TEKNISKA HÖGSKOLAN I LINKÖPING

Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

Exam TANA09 Datatekniska beräkningar

Date: 14-18, 15th of January, 2020.

Allowed:

1. Pocket calculator

Examiner: Fredrik Berntsson
Marks: 25 points total and 10 points to pass.

Jour: Fredrik Berntsson - (telefon 013282860)

Vists at around 15.00 and 16.30 .
Good luck!
(5p) 1: a) Let $a=0.05347352661$ be an exact value. Round the value a to 4 significant digits to obtain an approximate value \bar{a}. Also give a bound for the absolute error in \bar{a}.
b) Let $x=12.7152$. Give a bound for the relative error when x is stored on a computer using the floating point system ($10,3,-10,10$).
c) Let $f(x)=\left(\mathrm{e}^{x}-1\right) / x$. For small values of x we make the approximation $f(x) \approx \bar{f}(x)=1+\frac{x}{2}$. The truncation error when $f(x)$ is approximated by $\bar{f}(x)$ can be written $\left|R_{T}\right| \lesssim C x^{p}$. What is the value of the integer p ? Clearly present calculations that motivates your answer.
d) Let $y=\sqrt{a}$, where $a=2.48 \pm 0.04$. Compute the approximate value \bar{y} and give an error bound.
(2p) 2: Let the table

x	1	3	5
$f(x)$	1.5	2.2	3.4

be given. Use Lagrange interpolation formula to write the second degree polynomial that interpolates the above table.
(3p) 3: We compute the function

$$
f(x)=\frac{\cos (x)-1}{\sin (x)}
$$

for small x values on a computer with unit round off $\mu=1.11 \cdot 10^{-16}$. We find that the results are quite poor and that the relative error in the result tends to grow as $x \rightarrow 0$. Explain the poor accuracy by performing an analysis of the computational errors and give a bound for the relative error in the computed result $f(x)$. For the analysis you may assume that all computations are performed with a relative error at most μ. Also suggest an alternative formula that can be expected to give better accuracy.
(3p) 4: Non-linear equations $f(x)=0$ can be solved using fixed point iteration where the problem is reformulated so that a root x^{*}, i.e. $f\left(x^{*}\right)=0$, is a fixed point to the iteration $x_{n+1}=g\left(x_{n}\right)$, that is $x^{*}=g\left(x^{*}\right)$.
a) Show that the iteration $x_{n+1}=g\left(x_{n}\right)$ is convergent if $\left|g^{\prime}\left(x^{*}\right)\right|<C<1$ and the starting guess x_{0} is sufficiently close to the root.
b) The equation $f(x)=1+x^{2}-3 \sqrt{x}=0$ has a root $x^{*} \approx 0.11$. Formulate a fixed point iteration for finding a root to $f(x)=0$ and show that the proposed method is convergent.
c) The equation $f(x)=1+x^{2}-3 \sqrt{x}$ is solved using fixed point iteration and an approximate root $\bar{x}=0.1140 \approx x^{*}$ is obtained. Estimate the error in the approximation \bar{x}.
(3p) 5: Consider 4×4 matrices.
a) The Gauss transformation used in the first step of computing the $L U$ decomposition can be written as

$$
M_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
m_{21} & 1 & 0 & 0 \\
m_{31} & 0 & 1 & 0 \\
m_{41} & 0 & 0 & 1
\end{array}\right) .
$$

Write down the matrix M_{1}^{-1}. Also give a formal proof that shows that your proposed matrix actually is the correct inverse.
b) Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & -1 & 1.2 \\
-1 & 1.7 & 0.9
\end{array}\right)
$$

and compute $\|A\|_{\infty}$.
c) Suppose we want to solve a linear system $A x=b$, but where only an approximate right hand side b_{δ}, satisfying an error bound $\|\Delta b\| \leq \delta$, is available. Show that

$$
\frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|} .
$$

where $\kappa(A)$ is the condition number, and where $\|\cdot\|$ denotes any of the norms $\|\cdot\|_{2},\|\cdot\|_{1}$, or $\|\cdot\|_{\infty}$,
(4p) 6: Points $\left(x_{i}, y_{i}\right)$ on an ellipse satisfy the equation $c_{1} x^{2}+c_{2} x y+c_{3} y^{2}+c_{4} x+c_{5} y+1=0$. Let the following data be given

