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1 Basic Concepts and Floating Point systems

Exercise 1.1 Let a = 0.0987 ± 0.5 · 10−4 and b = 20.104 ± 4 · 10−3. Determine the number of
correct decimals and the number of significant digits for both a and b.

Exercise 1.2 Let c0 ≈ c̄0 = 2.99792458 · 106 be correctly rounded. How many correct decimals
and significant digits does the approximate value c̄0 have?

Exercise 1.3 Let a = 22.73531443. Round the value a correctly to 5 significant digits to obtain
the approximation ā. Give both the approximate value ā and an upper bound for the absolute error
|∆a| in the approximation.

Exercise 1.4 We approximate π by π̄ = 3.1415. How many correct decimals and significant digits
do we have?

Hint π = 3.1415926535 . . ..

Exercise 1.5 Round the mathematical constant of the golden ratio φ = 1.61803398875 . . . to five
correct decimals and also to five significant digits.

Exercise 1.6 Let ā = 22.73531 be an approximate value of a. The error in ā is |∆a| ≤ 4.7 · 10−3.
How many correct decimlals and significant digits does the approximation ā have?

Exercise 1.7 Let y = eπ. Classify the following error sources in the computation of y: The
rounding of π to 3.142 and the approximation ex ≈ 1 + x+ 1

2x
2.

Exercise 1.8 Let x = −102.232. Give a bound for the absolute error when x is stored on a
computer using the floating point system (10, 3,−10, 10).

Exercise 1.9 Let x = 168.3556541. What is the closest number to x that exists in the floating
point system (10, 5,−100, 100).

Exercise 1.10 A single precision floating point number x = (−1)s(1.f)22
e−127 is stored using 32

bits assigned as follows

s (1 bit) e (8 bits) f (23 bits)

Clearly show how the numbers x = 9.25 and x = −2.65625 are stored.

Exercise 1.11 Consider the floating point number system (10, 5,−9, 9), where β = 10 is the base
and t = 5 is the number of digits in the fractional part. Let x = 117.5614 and y = 0.01678214.
Find the closest numbers xr and yr in the floating point system.

Exercise 1.12 Suppose we represent a number x in the form x = m × βe. What do we call m,
β and e? Also, What else must be specified in order to properly define a floating point number
system?
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Exercise 1.13 Consider the floating point system (10, 2,−9, 9). Let a = 8.50·105 and b = 5.25·102 .
Compute the floating point results fl[a ·b] and fl[a/b]. In both cases also give a bound for the relative
error in the result.

Exercise 1.14 Rewrite the expressions
√
1 + x− 1, (1− x)−1 − (1 + x)−1, and 1− cos2(x) in such

a way that the cancellation is avoided.

Exercise 1.15 Let
√
101 = 10.04988 be correctly rounded so that the error is at most 0.5 · 10−5.

What is the resulting absolute error in x =
√
101 − 10? Also propose an alternative formula for

computing x that leads to a smaller error.
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2 Error Analysis

Exercise 2.1 Let f = (x − y)/z, where x = 8.25, y = 1.05 and z = 4.00 are correctly rounded.
Compute an approximate value for f together with a bound for the absolute error.

Exercise 2.2 Let f(x) = ebx, where b = 1.70 ± 0.01. Compute f(2) and also use the error propa-
gation formula to give an error bound.

Exercise 2.3 The area of a circle is A = πr2. Compute the area, and an error bound, for the case
when r = 23.76 ± 0.02 and we approximate π by 3.142.

Exercise 2.4 Let y = aeb, where a = 1.54 ± 0.03 and b = 3.17 ± 0.05. Compute the approximate
value ȳ and an error bound.

Exercise 2.5 The focal point of a lens can be determined by the formula

1

f
=

1

a
+

1

b
, where a = 32± 1 and b = 46± 1.3.

Determine f(a, b) and an error bound.

Exercise 2.6 We compute the function

f(x) =
√
1 + x−

√
1− x

for small x values on a computer with unit round off µ = 1.11 · 10−16. We find that the results
are quite poor and that the relative error in the result tends to grow as x → 0. Explain the poor
accuracy by performing an analysis of the computational errors and give a bound for the relative
error in the computed result f(x). For the analysis you may assume that all computations are
performed with a relative error at most µ.

Exercise 2.7 We want to evaluate a function f(x) on a computer, for small values of x, and have
two alternate expressions:

f1(x) =
1− cos(x)

sin(x)
or f2(x) =

sin(x)

1 + cos(x)

For the case x = 1.111·10−8 we evaluate both expressions in Matlab and obtain f1 = 9.9930 . . . 10−9

and f2 = 5.5550 . . . 10−9.

Assume that all numerical computations are performed with a relative error of at most the unit
round off µ and perform an analysis of the computational errors. Derive a bound for both the
absolute error in the results.

Hint The unit round off for Matlab is µ = 1.11 · 10−16.

Exercise 2.8 We compute the function

f(x) = ex − 3x
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for small x values on a computer with unit round off µ=1.11 · 10−16. Preform an analysis of the
computational errors to obtain a bound for the relative error in the computed results f(x). For
the analysis you may assume that all computations are performed with a relative error at most µ.
Also, use the obtained bound to argue if cancellation occurs during the computations. In case of
cancellation also suggest an alternative formula that can be expected to give better accuracy.

Exercise 2.9 We want to evaluate the function

f(x) =
x− sin(x)

x3

for small values of x on a computer with the unit round off µ=1.11·10−16. A Taylor series expansion
shows that

lim
x→0

f(x)=
1

6
,

but when we compute the expression for x = 10−7 we get the difference |f̄(10−7)− 1
6 | ≈ 5.4 · 10−3.

Explain the above result by performing an error analysis that clearly shows how large the error is
when f(x) is evaluated on the computer. For the analysis you should assume that all computations
are carried out with a relative error of at most µ.

Hits The Taylor series expansion of sin(x) is sin(x) = x− x3

3! +
x5

5! − . . .

Exercise 2.10 We compute the function

f(x) = 1− 2x cos(x)

for small x values on a computer with unit round off µ=1.11 · 10−16. Preform an analysis of the
computational errors to obtain a bound for the relative error in the computed results f(x). For
the analysis you may assume that all computations are performed with a relative error at most µ.
Also, use the obtained bound to argue if cancellation occurs during the computations. In case of
cancellation also suggest an alternative formula that can be expected to give better accuracy.

Exercise 2.11 Assume that we have an approximate value x̄ and want to find the resulting error
∆f . The general error propagation formula states that

|∆f | . |∂f
∂x

||∆x|.

If |f ′(x̄)| ≈ |f ′(x)| = 0 the formula fails. Show that for this case it is more resonable to use

|∆f | . |f ′′(x̄)| |∆x|2
2

.
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3 Non-linear equations

Exercise 3.1 Show that the function f(x) = ex − 4
2+x has a root in the interval [0, 1].

Exercise 3.2 The equation ex = 2(1 − x) has a root x∗ ≈ 0.3. Does the fixed point iteration
xk+1 = 1− 1

2e
xk converge to the root?

Exercise 3.3 We have solved the equation f(x) = x3 + x − 7 = 0 and obtained an approximate
root x̄ = 1.7. Estimate the error in the approximation x̄.

Exercise 3.4 We have solved f(x) = 0 using Newtons method and obtained an approximate root
x̄ such that f(x̄) = 0 when we evaluate the function on the computer. Suppose we can compute
f(x) with an absolute error at most 10−8 and that 1.7 ≤ f ′(x) ≤ 2.2 near the root x∗. Estimate
the error in x̄ for this case.

Exercise 3.5 Determine the positive root of the equation x = 5(1−e−x) with five correct decimals.

Exercise 3.6 We are intressted in solving the equation x = 2 sin(x). Two possible fixed point
iterations are obtained by using the iteration functions φ1(x) = 2 sin(x) or φ2(x) = x

2 + sin(x).
Which of these fixed point iterations would have the fastest convergence if x∗ ≈ 1.9?

Exercise 3.7 Consider the equation f(x) = 2 cos(x) − 4x which has a positive root x∗ ≈ 0.45.
Show theoretically that the fixed point iteration xk+1 = φ(xn) = 1

2 cos(xn) is convergent for any
starting value x0. Also, if we use x0 = 0.45 then we get

k xk
0 0.4502236
1 0.4501749
2 0.4501855
3 0.4501832

Estimate the error in the approximation x̄ = 0.4501832.

Exercise 3.8 The equation f(x) = x− 3e−x = 0 has a solution x∗ ≈ 1.05.

a) Estimate the error in the approximation x̄ = 1.05.

b) Investigate the following fixed point iterations theoretically

(i) xn+1 = 3e−xn , (ii) xn+1 = (2xn + 3e−xn)/3,

(iii) xn+1 = 1.05xn + 3e−xn , (iv) xn+1 = (xn + 3e−xn)/2.

Determine if they converge towards x∗ and also find out which of the methods that have the
fastest convergence.

c) Estimate the number of iterations that would be needed for the fastest of the methods from
b) if x0 = 1.05 and we want to find the root with an absolute error of at most 10−10.
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Exercise 3.9 Show that Newtons method is convergent when applied to the equation f(x) = x2 = 0
and if the starting guess is x0 = 1. Also show that the order of convergence is p = 1.

Exercise 3.10 Show that Newton-Raphsons has a quadratic rate of convergence if x∗ is a single
root.

Exercise 3.11 The equation f(x) = x3 − 7.5x2 + 18x − 14 = 0 has a double root x∗. Using the
secant method we have obtained x̄ = 1.99789. Derive the error estimate

|x̄− x∗|2 = 2

∣∣∣∣
f(x̄)

f ′′(ξ)

∣∣∣∣ , ξ ∈ (x̄, x∗),

which is valid for double roots. Also compute the error bound for the approximate root x̄ = 1.99789.

Exercise 3.12 Consider the equation f(x) = cos(x) − xex = 0. We use the Newton-Raphson
method for finding the root, with the starting guess x0 = 1, and obtain the following table

k xk f(xk)

0 1.0000000 −2.2 · 100
1 0.6530794 −4.6 · 10−1

2 0.5313434 −4.2 · 10−2

3 0.5179099 −4.6 · 10−4

4 0.5177574 −5.9 · 10−8

We decide to use x̄ = 0.5178 as an approximation of x∗. Estimate the error in the approximation
x̄. Also state the definition of the order of convergence for an iterative method and use the table
above to estimate the order of convergence for the Newton-Raphson method.

Exercise 3.13 The Newton-Raphsson method is used to find a root of the cubic polynomial f(x) =
x3 − 9x2 + 24x − 20. We obtain the following iteration sequence

k xk |xk − x∗|
0 1.8000 0.2000
1 1.8970 0.1030
2 1.9476 0.0524
3 1.9736 0.0264
4 1.9867 0.0133

State the definition of order of convergence p for an iterative method. Also use the table to determine
the order of convergence when Newton-Raphson’s method is applied to this specific function f(x).
Also, use the results and known properties of Newton-Raphson’s method to determine if x∗ = 2 is
a double or single root.
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Exercise 3.14 We wish to implement the standard function
√· on a computer using double preci-

sion arithmetic. We compute x =
√
a by solving the equation f(x) = x2 − a.

a) Derive the iteration formula xk = ϕ(xk−1) obtained by applying Newton-Raphsons method
to the above equation.

b) Explain clearly why it is sufficient to consider the case 1 ≤ a < 4, and thus 1 ≤ x < 2.

c) A convergence analysis for the Newton-Raphson method leads to the estimate,

|xk −
√
a| . 1

2
|ϕ′′(

√
a)||xk−1 −

√
a|2.

Take advantage of this and determine the number of iterations needed to achive an error
bound |xk −

√
a| ≤ µ = 1.1 · 10−16 if x0 = 1.5 is used.

d) We wish to decrease the number of iterations, by picking a better starting guess, and select
evenly spaced numbers aj = 1 + 3j/n, j = 0, . . . , n − 1, and compute

√
aj exactly. Clearly

demonstrate how the values (
√
aj , aj) can be used to obtain a better starting guess. What

table size n do we need to reduce the number of iterations by one compared to the result in
c)?
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4 Polynomial and Spline Interpolation

Exercise 4.1 Let pn(x) be a polynomial of degree n. How many interpolation conditions of the
type pn(xi) = fi are needed for pn(x) to be uniquely determined?

Exercise 4.2 Let the following table with correctly rounded function values be given

x 0.9 1.1 1.2

f(x) 0.4710 0.2452 0.2385

Find an approximate value for f(1.03). Also provide a complete error estimate.

Exercise 4.3 In an application we need to implement the function y = log(x), for 1 ≤ x ≤ 4, with
a maximum error ε ≤ 10−5. We decide to use linear interpolation and create a table {xi, yi)}ni=1,
where x1 = 1, xn = 4 and h = xi+1 − xi is the stepsize. In the table we store approximate values
yi ≈ log(xi), rounded to 6 correct digits. Determine the smallest size n for the table so that the
maximum error in the interpolated values is less than 10−5.

