$\quad C(m, a)$	$f(x)=\frac{1}{\pi} \cdot \frac{a}{a^{2}+(x-m)^{2}},-\infty<x<\infty$	\nexists	A	$e^{i m t-a\|t\|}$
$\quad C(0,1)$	$f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<\infty$	A	A	$e^{-\|t\|}$
Pareto	$f(x)=\frac{\alpha k^{\alpha}}{x^{\alpha+1}}, x>k$	$\frac{\alpha k}{\alpha-1}, \alpha>1$	$\frac{\alpha k^{2}}{(\alpha-2)(\alpha-1)^{2}}, \alpha>2$,	$*$
$\operatorname{Pa}(k, \alpha), k>0, \alpha>0$				