x_{i}	0.2366	0.3375	0.2286	0.1145	-0.0866	-0.5321	-0.6732
y_{i}	1.2995	1.4137	1.6712	1.8473	2.0610	2.3195	2.4774

and do the following
a) Formulate the problem of finding the coefficients c_{1}, c_{2}, \ldots, and c_{5} as a least squares problem $A x=b$. Give the matrix A, the solution x and the right hand side b explicitly.
Hint Give A and b in terms of the data $\left(x_{i}, y_{i}\right)$ symbolically. Don't write numbers.
b) We compute the reduced $Q R$ decomposition, i.e. $Q R=A$, of the above matrix A. Give the dimensions of the matrices Q and R.
c) In the general case where A is an $m \times n$ matrix, b is a vector of length m, and the reduced $Q R$ decomposition is given. Clearly show how many floating point operations that are required to compute the solution x to the least squares problem min $\|A x-b\|_{2}$.
(2p) 7: To compute the derivative $f^{\prime}(2)$ we can use the formula

$$
D f(2)=\frac{1}{2 h}(-f(x+2 h)+4 f(x+h)-3 f(x)) .
$$

When the formula is applied for a few different h values we obtain the results

h	0.2	0.1	0.05
error	0.342	0.0861	0.0209

Assume that the error is proportional to h^{p} and use the table to determine p.
(3p) 8: a) Let

$$
s(x)= \begin{cases}x+1 & 0 \leq x<1 \\ x^{3}-3 x^{2}+4 x & 1 \leq x<2\end{cases}
$$

Is $s(x)$ a cubic spline? Motivate your answer
b) Let $P_{1}=(1,0)^{T}, P_{2}=(1,3)^{T}, P_{3}=(4,3)^{T}$ and $P_{4}=(4,2)^{T}$. Draw a sketch that clearly shows the convex hull formed by these points. Also use the available information to draw the cubic Beziér curve formed by the four points P_{1}, \ldots, P_{4} as accurately as possible.
c) Let $h>0$ be a step size. The B-spline basis function $B(x)$ is the unique natural cubic spline that interpolates the table

$B(x)$	0	$1 / 6$	$2 / 3$	$1 / 6$	0
x	-2 h	-h	0	h	2 h

Introduce the functions $B_{k}(x)=B(x-k h)$, and a uniform grid $x_{1}<x_{2}<\ldots<$ x_{n}, with $h=x_{i}-x_{i-1}$. Answer the following questions: What is the dimension of the space consisting of all the cubic splines defined on the grid $\left\{x_{i}\right\}_{i=1}^{n}$? Which of the basis functions $B_{k}(x)$ are non-zero on the interval $\left[x_{1}, x_{n}\right]$? Also show that the functions $\left\{B_{k}(x)\right\}$ are linearly independent. Write down a basis for for the linear space consisting of all cubic splines defined on the grid $\left\{x_{i}\right\}_{i=1}^{n}$. Motivate your choice carefully.

Answers

(5p) 1: For a) we obtain the approximate value $\bar{a}=0.05347$ which has 4 significant digits. The absolute error is at most $|\Delta a| \leq 0.5 \cdot 10^{-5}$.
In \mathbf{b}) the unit round off for the floating point system if $\mu=0.5 \cdot 10^{-3}$. This is an upper bound for the relative error when a number is stored on the computer.
For \mathbf{c}) we insert the Taylor series for e^{x} into the expression for $f(x)$ to obtain

$$
f(x)=\frac{\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots\right)-1}{x}=1+\frac{x}{2}+\frac{x^{2}}{6}+\ldots=\bar{f}(x)+R_{T}
$$

Thus the leading term in the truncation error is $x^{2} / 6$ and $p=2$.
d) The approximate value is $\bar{y}=\sqrt{\bar{a}}=\sqrt{2.48}=1.57$ with $\left|R_{B}\right| \leq 0.5 \cdot 10^{-2}$. The error propagation formula gives

$$
|\Delta y| \lesssim\left|\frac{\partial y}{\partial a} \| \Delta a\right|=\left|\frac{1}{2 \sqrt{a}}\right||\Delta a|<0.013
$$