Exercise 4.4 Let p(x) be the linear polynomial that interpolates the function f(x) = sin(x) at the
points x = 0 and x = 1. Show that the truncation error is bounded by |p(x) − sin(x)| ≤ 1

8 , for
0 < x < 1.

Exercise 4.5 A table with correctly rounded function values is given.

x 0.0 0.5 1.0 1.5

f(x) 1.80 2.80 4.10 5.90

Use linear interpolation to find an approximation of f(0.4) and also give an error estimate.

Exercise 4.6 The following table is given

x 0.6 0.7 0.8 0.9

f(x) 1.23 1.29 1.32 1.07

Use quadratic interpolation and compute an approximate value for f(0.74). Also estimate the
truncation error in the result.

Exercise 4.7 Let x1, x2, x3 and x4 be given interpolation points. In the Lagrange interpolation
formula we use basis functions ℓi(x) such that ℓi(xj) = 1 if i = j and zero otherwise. Give an
explicit expression for the basis function ℓ2(x) for the case with n = 4 interpolation points. What
is the degree of the basis polynomial?
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Exercise 4.8 Use Lagrange interpolation to find the polynomial of degree 2 that interpolates the
table

x 1 2 3

f(x) 1.3 0.6 1.9

Exercise 4.9 Let p(x) = c0 + c1x+ c2x
2 + c3x

3 be a cubic polynomial. We want to find values for
the coefficients so that p(0) = p(1) = 0 and p′(0) = p′(1) = 1. Show how to derive a linear system
of equations such that the solution c = (c0, c1, c2, c3)

T are the coefficients of a cubic polynomial
satisfying these conditions. Also find the specific polynomial satisfying all the above conditions.

Exercise 4.10 Spline interpolation can be used to approximnate a function y = f(x). We have a
table

x -2 -1 0 1 2

f(x) 0 1 3 1 0

We attempt to approximate f(x) by a cubic spline s(x). Clearly state the conditions that have to
be satisfied for s(x) to be a cubic spline that interpolates the above table. Is the given information
sufficient for the spline s(x) to be uniquely determined?

Exercise 4.11 Let

s(x) =

{
x+ 1 0 ≤ x < 1,
x3 − 3x2 + 4x 1 ≤ x < 2.

Is s(x) a cubic spline?

Exercise 4.12 Let

s(x) =

{
ax+ 1 0 ≤ x < 1,
bx3 + cx2 1 ≤ x < 2.

Determine the constants a, b and c so that s(x) is a cubic spline.

Exercise 4.13 Approximate the function f(x) = x3+x2+1 by a cubic spline s(x) that interpolates
f(x) at the nodes x = 0, 0.3, 0.6, 0.7 and 1.0. Use correct end point conditions, i.e. s′(0) = f ′(0)
and s′(1) = f ′(1). Give the expression for s(x).

Exercise 4.14 Consider a case where s(x) is defined by two cubic polynomials,

s(x) =

{
s1(x) = 0.9 + 0.1x+ 0.6x2 + ax3, 0 ≤ x < 1,
s2(x) = 2.0 + b(x− 1) + c(x− 1)2 + 0.4(x − 1)3, 1 ≤ x ≤ 2.

Find the appropriate values for the constants a, b and c so that s(x) is a cubic spline that interpolates
the table tabellen:

x 0 1.0 2

s(x) 0.9 2.0 6.7

with the end point conditions s′(0) = 0.1 and s′(2) = 7.3.
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Exercise 4.15 A function s(x) is given by two cubic polynomials

s(x) =

{
s1(x) = 0.8 + 0.2x− 0.4x2, 0 ≤ x < 1,
s2(x) = 0.6− 0.6(x − 1) − 0.4(x − 1)2 − 0.4(x − 1)3, 1 ≤ x ≤ 2.

Is s(x) a cubic spline? Present the calculations. Also determine if s(x) is a natural cubic spline?

Exercise 4.16 A function f(x) can be approximated by a piecewise polynomial s(x) on the interval
[a, b] by introducing evenly spaced nodes

a = x0 < x1 < x2 < . . . < xN = b.

On each subinterval [xk, xk+1] we let s(x) be given by a cubic polynomial

sk(x) = ak + bk(x− xk) + ck(x− xk)
2 + dk(x− xk)

3, xk ≤ x < xk+1.

Clearly formulate the conditions that needs to be satisfied for s(x) to be a cubic spline, defined on
[a, b], and that interpolates f(x) in the nodes {xk}Nk=0.

Also illustrate the case N = 3 and draw a sketch that clearly illustrates the nodes, interpolation
points and polynomials.

Exercise 4.17 In order to obtain a unique interpolating spline s(x) we use correct end point con-
ditions, i.e. s′(a) = f ′(a) and s′(b) = f ′(b). We experiment with different number of nodes N and
measure the maximnum error max |s(x)− f(x)| on the interval. This gives us the table

N 5 10 20

max |s(x)− f(x)| 0.0435 0.00269 0.000172

We know that the maximum error should depend on the step size h = max |xk+1 − xk| as Chp,
where p is an integer and C is a constant. Use the numbers in the table to determine p.

Exercise 4.18 Construct a linear spline that interpolates the table

x 1 3 4

f(x) 1.56 2.31 1.97
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Exercise 4.19 A quadratic Beziér curve is given by the expression

p(t) = (1− t)2P1 + 2(1− t)tP2 + t2P3, 0 < t < 1,

where P1, P2 and P3 are control points.

a) Show that the tangent, for t = 0 is parallell to the vector P2 − P1.

b) Suppose we want to put together two quadratic Beziér curves. We select five control points
according to the sketch:

P1

P2

P3

P4

P5

The point P3 is common for both curve segments. We have P2 = (2 , 6)T , P3 = (3 , 5)T and
P5 = (6 , 1). Clearly show how to pick the point P4 so that the tangent direction of the curve
is continuous in at P3 and so that the tangent direction at P5 is vertical.

Exercise 4.20 P1 = (1 , 0)T , P2 = (1 , 3)T , P3 = (4 , 3)T and P4 = (4 , 2)T . Draw a sketch that
clearly shows the convex hull formed by these points. Also use the available information to draw
the cubic Beziér curve formed by the four points P1, . . . , P4 as accurately as possible.

Exercise 4.21 A cubic Beziér curve is given by

p(t) = (1− t)3P1 + 3(1− t)2tP2 + 3(1 − t)t2P3 + t3P4, 0 < t < 1,

where P1, P2, P3 and P4 are control points.

a) Show that the tangent of the curve in the starting points t = 0 is parallel to the vector P2−P1.

b) Give the definition of the convex hull formed by the points P1, P2, P3 and P4. Also show that
the cubic Beziér curve is located within the convex hull formed by its control points P1, P2,
P3 and P4.

c) Let P1 = (0 , 0)T , P2 = (1 , 3)T , P3 = (4 , 2)T and P4 = (5 , 1)T . Also let s(t) be the cubic
Beziér curve given by these control points. Compute s(1/2) and use the available information
to draw a sketch that, as accurately as possible, shows the shape of the curve s(t).

Exercise 4.22 Create a parametric curve composed of two cubic Beziér curves as shown in the
figure
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P1=(0, 5)T P2=(2, 5)T

P3

P4=(2, 3)T

P5

P6=(4, 0)T
P7=(5, 0)T

Chose the points P3 and P5 so that the curve has a continuous tanget direction at P4. Also make
sure the slope is exactly −2, e.g. the line from P3 to P5 can be expressed as y = −2x+ b for some
constant b.

14



5 Integration, Differentiation and Extrapolation

Exercise 5.1 Suppose a function f(x) have the required number of continuous derivatives. We
want to approximate the derivative f ′(x) by the difference formula

Df(x) =
1

h
(f(x+ h)− f(x)).

Show that the truncation error can be written as f ′(x)−Df(x) ≈ Ch. Give an expression for C.

Exercise 5.2 The the function f(x) be known at the points {xk} by the table

x 0.0 0.25 0.5 0.75 1.0

f(x) 1.000 1.015 1.006 0.882 0.670

with correctly rounded function values. Use the Trapezoidal method to compute an approximation
of the integral

I =

∫ 1

0
f(x)dx,

using the stepsize h = 0.25. Estimate the error in the result.

Exercise 5.3 Suppse a function f(x) can be computed with a relative error at most ε. Derive a
bound for the resulting error when we want to compute an integral

I =

∫ b

a
f(x)dx,

using Simpsons rule. Also discuss if there are any cases where the error bound indicates that the
the computation may be problematic.

Exercise 5.4 To compute the derivative f ′(2) we can use the formula

Df(2) =
1

2h
(−f(x+ 2h) + 4f(x+ h)− 3f(x)).

When the formula is applied for a few different h values we obtain the results

h 0.2 0.1 0.05

error 0.342 0.0861 0.0209

Assume that the error is proportional to hp and use the table to determine p.

Exercise 5.5 Suppose F1(h) = a+ bhp1 + chp2 , for some constants a, b and c and positive integers
p1 and p2 such that p1 < p2. Show that

F1(h) +
F1(h)− F1(qh)

qp1 − 1
= a+O(hp2).
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Exercise 5.6 We compute an approximation of an integral using a numerical method T (h) with a
truncation error RT ≈ Ch4, where C is a constant. We use two different values for h and obtain

h 0.1 0.05

T(h) 1.6713957 1.6712783

Use the table to estimate the truncation error in the computed value T (0.05).

Exercise 5.7 A numerical method has a truncation error that can be written as RT = Chp, where
C is a constant, p > 0 is an integer, and h is a discretization parameter. The method computes a
value T (h) which approximates the exact value T0. We compute T (h) for a few different h-values
to obtain the table

h 0.4 0.2 0.1 0.05

T(h) 3.100 2.701 2.604 2.578

Use the table to determine p.

Exercise 5.8 Compute an approximation of
∫ 1
0 f(x)dx using the following table with correctly

rounded function values

x 0 1/4 1/2 3/4 1

f(x) 1.5000 1.2412 1.0713 0.9663 0.9073

by the Trapezoidal method. Use the step size h = 1/4. Also estimate the error in the approximate
value.

Exercise 5.9 We use a numerical method to compute the derivative of a function f(x) and obtain

h 0.1 0.05 0.025

derivative 0.69280 0.71195 0.72171
error -0.0388 -0.0196 -0.0099

The dominating source of error is the truncation error RT which can be assumed to depend on h as
RT ≈ Chp. Use the table to compute both C and p. Also determine the largest possible step size
that can be used if we require that |RT | ≤ 10−8.

Exercise 5.10 We want to compute an approximation of

∫ 4

1
f(x)dx, where f(x) = cos(x2)

√
4− x.

Do you expect the Trapezoidal method to work well for this case? Explain your conclusion clearly.
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Exercise 5.11 We want to compute the value of the integral

I =

∫ 1

0
e1−x2

dx,

using Simpsons rule. We use a few different step sizes h and obtain

h 1/2 1/4 1/8

S(h) 2.06246 2.03208 2.03021

(a) Suppose S(h) = I + RT , where RT ≈ c · hp for constants c and p. Clearly demonstrate how
the table can be used to determine values for c and p. Answer with both a formula and the
resulting values for c and p.

(b) Suppose we want to find an approximate value for the integral with a total error |RT | < 10−6.
What step size would be required? Motivate your answer.
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6 Differential Equations

Exercise 6.1 Consider the problem {
y′ = y2 − t.
y(0) = 1,

Use the Euler method, and the stepsize h = 0.5, to compute an approximation of y(0.5). With
the stepsize h = 0.1 the Euler method gives an approximation y(0.5;h = 0.1) ≈ 1.668. Use this
information to estimate the truncation error in the approximation y(0.5;h = 0.5).

Exercise 6.2 Consider the ordinary differential equation y′ = t2 − y, with y(0) = 2. Compute
approximations of the solution y(0.2) using the Euler method and stepsizes h = 0.2 and h = 0.1.
Also estimate the error in the approximation y(0.2;h = 0.1).

Exercise 6.3 Consider the problem y′ = −100y + sin2(t), y(0) = 0. Determine the maximum
stepsize h such that the Euler method is stable when applied to the problem.

Exercise 6.4 We want to solve the problem y′ = −25y+t+0.04, y(0) = 1, using the Euler method.
We require that thre solution is stable. Find the largest possible time step h that can be used.

Exercise 6.5 The Trapezoidal method can be written

yk+1 = yk +
h

2
(f(tk, yk) + f(tk+1, yk+1)).

Determine if the method is explicit or implicit. Motivate your answer. Also show that the method
is stable for hλ < 0. This means that the trapezoidal method is always stable.

Exercise 6.6 Heun’s method computes yk ≈ y(tk) by the steps

k1 = hf(tk, yk),
k2 = hf(tk + h, yk + k1),
yk+1 = yk +

1
2 (k1 + k2).

Derive a condition that guarantees that Heun’s method is stable when applied to the test problem
y′ = λy, y(0) = 1.

Exercise 6.7 Rewrite the initial value problem y′′ + 3y′ − ty + 1 = 0, y(0) = 1, y′(0) = 0, as a
system of first order.

Exercise 6.8 We have the second order equation

y′′ = 2y(1 + y2), y(0) = 1, y′(0) = 2.

Rewrite the problem as a system of first order and compute an approximation of y(0.4) using the
Euler method and h = 0.2.

Exercise 6.9 Van der Pools equation is

y′′ + e(y2 − a)y′ + y = 0, y(0) = a, y′(0) = b.

Rewrite the equation as a system of first order equations.
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7 Basic matrix operations and linear systems of equations

Exercise 7.1 Suppose A ∈ R
m×m and B ∈ R

m×n, m > n. How many operations are required to
evaluate the formula z = (A+ I)Bx+ y, where x and y are vectors.

Exercise 7.2 Suppose A, B, and C are matrices and b is a vector. How would you implement the
formula

x = B−1(2A+ I)(C−1 +A)b.

without computing any matrix inverse? Aim for as few arithmetic operations as possible.

Exercise 7.3 Suppose we want to solve the upper triangular system Rx = y by backwards substi-
tution. Clearly show how many floating point operations are needed.

Exercise 7.4 The following table shows the time t, in seconds, needed to solve linear systems of
equations with n unknowns on a computer.

n 1024 2048 4096 8192

t 0.36 2.67 19.18 150.17

The LU -decomposition followed by two triangular systems is used. Is the algorithms computational
complexity as expected?

Exercise 7.5 The unit circle can be defined as all points x = (x1 , x2) such that ‖x‖ = 1. Draw
the unit circle when ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ is used.

Exercise 7.6 Explain what is ment by a matrix norm beeing induced from a vector norm. Also
show that if A and B are matrices then for an induced norm ‖AB‖ ≤ ‖A‖‖B‖.

Exercise 7.7 Prove the inequality ‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞.

Exercise 7.8 Let u ∈ R
m and v ∈ R

n. Show that

‖uvT ‖2 = ‖u‖2‖v‖2.

Exercise 7.9 Prove that ‖I‖ = 1 and ‖A‖‖A−1‖ ≥ 1 for all matrix norms induced by a vector
norm.

Exercise 7.10 Let x = (1 , −3 , 7)T . Compute ‖x‖1, ‖x‖2, and ‖x‖∞.

Exercise 7.11 Let x̄ = (1.23 , 0.37 , −2.6)T and assume that the elements x̄k are correctly rounded.
Compute both the absolute and relative error measured in ‖ · ‖∞.

Exercise 7.12 Let

A =




1.2 0.3 −2.7
3.1 −0.5 3.2
1.6 −0.8 −2.3


 .

Compute ‖A‖∞.
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Exercise 7.13 Formulate the following system of equations on matrix form Ax = b:





2x1 − x2 + 2x3 = 1,
3x1 + x2 − x3 = 0,
−3x1 + x2 + 2x3 = −3.

Exercise 7.14 Find a permutation matrix P such that

P




x1
x2
x3
x4


 =




x1
x4
x2
x3


 .

Exercise 7.15 Find a permutation matrix P such that

P




1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6


 =




3 4 5 6
9 0 1 2
1 2 3 4
5 6 7 8


 .

Exercise 7.16 Find a Gauss transformation M such that

M




2
3
0.6
−1.8


 =




2
3
0
0


 .

Exercise 7.17 Suppose we have a linear system Ax = b where

A =




2 1 −2
−1 0 3
1 2 −1


 and b =




6
1
−3


 .

During the first step of Gaussian elimination we multiply the system with a matrix M1 such that
the new system M1Ax = M1b is




2 1 −2
0 0.5 2
0 1.5 0


x =




6
4
−6


 .

Give the Gausstransformation M1.

Exercise 7.18 A Gauss transformation M1 that eliminates the non-zeros from the first column of
a matrix has the form

M1 =




1 0 0
−m21 1 0
−m31 0 1


 .

Show that the matrix can be written as M1 = I −meT1 . Also give the elements of the vector m in
terms of the elements of the matrix A = (aij) and show that M−1

1 = I +meT1 .
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Exercise 7.19 The Gauss transformation M2 that is used during the second step of Gaussian
elimination has the structure

M2 =




1 0 0 0
0 1 0 0
0 −m32 1 0
0 −m42 0 1


 .

Show that M2 can be written as M2 = I − meT2 where m = (0, 0,m32,m42). Also show that
M−1

2 = I +meT2 .

Exercise 7.20 Let

A =




2 1 −2
−3 0.5 −2
1 2.5 0


 .

Is pivoting required during the first step of Gaussian elimination? If so give the appropriate per-
mutation matrix to use.

Exercise 7.21 After one step of Guassian elimination we have




2 1 −2
0 −0.5 1.6
0 1.7 0.3


 .

Give the permutation matrix P2 and the Gausstransformation M2 to use the the next step of the
Guassian elimination. Also carry out the step and given the resulting upper triangular matrix U .

Exercise 7.22 We need to solve a system of equations Ax = b, where

A=




1 1.2 −2.3
2 0 −1
−1 1.5 2.1


 and b =




−0.5
1.2
1.27


 .

We compute the decomposition PA = LU where

L=




1 0 0
−0.5 1 0
0.5 0.8 1


 U=




2 0 −1
0 1.5 1.6
0 0 −3.08


 P =




0 1 0
0 0 1
1 0 0


 .

Take advantage of the decomposition to compute the solution x.

Exercise 7.23 A computer program has computed the decomposition PA = LU and the output
is

L=




1 0 0
−0.7 1 0
0.3 1.8 1


 U=




1.7 −2.3 −1.4
0 1.2 −0.5
0 0 3.1


 P =




1 0 0
0 0 1
0 1 0


 .

Determine if pivoting was used correctly during the computations.
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Exercise 7.24 Let a matrix A and a vector b̄ be given as

A=




1 −2 0
2 0 1
−1 0 1


 b̄ =




−1.03
1.34
0.78




where the elements of b̄ are correctly rounded. The system of equations Ax = b was solved using
Gaussian elimination and the solution x = (0.1867 , −0.4217 , 0.9667)T . Find an upper bound for
the relative error in the solution x caused by the rounding errors in the right hand side.

Hint You may use that ‖A−1‖∞ = 1.

Exercise 7.25 Let

A =




3.1 −1.2 2.6
1.5 −0.7 3.6
−4.1 1.1 0.7


 .

If we solve the system Ax = b1, where b = (0.654 , 0.765 , −1.042)T we obtain the solution x =
(1.2595 , 3.5113 , 0.3705)T . Give an upper bound for the change in the solution x if we instead use
the approximate right hand side b̄ = (0.657 , 0.761 , −1.039)T .

Hint Use that ‖A−1‖∞ = 17.9052.

Exercise 7.26 Let PA = LU be the LU decomposition. Prove the formula

det(A) = (−1)kΠn
i=1uii.

What is k here?

Exercise 7.27 Let r = b − Ax̂ be the residual for an approximate solution to the linear system
Ax = b. Prove the formula:

‖x− x̂‖ ≤ ‖A−1‖‖r‖.

Exercise 7.28 Let

A=




2 1 −1
1 3 −2
2 0 1


 och =




1.12
−1.07
2.34


 .

and the decomposition PA = LU , where

L=




1 0 0
0.5 1 0
1 −0.4 1


 U=




2 1 −1
0 2.5 −1.5
0 0 1.4


 P =




1 0 0
0 1 0
0 0 1


 .

be given. Use the decomposition to compute the determinant det(A). You may use that det(AB) =
det(A)det(B).
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8 Least Squares Problems and Orthogonal Decompositions

Exercise 8.1 Suppose we have a series of measurements (xi, yi), i = 1, 2, . . . ,m, and want to find
a function of the type y = f(x) = c0 + c1x + c2 sin(x) that best fits the data in the least squares
sense. Formulate the problem as an over determined linear system Ax = b.

Exercise 8.2 An harmonic wave is described by the amplitude and the phase shift, i.e. u(t) =
A · sin(t+ φ). Suppose we have a sequence of measurements (ti, u(ti)), i = 1, 2, . . . ,m, and want to
find A and φ using the least squares method. First explain why the least squares method cannot
be applied directly. Also rewrite the problem in such a way that the least squares method can be
used.

Exercise 8.3 The time needed for a certain algorithm to complete can be described by the formula
t ≈ Cnp, where n is the problem size, p is the computational complexity, and C is the average time
needed for one arithmetic operation. The following table is available

n 100 200 300 400

t 1.213 2.370 3.619 4.875

Formulate the problem of estimating the parameters C and p from the given data as an over
determined linear system Ax = b.

Exercise 8.4 Suppose Q is an orthogonal matrix. Show that ‖Qx‖2 = ‖x‖2, for all vectors x, and
thus ‖Q‖2 = 1.

Exercise 8.5 If A is both an ortgohonal matrix and an orthogonal projection. What can you
conclude about A?

Exercise 8.6 Suppose A ∈ R
m×n, m > n, and that we have the reduced QR decomposition

A = Q1R. Show how the decomposition can be used to find the vector x that minimize ‖Ax− b‖2.

Exercise 8.7 Suppose A ∈ R
m×n, m > n, and that we have the QR decomposition

A = Q

(
R
0

)
= Q1R

Show that the linear system Ax = b has an exact solution if b = Q1Q
T
1 b.

Exercise 8.8 Consider the vector a as an n× 1 matrix. Write out its reduced QR decomposition
explicitly. Also write down a formula for the solution of the least squares problem ax ≈ b, where b
is a given n× 1 vector.

Exercise 8.9 We are intressted in the least squares problem min ‖Ax− b‖2. Suppose A = Q1R is
the reduced QR decomposition. Use Q1 to give a formula for a orthogonal projection P , such that
Pb = r = b−Ax, where x is the least squares solution.

23



Exercise 8.10 Compute the reduced QR factorization of the matrix

A =




0
√
2

−1 1
1 1


 .

Exercise 8.11 Let W ∈ R
n×n be real, symmetric, positive definite, and let ‖ · ‖W be defined by,

‖x‖2W = xTWx.

Verify that ‖x‖W = 0 if and only if x = 0. Also derive the normal equations for the minimization
problem,

min
x

‖Ax− b‖W .

Hint Use the Cholesky factorization W = RTR.

Exercise 8.12 Show that ‖A‖2 = σ1 and if A−1 exists then ‖A−1‖2 = 1/σn.

Exercise 8.13 Let AT be an m × n matrix of rank k < min(m,n). Use the decomposition A =
UΣV T to give an orthogonal basis for null(AT ).

Exercise 8.14 Show that if A ∈ R
m×n has rank n, then ‖A(ATA)−1AT ‖2 = 1.

Exercise 8.15 Suppose the matrix B ∈ R
m×n has full column rank. Use the decomposition B =

UΣV T to give a formula for the solution to the the problem

min
x

‖Bx‖2, subject to ‖x‖2 = 1.

Exercise 8.16 Suppose A ∈ R
m×n, m > n, rank(A) = n, and that we have a factorization

A = UΣV T . Clearly demonstrate how the matrices U and V provides basis vectors for the spaces
Range(A) and null(A). What are the dimension of the range and null space respectively.

Exercise 8.17 Let A ∈ R
m×n, m > n, and rank(A) = n. Demonstrate how the decomposition

A = UΣV T can be used for solving the least squares problem

min
x∈Rn

‖Ax− b‖2.

Give formulas for both the solution x and the redisual r = b−Ax.

Exercise 8.18 Let A ∈ R
m×n, m < n, and rank(A) = m. Let b ∈ R

m. Show that the formula

x =

m∑

i=1

uTi b

σi
vi

provides a solution to Ax = b. Is the solution unique?
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Exercise 8.19 Suppose we want to find the solution to a linear system Ax = b, where rank(A) =
k < n so that the solution x is not unique. Demonstrate how the solution x can be split into two
parts,

x = x1 + x2, x1 ∈ null(A)⊥, and, x2 ∈ null(A),

and how the SVD of A can be used to write expressions for the solution components x1 and x2.

Exercise 8.20 Consider the Least Squares problem with linear constraints,

min ‖Ax− b‖2, for all x ∈ R
n such that Bx = 0,

where A is m× n, m > n, and B is n× n.

a) Suppose rank(B) = n. What is the solution of the least squares problem?

b) Suppose rank(B) = k < n. Show how the SVD can be used to derive a formula for the solution
of the least squares problem.