The total error is $\left|R_{T O T}\right| \leq 0.013+0.5 \cdot 10^{-2}<0.02$. Thus $y=1.57 \pm 0.02$.
(2p) 2: The interpolating polynomial is

$$
p(x)=1.5 \frac{(x-3)(x-5)}{(1-3)(1-5)}+2.2 \frac{(x-1)(x-5)}{(3-1)(3-5)}+3.4 \frac{(x-1)(x-3)}{(5-1)(5-3)}
$$

There is no need to simplify the expression.
(3p) 3: The computational order is

$$
f(x)=\frac{1-\cos (x)}{\sin (x)}=\frac{1-c}{s}=\frac{d}{s}=e .
$$

The error propagation formula gives us

$$
\begin{gathered}
|\Delta f| \lesssim\left|\frac { \partial f } { \partial c } \left\|\Delta c\left|+\left|\frac{\partial f}{\partial s} \| \Delta s\right|+\left|\frac{\partial f}{\partial d}\right|\right| \Delta d\left|+\left|\frac{\partial f}{\partial c}\right|\right| \Delta e\left|=\left|\frac{1}{s}\right|\right| \Delta c\left|+\left|\frac{1-c}{s^{2}}\right|\right| \Delta s\left|+\left|\frac{1}{s}\right|\right| \Delta d|+|\Delta e| \leq\right.\right. \\
\mu\left(\left|\frac{c}{s}\right|+\left|\frac{1-c}{s}\right|+\left|\frac{d}{s}\right|+|e|\right) \approx \frac{\mu}{x}
\end{gathered}
$$

where we have used $c \approx 1, s \approx x$ and $d / s=e=f \approx x / 2$. An alternate formula that avoids the cancellation is

$$
f(x)=\frac{\sin (x)}{1+\cos (x)} .
$$

(3p) 4: For a) we use the mean value theorem and write

$$
\left|x_{n}-x^{*}\right|=\left|g\left(x_{n-1}\right)-g\left(x^{*}\right)\right|=\left|g^{\prime}(\xi)\right|\left|x_{n-1}-x^{*}\right| \leq C\left|x_{n-1}-x^{*}\right| .
$$

where $\xi \in\left[x_{n-1}, x^{*}\right]$ which means $\mid g^{\prime}(\xi) \leq C$ if x_{n-1} is close enough to the root. We repeat the same argument to obtain $\left|x_{n}-x^{*}\right| \leq C^{n}\left|x_{0}-x^{*}\right| \rightarrow 0$ as $n \rightarrow \infty$.
For b) we rewrite $f(x)=1+x^{2}-3 \sqrt{x}=0$ as $\left(1+x^{2}\right)^{2}=9 x$. One possible iteration formula is thus $x_{n+1}=g\left(x_{n}\right)=\left(1+x_{n}^{2}\right)^{2} / 9$. Since

$$
g^{\prime}(x)=\frac{2}{9}\left(1+x^{2}\right) 2 x \text { and } g^{\prime}(0.11)=0.0495<1
$$

the method is convergent.
In c) the error estimate is given by

$$
|x-\bar{x}| \leq \frac{|f(\bar{x})|}{\left|f^{\prime}(\bar{x})\right|} \leq \frac{7.95 \cdot 10^{-5}}{4.2}<1.9 \cdot 10^{-5} .
$$

(3p) 5: For a) we propose the inverse

$$
M_{1}^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-m_{21} & 1 & 0 & 0 \\
-m_{31} & 0 & 1 & 0 \\
-m_{41} & 0 & 0 & 1
\end{array}\right) .
$$