Exercise 8.21 Let A ∈ R
m×n, where m >> n, have full column rank. Use the decomposition

A = UΣV T to develop a criteria that ensures that the linear system Ax = b has a solution. Try
and make the criteria as inexpensive as possible to check.

Exercise 8.22 Tikhonov regularization means replacing an ill-conditioned linear system Ax = b
by the more stable problem,

min
x

‖Ax− b‖22 + λ2‖x‖22,

where λ is the regularization parameter. Show that the normal equations of the above least squares
problem are

(ATA+ λ2I)x = AT b.

Also derive a formula for the singular values of the matrix (ATA+ λ2I) and use the result to show
that the normal equations are not ill-conditioned (provided λ is selected appropriately). Finally
derive a formula for the solution xλ.
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1 Basic Concepts and Floating Point systems

Exercise 1.1 We first observe that |∆a| ≤ 0.5 · 10−4 and |∆b| ≤ 0.4 · 10−2 < 0.5 · 10−2. Thus a
has 4 correct decimals and b has 2. Further a has 3 significant digits and b has 4.

Exercise 1.2 We rewrite c̄0 as 2997924.58 Thus if the approximate value is roundned correctly it
has two correct decimals. With 7 digits in the integer part the total number of significant digits is
this 9.

Exercise 1.3 In order to obtain 5 significant digits we need 3 correct decimals. Thus ā = 22.735
and |∆a| ≤ 0.5 · 10−3.

Exercise 1.4 The absolute error in the approximation is |π − π̄| ≤ 9.3 · 10−5 = 0.093 · 10−3 <
0.5 · 10−3. Thus the approximation has 3 correct decimals and 4 significant digits.

Exercise 1.5 The rounded value 1.61803 has five correct decimals because |φ−1.61803| = 0.00000398875 . . . =
0.398875 . . . × 10−5 ≤ 0.5 × 10−5. Further, the the rounded value 1.6180 has five significant digits.

Exercise 1.6 Note that |∆a| ≤ 4.7 · 10−3 < 0.5 · 10−2. Hence ā has 2 correct decimals. Add the
two digits before the decimal point and we have 4 significant digits.

Exercise 1.7 The rounding of π is an error in used data RX , which is propagated to the result.
The approximation of the exponential function is a truncation error RT .

Exercise 1.8 The unit round-off for the number system is µ = 0.5 · 10−3. Thus |∆x| ≤ µ|x| ≤
0.5 · 10−3102.232 < 0.052.

Exercise 1.9 First write as a normalized number x = 1.683556541 · 102. Then round to 5 correct
digits in the fractional part and obtain x̄ = 1.68356 · 102.

Exercise 1.10 The numbers are stored as follows

0 10000010 00101000. . .00 and 1 1000000 01010100. . .00

Exercise 1.11 We rewrite the numbers in normalized form and obtain x = 1.175614 · 102 and
y = 1.678214 · 10−2. If we round the fractional parts to 5 digits we find xr = 1.17561 · 102 and
yr = 1.67821 · 10−2.

Exercise 1.12 We say that m is the mantissa, β is the base (or radix) of the number system, and
e is the exponent. To fully define a floating point number system we would also need to define the
precision t to prescribe the number of digits in the mantissa m = ±d0.d1d2 . . . dt. Also, the floating
point system needs lower L and upper U bounds for the value of the exponent, i.e. L ≤ e ≤ U

Exercise 1.13 First do the calculations exactly

a · b = 4.4625 · 108 and a/b = 1.6190476 . . . · 103.
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Then round the results to two digits in the fractional part to obtain

fl[a · b] = 4.46 · 108 and fl[a/b] = 1.62 . . . · 103.

In both cases a bound for the relative error is the unit round off for the floating point system, i.e.
µ = 0.5 · 10−2.

Exercise 1.14 For the first expression we rewrite

√
1 + x− 1 =

(
√
1 + x− 1)(

√
1 + x+ 1)√

1 + x+ 1
=

x√
1 + x+ 1

.

For the second
1

1− x
− 1

1 + x
=

(1 + x)− (1− x)

(1 + x)(1− x)
=

2x

1− x2

which avoids the cancellation if x is small. For the last expression we use

1− cos2(x) = sin2(x).

Exercise 1.15 Since there is no error in the number 10 and absolute errors are added during a
minus operation the error in the computed value x̄ is also at most 0.5 · 10−5. A smaller error is
achived by avoiding the cancellation, i.e. use x = 1/(

√
101 + 10)
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2 Error Analysis

Exercise 2.1 First compute the approximate value f̄ = 1.8 (|RB | = 0). Since x, y and z are
correctly rounded we have error bounds |∆x|, |∆y|, |∆z| ≤ 0.5 ·10−2. The error propagation formula
gives us

|∆f | . |∂f
∂x

||∆x|+ |∂f
∂y

||∆y|+ |∂f
∂z

||∆z| = |1
z
||∆x|+ |−1

z
||∆y|+ | − x− y

z2
||∆z| ≤ 0.5 · 10−2.

Thus f = 1.80 ± 0.5 · 10−2.

Exercise 2.2 The error propagation formula gives

|∆f(2)| ≤ |∂f(2)
∂b

||∆b| = |2e2b||∆b| = |2e2·1.70|0.01 < 0.6.

The approximate value is ¯f(2) = 29.9641 . . . ≈ 30.0, with |RB | ≤ 0.5 · 10−1. Add both errors to
obtain f(2) = 30.0 ± 0.7.

Exercise 2.3 The approximate area is Ā = π̄r̄2 = 1773.77713920 ≈ 1774, |RB | ≤ 0.3. Note that
the error in π̄ is at most 0.5 · 10−3. The error propagation formula gives

|∆A| . |∂A
∂π

||∆π|+ |∂A
∂r

||∆r| = |r2||∆π|+ |2πr||∆r| ≈ 3.2684 < 3.3.

The total error is |RTOT | ≤ 3.3 + 0.3 < 4. Thus A = 1774 ± 4.

Exercise 2.4 The approximate value is ȳ = 1.54e3.17 = 36.7, |RB | ≤ 0.5 · 10−1. The error propa-
gation formula gives

|∆y| . |∂y
∂a

||∆a|+ |∂y
∂b

||∆b| = |eb||∆a|+ |aeb||∆b| < 2.55.

The total error is |RTOT | ≤ 2.55 + 0.5 · 10−1 < 2.6. Thus y = 36.7 ± 2.6.

In hindsight it would probably have been better to round to 37 and use |RB | = |37− 36.6635 . . . | <
0.34 to obtain the answer y = 37± 3. Either works fine.

Exercise 2.5 Rewrite the expression to read

f(a, b) =
ab

a+ b
.

The approximate value is f̄ = 18.9, |RB | ≤ 0.05, and the error propagation formula gives

|∆f | . |∂f
∂a

||∆a|+ |∂f
∂b

||∆b| = | b2

(a+ b)2
||∆a|+ | a2

(a+ b)2
||∆b| ≤ 0.57.

The total error is |RTOT | ≤ 0.05 + 0.57 < 0.7. Thus f = 18.9 ± 0.7.
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Exercise 2.6 We first determine the computational order as

f(x) =
√
1 + x−

√
1− x =

√
a−

√
b = c− d = e.

The relative errors in the intermediate results, e.g. |∆a|/|a|, are boudned by µ. The error propaga-
tion formula gives

|∆f | . | 1

2
√
a
||∆a|+ | 1

2
√
b
||∆b|+ |∆c|+ |∆d|+ |∆e|.

In order to simplify the result we use a ≈ b ≈ c ≈ d ≈ 1 for small x. Also

f(x) =
(
√
1 + x−

√
1− x)(

√
1 + x+

√
1− x)√

1 + x−
√
1− x

=
2x√

1 + x−
√
1− x

≈ x,

for small x. We obtain

|∆f | . µ(
1

2
+

1

2
+ 1 + 1 + |x|) ≈ 3µ.

Since f(x) ≈ x for small x the bound for the relative error is |∆f |/|f | ≤ 3|x|−1µ.

Exercise 2.7 In the first case we have the computational order

f1(x) =
1− cos(x)

sin(x)
=

1− c

s
=

d

s
= e.

The error propagation formula gives us

|∆f | . |∂f
∂c

||∆c|+ |∂f
∂s

||∆s|+ |∂f
∂d

||∆d|+ |∂f
∂e

||∆e| = |1
s
||∆c|+ |1− c

s2
||∆s|+ |1

s
||∆d|+ |∆e| ≤

µ(| c
s
|+ |1− c

s
|+ |d

s
|+ |e|) ≈ µ

x

where we have used c ≈ 1, s ≈ x and d/s = e = f ≈ x/2. Similarly for the second expression we
use the computational order

f2(x) =
sin(x)

1 + cos(x)
=

s

1 + c
=

s

d
= e.

The error propagation formula gives us

|∆f | . | s

(1 + c)2
||∆c|+ | 1

1 + c
||∆s|+ | s

d2
||∆d|+ |∆e| ≤ µ(| cs

(1 + c)2
|+ | s

1 + c
|+ |s

d
|+ |e|) ≈ 1.75xµ.

These are the absolute errors. Insert x = 1.111 · 10−8 in and |∆f1| ≤ 10−8 which is on the same
order of magnitude as the actual difference between f1 and f2.

Exercise 2.8 The computational order is

f(x) = ex − 3x = a− 3x = a− b = c

The error propagation formula gives us

|∆f | . |∂f
∂a

||∆a|+ |∂f
∂b

||∆b|+ |∂f
∂c

||∆c| = |1||∆a|+ |1||∆b|+ |1||∆c| .
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µ(|a|+ |b|+ |c|) ≈ µ(|1| + |3x|+ |1|) ≈ 2µ,

where we have used ex ≈ 1, f(x) = c ≈ 1 since x is small. There is no cancellation present in these
calculations. Everything turns out fine and both the absolute and relative errors are bounded by
2µ (since the function value f(x) ≈ 1).

Exercise 2.9 The computational order and the intermediate results are

f =
x− sin(x)

x3
=

x− a

b
=

c

b
= d.

where the relative error in all the intermediate results are boudned by µ. The error propagation
formula gives

|∆f | . |∂f
∂a

||∆a|+ |∂f
∂b

||∆b|+ |∂f
∂c

||∆c| + |∂f
∂d

||∆d| =

| − 1

b
||∆a|+ | − c

b2
||∆b|+ |1

b
||∆c| + |1||∆d| ≤ µ(|a

b
|+ |c

b
||c
b
|+ |d|) ≈ µ(| 1

x2
|+ 3

6
).

If we insert x = 10−7 and µ ≈ 1.1 · 10−16 we obtain ‖∆f | ≈ 0.0110. Thus the actual error 5.4 · 10−3

is within the error bound.

Exercise 2.10 The computational order is

f(x) = 1− 2x cos(x) = 1− 2xa+ 1− b = c.

The error propagation formula gives us

|∆f | . |∂f
∂a

||∆a|+ |∂f
∂b

||∆b|+ |∂f
∂c

||∆c| = |2x||∆a|+ |1||∆b|+ |1||∆c| .

µ(|2xa|+ |b|+ |c|) ≈ µ(|2x|+ |2x|+ 1) ≈ µ,

where we have used cos(x) ≈ 1, f(x) = c ≈ 1 and that x is small. There is no cancellation present in
these calculations. Everything turns out fine and both the absolute and relative errors are bounded
by µ (since the function value f(x) ≈ 1).

Exercise 2.11 We do a Taylor series expansion of f(x̄) around x to obtain

f(x̄) = f(x+∆x) = f(x) + f ′(x)∆x+ f ′′(η)
(∆x)2

2
.

where η ∈ (x, x̄) and f ′(x) = 0. If ∆x| is small then η ≈ x̄ and we obtain

|∆f | . |f ′′(x̄)| |∆x|2
2

.
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3 Non-linear equations

Exercise 3.1 Since the function is continuous and f(0) = −1 and f(1) = 1.3849 there has to be a
root in the interval [0, 1].

Exercise 3.2 φ′(x) = 1
2e

x and |φ′(0.3)| ≈ 0.68 < 1.

Exercise 3.3 With x̄ = 1.7 we get f(x̄) = −0.387. Also f ′(x) = 3x2 + 1 so f ′(ξ) ≈ f ′(1.7) = 9.67.
Thus

|1.7 − x∗| ≤ |f(1.7)|
|f ′(1.7)| <

0.39

9.6
< 0.0406 < 0.5 · 10−1.

Exercise 3.4 Since f(x̄) is evaluated as zero we need to include the computational errors and we
actually have f̄(x̄) = 0 and |f̄(x̄)− f(x̄)| ≤ 10−8. The error estimate is

|x̄− x∗| ≤ |f(x̄)|
|f ′(ξ)| ≤

|f̄(x̄)|+ |f̄(x̄)− f(x̄)|
|f ′(ξ)| ≤ 0 + 10−8

1.7
< 6 · 10−9.

Exercise 3.5 Let f(x) = 5(1 − e−x) − x and find a root of the equation f(x) = 0. We use the
Newton-Raphson method. If x0 = 5 we get x2 = x̄ = 4.96511. The error estimate is

|x̄− x∗| ≤ |f(x̄)|
|f ′(x̄)| ≤

4.1 · 10−6

0.96
≤ 0.5 · 10−5.

Thus x∗ = 4.96511 ± 0.5 · 10−5 has five correct decimals.

Exercise 3.6 The rate of convergence is determined by the derivative |φ′(x∗)|. For the two meth-
ods, and x∗ ≈ 1.9, we get φ′

1(1.9) ≈ 0.647 and φ′
2(1.9) ≈ 0.177. Thus the second method has the

fastest convergence. Also note that a fixed point satisfies x∗ = x∗

2 + sin(x∗) which can be written
as x∗ = sin(x∗). Thus a fixed point satisfies the original equation and we really have convergence
to a root.

Exercise 3.7 Let x∗ be the fixed point. Then

|xn − x∗| = |φ(xn−1)− φ(x∗)| ≤ |φ′(ξn)||xn−1 − x∗| ≤ C|xn−1 − x∗|,

where the constant C satisfies |φ′(ξn)| ≤ C. In this case φ(x) = 1
2 cos(x) and φ′(x) = −1

2 sin(x).
Thus |φ′(x)| ≤ 1

2 . Thus we can pick C = 1
2 < 1 and we have proved that the error |xn − x∗| is

reduced by a factor of 2 in each step. Thus the method is convergent regardless of x0.

In order to obtain the error estimate, for x̄ = 0.4501832, we comute the derivative f ′(x) =
−2 sin(x)− 4 and use the estimate = | − 4.87026 . . . | > 4.8 = M . Thus

|x̄− x∗| ≤ |f(x̄)|
|f ′(x̄)| ≤

2.01 · 10−6

4.87
< 0.42 · 10−6.

We conclude that x∗ = 0.4501832 ± 0.5 · 10−6.
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Exercise 3.8 First the error in the approximation x̄ = 1.05 is estimated by

|x̄− x∗| ≤ |f(x̄)|
|f ′(x̄| ≈

|f(1.05)|
|f ′(1.05| <

1.9 · 10−4

2.0
< 10−4,

where f ′(x) = 1 + 3e−x.

Now let x∗ be a fixed point to the iterations. In the case (i) the fixed point obviously satisfies the
equation f(x) = 0. In the case (ii) we get 3x∗ = 2x∗ +3e−x∗

or x∗ = 3e−x∗

or f(x∗) = 0. A similar
resoning holds in the case (iv). However, a fixed point to (iii) does not satisfy the equation.

Now we consider the convergence speed of the iterations (i), (ii) and (iv). In all cases we compute
the derivative of the iteration function and obtain

φ1(x) = 3e−x, so φ′
1(1.05) = 1.05 and divergence,

φ2(x) = (2x+ 3e−x)/3, so φ′
2(1.05) = −0.32 and convergence,

and
φ4(x) = (x+ 3e−x)/2, so φ′

4(1.05) = −0.025, and again convergence,

Thus the method (iv) should converge the fastest to x∗.

Finally the error in step k is |xk − x∗| ≈ |φ′
4(1.05)|k |1.05 − x∗| ≈ (0.025)k10−4. Testing shows that

k = 4 gives an error of 3.9 · 10−11 and thus 4 iterations is enough.

Exercise 3.9 If we apply Newton-Raphson to the equation x2 = 0 we get

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

x2k
2xk

=
1

2
xk,

which means that if x0 = 1 then xk = 2−k → 0 = x∗ as k → ∞. The rate of convergence is verified
to be linear by the observation that ek = |xk − x∗| = |12xk−1 − 0| = 1

2 |xk−1 − 0| = 1
2ek−1.

Exercise 3.10 Newton-Raphsons method is defined by the iteration function

φ(x) = x− f(x)

f ′(x)
, and φ′(x) = −f(x)f ′′(x)

(f ′(x))2
.

Since x∗ is a single root, i.e. f ′(x∗) 6= 0, we see that φ′(x∗) = 0. A Taylor series expansion shows
that

φ(xk) = φ(x∗) + φ′(x∗)(xk − x∗) +
φ′′(ξ)

2
(xk − x∗)2, ξ ∈ (xk, x

∗).

Since φ(xk) = xk+1, φ(x
∗) = x∗ and φ′(x∗) = 0 we obtain

xk+1 − x∗ =
φ′′(ξ)

2
(xk − x∗)2,

which shows that the convergence is quadratic.
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Exercise 3.11 We use a Taylor series expansion

f(x̄) = f(x∗) + f ′(x∗)(x̄− x∗) +
f ′′(ξ)

2
(x̄− x∗)2, ξ ∈ (x̄, x∗),

and since x∗ is a double root we have f(x∗) = f ′(x∗) = 0 and thus

f(x̄) =
f ′′(ξ)

2
(x̄− x∗)2.

Taking absolute values and approximating ξ ≈ x̄ gives the desired estimate. In the practical case
when x̄ = 1.99789 we find that f(x̄) = −6.6875 · 10−6 and f ′′(x̄) = −3.0127. Thus

|x̄− x∗| ≤
√

2|f(x̄)|
|f ′′(x̄)| ≤

√
2 · 6.7 · 10−6

3.0
< 2.2 · 10−3.

Note that x∗ = 2 so the actual error is of the same magnitude as the error estimate in this case.

Exercise 3.12 First we use the error estimate

|x̄− x∗| . |f(x̄)|
|f ′(x̄)| ≈

1.2971 · 10−4

3.0433
< 4.3 · 10−5.

Secondly, we define the order of convergence as the largest integer p such that

lim
k→∞

|xk − x∗|
|xk−1 − x∗|p = C < ∞.

Since x∗ is unknown we cannot directly apply the definition. The simplest solution is to assume that
the iteraton x4 has a much smaller error than the other iterations x1, x2, x3. Thus we approximate
x∗ = 0.5177574 and compute the errors |x0 − x∗| ≈ 4.8 · 10−1, |x1 − x∗| ≈ 1.4 · 10−1, |x2 − x∗| ≈
1.4 · 10−2, and |x3 − x∗| ≈ 1.5 · 10−4. Since (|x1 − x∗|)2 ≈ (1.4 · 10−1)2 ≈ 2 · 10−2 ≈ |x2 − x∗|
and (|x2 − x∗|)2 ≈ (1.4 · 10−2)2 ≈ |x3 − x∗| we conclude that the table shows that p = 2 for
Newton-Raphsons method.

Exercise 3.13 The order of convergence is the largest integer p such that

lim
k→∞

|xk − x∗|
|xk−1 − x∗|p = C < ∞.

This means that |xk − x∗| ≈ C|xk−1 − x∗|p, for a constant C. In the table we see that the error in
step k+1 is always about half of of the error at step k. This fits very nicely with p = 1 and C = 0.5.
Thus we have linear convergence for this specific polynomial. It is known that Newton-Raphsons
method has order of convergence p = 2 for single roots and p = 1 for double roots and this x∗ = 2
has to be a double root.

Exercise 3.14 First if we apply the Newton-Raphson method to f(x) = x2 − a = 0 we obtain

xk+1 = xk −
x2k − a

2xk
=

1

2
(xk − a/xk) = φ(xk).
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Since a is a normalized floating point number we can write a = (−1)2(1.f)22
k. We only need to

consider positive numbers and if k is even then
√
a =

√
(1.f)22

k/2 and if k is odd we instead have√
a =

√
(1.f)2212

(k−1)/2. Thus in worst case we need to compute the square root of a number
1 ≤ (1.f)22

1 < 4. So it is enough to consider the case 1 ≤ a < 4 and 1 ≤ x < 2.

For the convergence analysis we compute φ′′(x) = − a
x3 and therefore φ′′(

√
a) = 1/

√
a ≤ 1. Thus

|xk −
√
a| . 1

2
|xk−1 −

√
a|2.

If x0 = 1.5 the maximum error is |x0 −
√
a| ≤ 0.5. We get |x1 −

√
a| ≤ 0.125, |x2 −

√
a| ≤ 0.078,

|x3 −
√
a| ≤ 3.1 · 10−5, |x4 −

√
a| ≤ 4.7 · 10−10, and |x5 −

√
a| ≤ 1.1 · 10−19. We see that 5 iterations

are needed if x0 = 1.5.

In order to decrease the number of iterations by one we need an initial guess with an error |x0−
√
a| <

0.125. Then the new x0 is the same as x1 above. This means dividing the interval [1, 4] into n
intervals [a0, a1), [a1, a2),. . .,[an−2, an−1). For a certain starting value a we indentify the index k such
that ak ≤ a < ak+1. The initial guess x0 is then given by the middle point (

√
ak+

√
ak+1)/2 and the

initial error is (
√
a+1−

√
ak)/2. If n = 4 then the largest initial error is given by (

√
1 + 3/n−

√
1)/2 =

0.1614. If we continue as above we get |x4 −
√
a| ≤ 6.5 · 10−18 which is below machine precision.
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4 Polynomial and Spline Interpolation

Exercise 4.1 A polynomial, pn(x), of degree n, can be written pn(x) = c0+ c1x+ . . .+ cnx
n. Thus

there are n+1 parameters to determine and the polynomial can satisfy exactly n+ 1 interpolation
conditions.

Exercise 4.2 Use the Ansatz p(x) = c0 + c1(x− 0.9) + c2(x− 0.9)(x− 1.1), where the last term is
used to estimate the truncation error. The interpolation conditions give

p(0.9) = c0 = f(0.9) = 0.4710, and p(1.1) = c0 + c1(1.1 − 0.9) = f(1.1) = 0.2452 so c1 = −1.1290.

Thus the linear polynomial is p(x) = 0.4710 − 1.1290(x − 0.9). The truncation error is obtained
using

p(1.2) = c0 + c1(1.2− 0.9) + c2(1.2− 0.9)(1.2 − 1.1) = f(1.2) = 0.2385 so c2 = 3.5400.

The truncation error is RT ≈ 3.45(x − 0.9)(x − 1.1). Insert x = 1.03 to find f(1.03) ≈ p(1.03) =
0.3242, |RB | ≤ 0.5 · 10−4, and |RT (1.03)| ≤ 0.033. The errors in the table also gives an error
|RXF | ≤ 0.5 · 10−4 and we obtain f(1.03) = 0.3242± 0.034. Its resonable to round off a bit more to
get f(1.03) = 0.324 ± 0.04.

Exercise 4.3 We require that the total error is RTOT ≤ 10−5. If the values in the table is stored
with 6 correct digits then the resulting error is RXF ≤ 0.5 · 10−6. Thus the truncation error can be
at most RT ≤ 9.5 · 10−6. For linear interpolation the truncation error is given by

RT ≤ h2

8
max

xi≤ξ≤xi+1

|f ′′(ξ)|,

and since f(x) = log(x) we find that |f ′′(x)| = | − x−2| ≤ 1 since 1 ≤ x ≤ 4. Thus RT ≤ 9.5 · 10−6

if h2 ≤ 8 · 9.5 · 10−6 which gives h ≤ 0.0087. Since the interval length is xn − x1 = 4 − 1 = 3 the
required table size is n = 3/h ≈ 3/0.0087 ≈ 344.82 < 345. Thus we need at least 345 function
values in our table.

Exercise 4.4 The error estimate for linear interpolation is

f(x)− p(x) =
1

2
f ′′(η(x))(x − x1)(x− x2),

where, for our case, x1 = 0, x2 = 1, and 0 < η(x) < 1. Since f(x) = sin(x) we obtain |f ′′(η)| =
| − sin(η)| ≤ 1. We also see that |x(x− 1)| ≤ 1

4 since the maximum occurs for x = 1
2 . Thus

|f(x)− p(x)| = 1

2
|f ′′(η(x))(x − 0)(x− 1)| ≤ 1

2
1
1

4
=

1

8
.

Exercise 4.5 Use the Ansatz p(x) = c0 + c1(x− 0.0) + c2(x− 0.0)(x− 0.5), where the last term is
used to estimate the truncation error. The interpolation conditions p(0.0) = 1.80 and p(0.5) = 2.80
gives us the linear interpolating polynomial p1(x) = 1.8 + 2x. The final interpolation condition
p(1.0) = 4.10 gives us truncation error RT ≈ 0.6(x − 0.0)(x − 0.5). Insert x = 0.4 to obtain
f(1.03) ≈ p1(0.4) = 2.6, where |RB | = 0, and |RT (0.4)| ≤ 0.024. The errors in the table also gives
an error |RXF | ≤ 0.5 · 10−2 and we obtain f(0.4) = 2.6± 0.03.
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Exercise 4.6 Use the Ansatz p(x) = c0+c1(x−0.7)+c2(x−0.7)(x−0.8)+c3(x−0.7)(x−0.8)(x−
0.6), where the last term is used to estimate the truncation error. The interpolation conditions
p(0.7) = 1.29, p(0.8) = 1.32 and p(0.6) = 1.23 gives the coefficents of the quadratic polynomial
c = (1.29 , 0.3 , −1.5)T . The truncation error is obtained from the interpolation condition p(0.9) =
1.07. We find that c3 ≈ −41.7. We find that p2(0.74) = 1.306, with |RB | ≤ 0.5 · 10−3 (not asked
for in the exercise), and with the truncation error |RT | ≤ −0.014.

Exercise 4.7 The basis function satisfies ℓ2(x2) = 1 and ℓ2(xi) = 0, i 6= 2. Thus

ℓ2(x) =
(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
.

The degree of ℓ2(x) is n = 3.

Exercise 4.8 The polynomial is

p(x) = 1.3
(x − 2)(x− 3)

(1 − 2)(1 − 3)
+ 0.6

(x − 1)(x − 3)

(2 − 1)(2 − 3)
+ 1.9

(x− 1)(x− 2)

(3− 1)(3 − 2)
.

There is no reason to simplify the expression further.

Exercise 4.9 First p(0) = c0 = 0 and p(1) = c0 + c1 + c2 + c3 = 0 gives two equations. Then
p′(x) = c1 +2c2x+3c3x

2 so we also obtain p′(0) = c1 = 1 and p′(1) = c1 +2c2 +3c3 = 1. Thus the
system of equations is 



1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3







c0
c1
c2
c3


 =




0
0
1
1


 .

We can solve the linear system by noting that c0 = 0 and c1 = 1. Then we are left with two
equations for c2 and c3. The solution is p(x) = x− 3x2 + 2x3.

Exercise 4.10 The conditions for s(x) to be a cubic spline are (i) on each sub interval [xi, xi+1]
the spline s(x) should be given by a cubic polynomial, and (ii) s(x), s′(x) and s′′(x) should be
continuous on the whole interval [x1, xn]. Also the (iii) the interpolation conditions s(xi) = f(xi)
needs to be satisfied. The given information is not sufficient since we also need two end point
conditions for the spline to be unique.

Exercise 4.11 The function s(x) is a cubic spline since s(x), s′(x) and s′′(x) are continuous at
x = 1.

Exercise 4.12 The conditions that has to be satisfied are s(1) = a+1 = b+ c, s′(1) = a = 3b+2c
and s′′(1) = 0 = 6b+ 2c. The solution is a = −3, b = 1 and c = −3.

Exercise 4.13 Since f(x) is a cubic polynomial, and correct end point conditions are to be used,
then s(x) = f(x). This means the spline s(x) is the same cubic polynomial in each of the sub
intervals.
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Exercise 4.14 We have more than enough information to determine the parameters. The most
efficient way is to first compute s2(1) = 2 and determine a using s1(1) = 1.6 + a = 2, i.e. a = 0.4.
Now compute s′1(1) = 2.5 and use s′2(1) = b = 2.5. This leaves c which can be computed using
s2(2) = 4.9 + c = 6.7 or c = 1.8.

Exercise 4.15 Check the continuity requirements by s1(1) = 0.6 = s2(1), s
′
1(1) = −0.6 = s′2(1)

and finally s′′1(1) = −0.8 = s′′2(1). Thus s(x) is a cubic spline. We also compute s′′1(0) = −0.8 and
conclude that s(x) is not a natural cubic spline.

Exercise 4.16 For s(x) to be a cubic spline we require that sk−1(xk) = sk(xk), s
′
k−1(xk) = s′k(xk)

and s′′k−1(xk) = s′′k(xk), for k = 1, 2, . . . , N − 1. In addition we need the interpolation conditions
sk(xk) = f(xk) and sk(xk+1) = f(xk+1), for k = 0, 1, . . . , N − 1. A sketch of the case N = 3 is
given below

x0 x1 x2 x3

s0(x) s1(x) s2(x)

Exercise 4.17 Since the error satisfies E(N) ≈ Chp = C ′(1/N)p, where C ′ = C(b − a)p is a
constant. Thus E(N)/E(2N) = 2p and if we insert the values from the table we get

E(5)

E(10)
=

0.0435

0.00269
≈ 16.2 and

E(10)

E(20)
=

0.00269

0.000172
≈ 15.6.

In both cases the quitient is sufficiently close to 24 = 16 to conclude that p = 4.

Exercise 4.18 The function s(x) is a linear spline if it is given by a first degree polynomial on each
subinterval. In our case the intervals are 1 < x < 3 and 3 < x < 4. Thus we are seeking two linear
polynomials s1(x) and s2(x). We can write s1(x) = 1.56 + c1(x− 1) and use s1(3) = 2.31 to obtain
c1 = 0.375. Similarily we obtain s2(x) = 2.31 − 0.34(x − 3). The linear spline is thus given by

s(x) =

{
1.56 + 0.375(x − 1), 1 ≤ x < 3,
2.31 − 0.34(x − 3), 3 ≤ x < 4.

Exercise 4.19 For a) differentiate the expression for p(t) to obtain the tangent

p′(t) = −2(1− t)P1 + 2(1 − 2t)P2 + 2tP3, and p′(0) = 2(P2 − P1).

For b) we first note that P4 and P5 should have the same x-coordinate so P4 = (6, , α)T . The
tangent direction at P3 should be paralell to P3 − P2 = (3 , 5)T − (2 , 6)T = (1 , −1)T . Compute
P4−P3 = (6 , α)T − (3 , 5)T = (3, α−5)T = 3(1 , −1)T if α = 2. Thus we have to use P4 = (6 , 2)T .

37



Exercise 4.20 The sketch is

P1

P2
P3

P4

The convex hull is the area enclosed by the dashed lines. Important features of the Beziér curve is
that since both P1/P2 and P3/P4 have the same x-coordinate the tangent direction of the curve is
vertical at both the starting and ending points.

Exercise 4.21 For a) we differentiate

p′(t) = −3(1−t)2P1+3(−2(1−t)t+(1−t)2)P2+3(2(1−t)t−t2)P3+3t2P4, and p′(0) = 3(P2−P1).

For b) the definition of the convex hull is the set of all convex linear combinations α1P1 + α2P2 +
α3P3 + α4P4, where α1 + α2 + α3 + α4 = 1 and α1, α2, α3, α4 ≥ 0. To show that the Beziér curve
is located within the convex hull we note that the weights in the expression for p(t) are calculated
from the identity

1 = 13 = (1− t+ t)3 = (1− t)3 + 3(1 − t)2t+ 3(1 − t)t2 + t3,

and that all terms are positive for 0 ≤ t ≤ 1. For c) we compute p(1/2) by inserting t = 1/2 into
the expression (note that t = 0.5 means also 1− t = 0.5)

p(1/2) = (
1

2
)3
((

0
0

)
+ 3

(
1
3

)
+ 3

(
4
2

)
+

(
5
1

))
=

(
2.5
2.0

)
.

The sketch is

P1

P2

P3

P4

p(0.5)

Exercise 4.22 For the slope to be −2 the tangent vector at P4 should be in the direction (1 , −2)T .
Thus we can pick

P3 =

(
2
3

)
− α

(
1
−2

)
and P5 =

(
2
3

)
+ α

(
1
−2

)
,

where α is a positive number. There is no unique solution to this problem.
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5 Integration, Differentiation and Extrapolation

Exercise 5.1 Taylors formula gives

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

6
f (3)(x)h3 + . . .

Thus

1

h
(f(x+ h)− f(x)) = f ′(x) +

1

2
f ′′(x)h+

1

6
f (3)(x)h2 + . . . = f ′(x) + Ch+O(h2), C =

1

2
f ′′(x).

Exercise 5.2 First we compute two different approximations using the Trapezoidal method. We
have

T (0.5) = 0.5

(
1.000

2
+ 1.006 +

0.670

2

)
= 0.9205,

and

T (0.25) = 0.25

(
1.000

2
+ 1.015 + 1.006 + 0.882 +

0.670

2

)
= 0.9345.

Since the Trapezoidal method has a truncation error of the form RT = ch2 we can estimate the
truncation error by

RT (0.25) =
T (0.5) − T (0.25)

3
= −4.667 · 10−3.

Also since the table is given with absolute error |∆f | < ·0.5 · 10−3 we get an error in the integral
that can be estimated |RXF | ≤ (1 − 0)0.5 · 10−3 = 0.5 · 10−3. If we round the result to 3 correct
digits we get I = 0.934 ± (0.5 · 10−3 + 4.7 · 10−3 + 0.5 · 10−3) = 0.934 ± 6 · 10−3.

Exercise 5.3 Since |∆f(x)|/|f(x)| ≤ ε we obtain the error estimate

|RXF | = |
∫ b

a
f(x)dx−

∫ b

a
f̄(x)dx| ≤

∫ b

a
|f(x)− f̄(x)|dx ≤

∫ b

a
ε|f(x)|dx ≤

(∫ b

a
|f(x)|dx

)
ε.

This means that the bound is good for the case when f(x) is either positive or negative. If f(x)
changes sign in the interval (a, b) then it may happen that

∣∣∣∣
∫ b

a
f(x)dx

∣∣∣∣ <<

∫ b

a
|f(x)|dx,

and the result may have a large relative error.

Exercise 5.4 We denote the error by ǫh ≈ Chp. Then

ǫh1

ǫh2

≈ Chp1
Chp2

= (
h1
h2

)p.

Insert numbers from the table we obtain

2p = (
0.2

0.1
)p ≈ ǫ0.2

ǫ0.1
=

0.342

0.0861
≈ 3.97 and 2p ≈ ǫ0.1

ǫ0.05
=

0.0861

0.0209
≈ 4.11.

We see that 2p = 4 which means p = 2.
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Exercise 5.5 We see that

F1(h) +
F1(h) − F1(qh)

qp1 − 1
= a+ bhp1 + chp2 +

a+ bhp1 + chp2 − (a+ bqp1hp1 + cqp2hp2)

qp1 − 1
=

= a+ bhp1 + chp2 +
b(1− qp1)hp1 + c(1− qp2)hp2

qp1 − 1
= a+ c

(
1− 1− qp2

1− qp1

)
hp2 = a+O(hp2)

Exercise 5.6 Let h = 0.05. From the table we see that

T (h) = I +RT ≈ I +Ch4, and T (2h) ≈ I + C(2h)4 = I + 16Ch4 ≈ I + 16RT

where I is the exact value of the integral and RT is the truncation error for h = 0.05. Thus

RT ≈ Ch4 ≈ T (2h) − T (h)

15
= 7.83 · 10−6.

Exercise 5.7 With T (h) = T0 +Chp we form the quotient

T (h)− T (h/2)

T (h/2) − T (h/4)
=

hp(1− 2−p)

(h/2)p(1− 2−p)
= 2p.

Insert the values for h = 0.4 and h = 0.2 to obtain 2p ≈ 4.11 and 2p ≈ 3.73. We conclude that
p = 2.

Exercise 5.8 First we compute

T (1/2) = 0.5

(
1.5000

2
+ 1.0713 +

0.9073

2

)
= 1.137475,

and

T (1/4) = 0.25

(
1.5000

2
+ 1.2412 + 1.0713 + 0.9663 +

0.9073

2

)
= 1.1206125.

The truncation error in the result for h = 1/4 is estimated by |RT | ≤ |T (1/2)−T (1/4)|/3 < 5.7·10−3

since the truncation error for the Trapezoidal method has the form RT ≈ ch2. Since the function
values are correctly rounded we also have |RXF | ≤ (b − a)ε = (1 − 0)0.5 · 10−4. This means that
the integral can be estimated by I = 1.121± (0.5 · 10−4 +5.7 · 10−3 +0.5 · 10−3) = 1.121± 7 · 10−3.

Exercise 5.9 We find that
RT (h)

RT (h/2)
= 2p.

with h = 0.1 we get 2p ≈ 1.98 and with h = 0.05 we get 2p ≈ 1.98. Thus p = 1 and for h = 0.025
we get RT = −0.0099 = C(0.025)1 which means C ≈ −0.4. The truncation error is thus given by
RT ≈ −0.4h1 and RT < 10−8 if h < 10−8/0.4 = 2.5 · 10−8.

Exercise 5.10 No since the Trapezoidal method needs, at least a continuous second derivative
f ′′(x) on the intervall [1, 4] to have a truncation error RT ≈ ch2. In this case the first derivative is

f ′(x) = −2x sin(x2)
√
4− x− cos(x2)(4− x)−1/2,

which tends to −∞ as x → 4. This means that f(x) does not have the nessecary smoothness for
the Trapezoidal method to work well.
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Exercise 5.11 For a) we compute

S(4h) − S(2h)

S(2h) − S(h)
≈ c4php − c2php

c2php − hp
= 2p.

From the table, with h = 1/8, we obtain

S(1/2) − S(1/4)

S(1/4) − S(1/8)
≈ 2.06246 − 2.03208

2.03208 − 2.03021
= 16.25 ≈ 24.

We thus conclude that p = 4. We can then use

S(1/4) − S(1/8) = 2.03208 − 2.03021 ≈ c(24 − 1)(1/8)4 ,

to obtain c = 0.51. For b) we note that |RT | ≈ 0.51h4 is smaller than 10−6 if h ≤ (10−6/0.51)1/4 ≈
0.03742. Thus a step size h < 0.037 is required.
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6 Differential Equations

Exercise 6.1 With y(0) = y0 = 1, and h = 0.5 we obtain

y(0.5) ≈ y1 = y0 + hf(t0, y0) = y0 + h(y20 − t0) = 1 + 0.5(12 − 0) = 1.5.

Also, since the truncation error for Euler’s method is RT ≈ ch we find y(0.5; 5h)−y(0.5;h) ≈ y(0.5)+
c5h− y(0.5)− ch = 4ch. Thus, with h = 0.1 we get RT ≈ c5h ≈ 5(y(0.5; 5h)− y(0.5; h))/4 ≈ 0.021.

Exercise 6.2 Using Euler’s method we find that, using h = 0.2, we have y(0.2;h = 0.2) = y1 =
y0 + hf(t0, y0) = 1.6. If we instead use h = 0.1 we get

y(0.1) ≈ y1 = y0 + hf(t0, y0) = 2− 0.1 · (02 − 2) = 1.8 and y(0.2) ≈ y2 = y1 + hf(t1, y1) ≈ 1.621

Considering that the truncation error for Euler is RT = Ch we also find y(0.2; 2h) − y(0.2;h) ≈
y(0.2)+c2h−y(0.2)−ch = ch. Thus, with h = 0.1 we get RT ≈ ch ≈ (y(0.2; 2h)−y(0.2;h)) ≈ 0.021.
For the complete error estimate we also note that the value y(0.2;h = 0.1) = 1.621 is rounded to 4
correct decimals. This |RB | ≤ 0.5 · 10−4 and y(0.2) = 1.621 ± 0.022.

Exercise 6.3 Euler’s method applied to the problem gives the yk+1 = (1− 100h)yk +sin2(tk). For
stability we only look at the homogeneous part, i.e. yk+1 = (1 − 100h)yk. Thus the requirement is
−1 ≤ 1− 100h ≤ 1, or, since h is positive, h ≤ 2/100 = 0.02.

Exercise 6.4 By applying the Euler method we obtain the difference formula yk+1 = (1−100h)yk+
h sin2(tk). Thus the homogeneous part is stable if |1− 100h| ≤ 1, or h ≤ 2/100 = 0.02.

Exercise 6.5 The method is implicit since the right hand side has the term f(tk+1, yk+1) and yk+1

is the unknown we seek to compute. Thus we must solve an equation in each step. For the stability
we apply the method to the test problem y′ = λy, y(0) = 1, and obtain yk+1 = yk +

hλ
2 (yk + yk+1)

or

yk+1 =

(
1 + hλ

2

1− hλ
2

)
yk.

Thus the Trapezoidal method is stable if |1 + hλ
2 | ≤ |1− hλ

2 |. This means that hλ/2 is closer to −1
than to 1. Since h is positive this means that the method is stable for all λ < 0. So if the solution
y(t) = eλt, to the test problem, should be decreasing, i.e. for λ < 0, then the numerical solution
will also be decreasing.

Exercise 6.6 Since f(t, y) = λy we obtain

k1 = hf(tk, yk) = hλyk, and k2 = hf(tk, yk + k1) = hλ(yk + k1) = hλ(yk +hλyk) = (hλ+(hλ)2)yk.

The next iterate yk+1 is thus given by

yk+1 = yk +
1

2
(k1 + k2) = yk +

1

2
(hλ+ hλ+ (hλ)2)yk = (1 + hλ+ (hλ)2/2)yk.

Thus the method is stable if |1 + hλ+ (hλ)2/2| ≤ 1.
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Exercise 6.7 We define v = y′. Then v′ = y′′ and

(
y
v

)′

=

(
v

ty − 3v − 1

)
,

(
y(0)
v(0)

)
=

(
1
0

)
.

Exercise 6.8 Introduce v = y′. Then v′ = y′′ = 2y(1 + y2). Thus the system is

(
y
v

)′

=

(
v

2y(1 + y2)

)
,

(
y(0)
v(0)

)
=

(
1
2

)
.

If we apply the Euler method we get, with h = 0.2,

(
y1
v1

)
=

(
y0
v0

)
+ h

(
v0

2y0(1 + y20)

)
=

(
1.4
2.8

)
.

Similarily (y2, v2)
T = (1.96, 4.576)T . Thus we obtain the approximation y(0.4) ≈ y2 = 1.96.

Exercise 6.9 Introduce v = y′ to obtain

v′ + e(y2 − a)v + y = 0, y(0) = a, v(0) = b.

The system is thus

(
y
v

)′

=

(
v

−e(y2 − a)v − y

)
,

(
y(0)
v(0)

)
=

(
a
b

)
.
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7 Basic matrix operations and linear systems of equations

Exercise 7.1 We evaluate the expression using the following operations

z = (A+ I)Bx+ y = (A+ I)x1 + y = Ax1 + x1 + y = x2 + x1 + y = x3 + y = x4

Computing the matrix vector product x1 = Bx requires mn multiplications and additions each, i.e.
a total of 2mn operations. The product x2 = Ax1 requires 2m2 operations. The remaining two
vector additons require m additions (as y, x1 ∈ R

m). So the operation count is m(2m+ 2n+ 2).

Exercise 7.2 Aim to keep intermediate results small. Multiplication by an inverse is dealt with
by solving the corresponding linear system, i.e. compute z = A−1x by solving Az = x. The order
of computation is

z1 = Ab, Cz2 = b, z3 = z1 + z2, z4 = Az3, z5 = 2z4 + z3, and finally Bx = z5.

All intermediate results are vectors.

Exercise 7.3 An upper triangular system Rx = y can be solved using,

xi =


bi −

n∑

j=i+1

rijxj


 /rii, i = n, n− 1, . . . , 1.

Thus in step i exactly (i − 1) multiplications and additions are needed. Also exactly one division.
Thus the total amount of work is

n∑

i=1

(i− 1) ≈ n2

2
,

multiplications and additions or n2 arithmetic operations.

Exercise 7.4 The LU -decomposition and two triangular systems require 2n3/3 + 2n2 arithmetic
operations. For large n we have t(n) ≈ c · n3, where c is the average time for one operation, and
thus

t(2n)

t(n)
≈ c23n3

cn3
= 8.

If we compute the same quotients using the table we obtain

n 1024 2048 4096

t(2n)/t(n) 7.4166 7.1835 7.8295

The results look promising and fits quite well with the idea that the computational complexity is
O(n3).

Exercise 7.5 The unit circles are
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Exercise 7.6 A matrix norm is induced if its definition is based on a vector norm, i.e.

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

For such norms we have

‖AB‖=max
x 6=0

‖ABx‖
‖x‖ =max

x 6=0

‖ABx‖
‖Bx‖

‖Bx‖
‖x‖ ≤

(
max
x 6=0

‖ABx‖
‖Bx‖

)(
max
x 6=0

‖Bx‖
‖x‖

)
≤max

y 6=0

‖Ay‖
‖y‖ ‖B‖≤‖A‖‖B‖.

Exercise 7.7 Demonstrate the first inequality by

‖x‖2∞ = max
1≤i≤n

|xi|2 ≤
n∑

i=1

|xi|2 = ‖x‖22.

Also, since |xi| ≤ ‖x‖∞, we have

‖x‖22 =

n∑

i=1

|xi|2 ≤
n∑

i=1

‖x‖2∞ = n‖x‖∞.

Exercise 7.8 Recall the definition

‖uvT ‖2 = max
x∈Rn

‖uvTx‖2
‖x‖2

= max
x∈Rn

|vTx|‖u‖2
‖x‖2

.

The Cauchy-Schwarz inequality is |vTx| ≤ ‖v‖2‖x‖2 with equality for x = v. So

‖uvT ‖2 =
|vT v|‖u‖2

‖v‖2
= ‖v‖2‖u‖2.

Exercise 7.9 First from the definition of the matrix norm, and since Ix = x we have

‖I‖ = max
x 6=0

‖Ix‖
‖x‖ = max

x 6=0

‖x‖
‖x‖ = 1, so 1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖.

Exercise 7.10 If x = (1,−3, 7)T then ‖x‖∞ = 7, ‖x‖2 =
√
59 and ‖x‖1 = 11.

Exercise 7.11 If x̄ = (1.23 , 0.37 , −2.6)T is correctly rounded then the error vector satisfies |δx| ≤
(0.005 , 0.005 , 0.05)T . Thus ‖x − x̄‖∞ ≤ 0.5 · 10−1 is the absolute error and ‖x − x̄‖∞/‖x‖∞ ≤
0.05/2.6 < 0.02 is the relative error.

Exercise 7.12 From the second row we get the largest sum and ‖A‖∞ = 3.1 + 0.5 + 3.2 = 6.8.
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Exercise 7.13 The linear system is Ax = b where

A =




2 −1 2
3 1 −1
−3 1 2


 and b =




1
0
−3


 .

Exercise 7.14 The rows should appear in the order 1− 4− 2− 3 and thus

P =




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


 .

Exercise 7.15 The rows should appear in the order 4− 3− 1− 2 which gives

P =




0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


 .

Exercise 7.16 The multipliers are m3 = 0.6/3 = 0.2 and m4 = −1.8/3 = −0.6. Therefore the
Gauss transformation is

M =




1 0 0 0
0 1 0 0
0 0.2 1 0
0 −0.6 0 1


 .

Exercise 7.17 The multipliers are m21 = −1/2 = −0.5 and m31 = 1/2 = 0.5. Therefore the Gauss
transformation is

M1 =




1 0 0
0.5 1 0
−0.5 0 1


 .

Exercise 7.18 Set m = (0 , m21 , m31)
T and find that

M1 = I −meT1 =




1 0 0
0 1 0
0 0 1


−




0
m21

m31


 (1 , 0 , 0)

has the desired structure. To show that M−1
1 = I +meT1 we do

(I −meT1 )(I +meT1 ) = I −meT1 +meT1 −meT1 meT1 = I

where eT1 m = 0 since m has a zero in the first position. The elements of m are chosen so that
0 = ai1 −mi1a11 and thus mi1 = ai1/a11, i = 2, 3.
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Exercise 7.19 Set m = (0 , 0 , m32 , m42)
T and find that

M2 = I −meT2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−




0
0

m32

m42


 (0 , 1 , 0 , 0)

has the desired structure. To show that M−1
2 = I +meT2 we do

(I −meT2 )(I +meT2 ) = I −meT2 +meT2 −meT2 meT2 = I

where eT2 m = 0 since m has zeros in the first two positions.

Exercise 7.20 Pivoting is required as |a21| > |a11. The permutation

P12




0 1 0
1 0 0
0 0 1




should be used to switch rows one and two.

Exercise 7.21 We need to switch rows two and three to obtain



2 1 −2
0 1.7 0.3
0 −0.5 1.6


 .

and then use the multiplier m32 = −0.5/1.7 = −0.2941. The permutation matrix and Gausstrans-
formation are

P23 =




1 0 0
0 0 1
0 1 0


 and M2 =




1 0 0
0 1 0
0 0.2941 1


 .

The new element on position (3, 3) will be 1.6 − (−0.2941) · 0.3 = 1.6882. The upper triangular
matrix is

U =




2 1 −2
0 1.7 0.3
0 0 1.6882


 .

Exercise 7.22 In order to take advantage of the decomposition we rewrite Ax = b as PAx = Pb
and L(Ux) = Pb. By introducing the intermediate variable y = Ux we obtain two triangular
systems Ly = Pb and Ux = y. First solve

Ly = Pb or




1 0 0
−0.5 1 0
0.5 0.8 1






y1
y2
y3


 =




0 1 0
0 0 1
1 0 0






−0.5
1.2
1.27


 =




1.2
1.27
−0.5




to obtain y = (1.2 , 1.87 , −2.60)T . Next we solve Ux = y by backwards substitution and find that
x = (1.02 , 0.34 , 0.84)T .
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Exercise 7.23 Since the multiplier m32 = 1.8 > 1 pivoting cannot have been used correctly.

Exercise 7.24 Since the elements of b̄ are correctly rounded to two correct decimals we have
‖δb‖∞ ≤ 0.5 · 10−2. Thus the relative error in the solution is bounded by

‖δx‖∞
‖x‖∞

≤ ‖A‖∞‖A−1‖∞
‖δb‖∞
‖b‖∞

≤ 3 · 1 · 0.5 · 10
−2

1.34
< 0.012.

Exercise 7.25 The error in the right hand side is δb = (0.003 , 0.004 , −0.003)T . We find that the
error in the result is bounded by

‖δx‖∞
‖x‖∞

≤ ‖A‖∞‖A−1‖∞
‖δb‖∞
‖b‖∞

≤ 6.9 · 17.9052 · 0.004
1.039

< 0.48.

The absolute error is ‖δx‖∞ ≤ 0.48 · 3.5113 < 1.7.

Exercise 7.26 Use the LU decomposition of A to obtain

A = P TLU, so det(A) = det(P T )det(L)det(U).

Here both L and U are triangular so the determinant is the product of the diagonal elements. Also
P is a permutation matrix. If we exchange two rows in a matrix then the determinant changes sign.
So k is the number of row exchanges that actually occured during the Guassian elimination when
computing the LU decomposition.

Exercise 7.27 Let r = b − Ax̂. Then A−1r = A−1b − A−1Ax̂ = x − x̂ and we obtain ‖x − x̂‖ ≤
‖A−1‖‖r‖.

Exercise 7.28 Since P = I we have det(P ) = 1 and we obatin

det(A) = det(P T )det(L)det(U) = 1 · 1 · (2 · 2.5 · 1.4) = 7.
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8 Least Squares Problems and Orthogonal Decompositions

Exercise 8.1 The model is yi = c0 + c1xi + c2 sin(xi) and each measurement results in a row of a
linear system Ax = b. We obtain




1 x1 sin(x1)
1 x2 sin(x2)
...

...
...

1 xm sin(xm)







c0
c1
c2


 =




y1
y2
...
ym


 .

Exercise 8.2 The least squares method can not be used since the model is not linear. We rewrite
the model as u(t) = A cos(φ) sin(t)+A sin(φ) cos(t). The resulting over determined linear system is




sin(t1) cos(t1)
sin(t2) cos(t2)

...
...

sin(tm) cos(tm)




(
A cos(φ)
A sin(φ)

)
=




u(t1)
u(t2)

...
u(tm)


 .

where the first have to find a least squares solution x and then find the parameters A and φ by,
e.g., φ = atan(x2/x1).

Exercise 8.3 We rewrite the model as log(ti) = log(C) + p log(ni), and obtain the linear system




1 log(100)
1 log(200)
1 log(300)
1 log(400)



(

log(C)
p

)
=




log(1.213)
log(2.370)
log(3.619)
log(4.875)


 .

Exercise 8.4 Since Q is orthogonal QTQ = I. So

‖Qx‖22 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖22.

This means that ‖Q2‖2 = max ‖Qx‖2/‖x‖2 = max 1 = 1.

Exercise 8.5 First Range(A) = R
n since A is orthogonal and thus has linearly independent

columns. So A is an orthogonal projection on the whole of R
n. So Ax = x for every x ∈ R

n

so A = I is the identity matrix.

Exercise 8.6 Let

A = Q

(
R
0

)
= Q1R

where Q = (Q1, Q2). Since Q is orthogonal we find that

‖Ax− b‖22 = ‖QT (Ax− b)‖22 = ‖
(

R
0

)
x−

(
QT

1 b
QT

2 b

)
‖22 = ‖Rx−QT

1 b‖22 + ‖QT
2 b‖22.

The minimum is achived for x = R−1QT
1 b. Thus only the reduced QR decomposition is needed.
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Exercise 8.7 If A = Q1R then range(A) = span(Q1). So P = Q1Q
T
1 is an orthogonal projection

onto the range space of A. Thus if b = Q1Q
T
1 b then b belongs to the space range(A) which by

definition means that Ax = b has a solution.

Exercise 8.8 The vector a can be seen as a matrix in R
n×1. This means that

a = (a/‖a‖2)‖a‖2 = Q1R

where Q1 ∈ R
n×1 and R ∈ R

1×1. The formula for the least squares solution can be written using
the normal equations aTax = aT b or x = (aT b)/(aT a). This is the same as x = R−1QT

1 b with the
decomposition above.

Exercise 8.9 Since x = R−1QT
1 b is the least squares solution we can compute the residual as

r = b − Ax = b − Q1RR−1QT
1 b = (I − Q1Q

T
1 )b = Pb. We can also recall that Ax = Q1Q

T
1 b from

the geometrical interpretation of the least squares problem.

Exercise 8.10 The matrix has orthogonal columns, i.e. if A = (a1, a2) then aT1 a2 = 0. Thus the
QR decomposition is

A = (a1/‖a1‖2 , ‖a2/‖a2‖2)
(

‖a1‖2 0
0 ‖a2‖2

)
= Q1R.

The numbers are not very important.

Exercise 8.11 Let W = RTR be the Cholesky decomposition ans rewrite

‖x‖2W = xTWx = xTRTRx = (Rx)T (Rx) = ‖Rx‖22.

Since R is non-singular Rx = 0 if and only if x = 0. In order to find the normal equations we use

‖Ax− b‖W = ‖R(Ax− b)‖2.

The normal equations are now (RA)T (RA)x = (RA)T (Rb) or ATWAx = ATWb.

Exercise 8.12 If A = UΣV T where U, V are orthogonal and Σ = diag(σ1, σ2, . . . , σn) then ‖A‖2 =
‖UΣV T ‖2 = ‖Σ‖2. The norm of a diagonal matrix can be computed by

‖Σ‖2 = max
y∈Rn

‖Σy‖2
‖y‖2

= max
y∈Rn

√∑
σ2
i y

2
i∑

y2i
≤ σ1 max

y∈Rn

√∑
y2i∑
y2i

= σ1,

with equality for y = e1. Thus ‖A‖2 = σ1. If A−1 exists then A−1 = V Σ−1UT and ‖A−1‖2 =
‖Σ−1‖2. Since the diagonal elements of Σ−1 are 1/σi the largest diagonal element is 1/σn and
‖A−1‖2 = 1/σn.

Exercise 8.13 Let AT = V ΣTUT . If y ∈ span(uk+1, . . . , um) then uTi y = 0 for i = 1, . . . , k. This
is the null space of AT .
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Exercise 8.14 First compute (ATA)−1 = (V ΣTUTUΣV T )−1 = V (ΣTΣ)−1V T . Here ΣTΣ =
diag(σ2

i ) ∈ R
n×n. Thus A(ATA)−1AT = UΣV TV (ΣTΣ)−1V TV ΣTUT = UΣ(ΣTΣ)−1ΣTUT . Since

U is orthogonal ‖A(ATA)−1A‖2 = ‖Σ(ΣTΣ)−1ΣT ‖2. Evaluate the product of the diagonal matrices
to obtain

Σ(ΣTΣ)−1ΣT =

(
I 0
0 0

)
∈ R

m×m, I ∈ R
n×n.

The norm is the largest diagonal entry, i.e. 1.

Exercise 8.15 Let B = UΣV T . Since V = (v1, . . . , vn) provides a basis for R
n any x can be

written

x =
n∑

i=1

civi =⇒ By =
n∑

i=1

ciσiui.

If ‖x‖2 = 1 then
∑

c2i = 1. So

‖Bx‖22 =
n∑

i=1

σ2
i c

2
i ≥ σn

n∑

i=1

c2i = σ2
n,

with equality for c = en. So the minimum is σn and it is obtained for x = ±vn.

Exercise 8.16 The decomposition A = UΣV T can be written

A =

n∑

i=1

σiuiv
T
i ,

where σn > 0 as rank(A) = n. This means that Avi = σiui 6= 0 for i = 1, . . . , n. So the null space
is only the trivial one null(A) = {0} with dimension 0. Similarily, if y belongs to the range then
there is an x such that y = Ax, or

y = Ax =

n∑

i=1

σi(v
T
i x)ui,

so the y is a linear combination of {u1, . . . , un}. Thus range(A) = span(u1, . . . , un) and the dimen-
sion of the range is n.

Exercise 8.17 Let A = UΣV T . Since U = (u1, . . . , um) is a basis for R
m we can write

b =
m∑

i=1

(uTi b)ui,

Similarily, V = (v1, . . . , vn) is a basis for R
n so

Ax = A(

n∑

i=1

(vTi x)vi) =

n∑

i=1

σi(v
T
i x)ui.

We obtain

‖Ax− b‖22 = ‖
n∑

i=1

(σi(v
T
i x)− (uTi b))ui −

m∑

i=n+1

(uTi b))ui‖22 =
n∑

i=1

|σi(vTi x)− (uTi b)|2 +
m∑

i=n+1

|uTi b|2.
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The minimum is obtained for σi(v
T
i x)− uTi b for i = 1, . . . , n, so

x =

n∑

i=1

uTi b

σi
vi.

For this particular x we get

r = b−Ax =
m∑

i=n+1

(uTi b)ui.

Exercise 8.18 Compute Ax to obtain

Ax = A(

m∑

i=1

uTi b

σi
vi) =

m∑

i=1

uTi b

σi
Avi =

m∑

i=1

uTi b

σi
σiui =

m∑

i=1

(uTi b)ui = b,

where the last equality holds since U = (u1, . . . , um) provides an orthogonal basis for R
m which is

the space b belongs to.

Since m < n the matrix has a null space null(A) = span(vm+1, . . . , vn). If x2 belongs to the nullspace
then A(x + x2) = Ax = b so the solution is not unique. Since the above formula for x does not
include a component from the null space it can be characterized as

min ‖x‖2 such that Ax = b,

that is the minimum norm solution of the linear system Ax = b.

Exercise 8.19 Since rank(A) = k we note that {vk+1, . . . , vn} is a basis for null(A) and {v1, . . . , vk}
is a basis for its orthogonal complement (null(A))⊥. Thus for evey x we can write

x = x1 + x2 = (
k∑

i=1

civi) + (
n∑

i=k+1

civi).

In order to determine x1 we compute

Ax = A(x1 + x2) = Ax1 + 0 =

k∑

i=1

ciσiui = b =

m∑

i=1

(uTi b)ui.

Where (uTi b) = 0, for i = k + 1, . . . ,m, or a solution doesn’t exist. Thus

x1 =

k∑

i=1

uTi b

σi
vi and x2 =

n∑

i=k+1

civi,

where ci, i = k + 1, . . . , n, are undetermined parameters.

Exercise 8.20 a) If B has full rank then Bx = 0 if and only if x = 0 so the unique, and only
feasible, solution is precisely x = 0.
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b) If rank(B) = k < n then B has a non-trivial null space and write V = (Vk, Vn−k) so that the
null space is given by Vn−k then the feasible solutions are x = Vn−kc, c ∈ R

n−k. So in fact we have
a regular least squares problem

min
c∈Rn−k

‖(AVn−k)c− b‖2 and x = Vn−kc.

The above qualifies as a formula. Otherwise continmue and write the normal equations for the
above least squares problem.

Exercise 8.21 Let A = UΣV T and U = (u1, . . . , um). A solution exists if b ∈ range(A) =
span(u1, . . . , un). We can check this by, for instance, verifying that uTi b = 0, for i = n + 1, . . . ,m.
If m >> n it is cheaper to instead check if

b−
n∑

i=1

(uTi b)ui = 0.

If we split the matrix U = (U1, U2) then the same criteria can be written as UT
2 b = 0 or b−U1U

T
1 b =

0.

Exercise 8.22 The normal equations can be derived by the identity

min
x

‖Ax− b‖22 + λ2‖x‖22 = min
x

∥∥∥∥
(
Ax− b
λx

)∥∥∥∥
2

= min
x

∥∥∥∥
(

A
λI

)
x−

(
b
0

)∥∥∥∥
2

.

The last is a regular least squares problem with an extended matrix. The normal equations are

(AT λI )

(
A
λI

)
x = (AT I )

(
b
0

)
or (ATA+ λ2I)x = AT b.

Now we can derive the solution formula using the decomposition A = UΣV T . Since ATA + λI =
V ΣTΣV T + λ2V V T = V (ΣTΣ+ λ2I)V T and AT b = V ΣUT b we obtain the solution

xλ = V (ΣTΣ+ λI)−1ΣUT b =

n∑

i=1

σi
σ2
i + λ2

(uTi b)vi.

Too see that the normal equations are not ill-conditioned we look at ATA which has singular values
σ2
i + λ2 ≥ λ2. So the addition of the regularization parameter removes the small singular values

and makes the condition number smaller.
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