There are several ways to show that this is indeed the inverse. The simplest to write down is that

$$
M_{1}^{-1} M_{1} x=M_{1}^{-1}\left(\begin{array}{c}
x_{1} \\
x_{2}+m_{21} x_{1} \\
x_{3}+m_{31} x_{1} \\
x_{4}+m_{41} x_{1}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2}+m_{21} x_{1}-m_{21} x_{1} \\
x_{3}+m_{31} x_{1}-m_{31} x_{1} \\
x_{4}+m_{41} x_{1}-m_{41} x_{1}
\end{array}\right)=x,
$$

for every vector x. Thus $M_{1}^{-1} M_{1}=I$.
For \mathbf{b}) we note that the second row gives the largest sum and $\|A\|_{\infty}=|2|+|-1|+$ $|1.2|=4.2$.
Finally, \mathbf{c}) is solved by noting that the systems $A(x+\Delta x)=b+\Delta b$ and $A x=b$ both holds. Subtracting gives $A \Delta x=\Delta b$ or $\Delta x=A^{-1} \Delta b$. Taking norms we find that $\|\Delta x\| \leq\left\|A^{-1}\right\|\|\Delta b\|$. Also $\|b\|=\|A x\| \leq\|A\|\|x\|$. Thus

$$
\frac{\|\Delta x\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|\Delta b\|}{\|b\| /\|A\|}=\|A\|\left\|A^{-1}\right\| \frac{\|\Delta b\|}{\|b\|} .
$$

(4p) 6: For a) we remark that each data point $\left(x_{i}, y_{i}\right)$ gives one row of the over determined system $A x=b$. The model is $c_{1} x_{i}^{2}+c_{2} x y+c_{3} y_{i}^{2}+c_{4} x_{i}+c_{5} y_{i}=-1$. Thus the system $A x=b$ is

$$
\left(\begin{array}{ccccc}
x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} & x_{1} & y_{1} \\
x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} & x_{2} & y_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{7}^{2} & x_{7} y_{7} & y_{7}^{2} & x_{7} & y_{7}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
\vdots \\
-1
\end{array}\right) .
$$

For \mathbf{b}), we note that A is 7×5 and Q has the same dimension. Also R is 5×5 upper triangular.
Finally for \mathbf{c}) we note that the solution is computed using the formula $x=R^{-1} Q^{T} b$, where R is $n \times n$ upper triangular and Q is $m \times n$. The matrix vector multiplication requires $m n$ multiplications and additions, or $2 m n$ floating point operations. Multiplication by R^{-1} is equivalent to solving the upper triangular system using backwards substitution. The formula for a general step is

$$
x_{i}=\left(\sum_{j=i+1}^{n} r_{i j} x_{j}\right) / r_{i i},
$$

which requires $n-i-1$ multiplications and additions, and also one division. The total amount of work is approximately

$$
\sum_{i=1}^{n} 2(n-i) \approx n^{2}
$$

Thus computing the solution requires $2 m n+n^{2}$ floating point operations.
(2p) 7: We denote the error by $\epsilon_{h} \approx C h^{p}$. Then

$$
\frac{\epsilon_{h_{1}}}{\epsilon_{h_{2}}} \approx \frac{C h_{1}^{p}}{C h_{2}^{p}}=\left(\frac{h_{1}}{h_{2}}\right)^{p} .
$$

Insert numbers from the table we obtain

$$
2^{p}=\left(\frac{0.2}{0.1}\right)^{p} \approx \frac{\epsilon_{0.2}}{\epsilon_{0.1}}=\frac{0.342}{0.0861} \approx 3.97 \text { and } 2^{p} \approx \frac{\epsilon_{0.1}}{\epsilon_{0.05}}=\frac{0.0861}{0.0209} \approx 4.11 .
$$

We see that $2^{p}=4$ which means $p=2$.
(3p) 8: For a) the function $s(x)$ is a cubic spline since $s(x), s^{\prime}(x)$ and $s^{\prime \prime}(x)$ are continuous at $x=1$.

For \mathbf{b}) the sketch is

The convex hull is the area enclosed by the dashed lines. Important features of the Beziér curve is that since both P_{1} / P_{2} and P_{3} / P_{4} have the same x-coordinate the tangent direction of the curve is vertical at both the starting and ending points.
In \mathbf{c}) the dimension of the space of cubic splines defined on the $\operatorname{grid}\left\{x_{i}\right\}_{i=1}^{n}$ is $n+2$ since adding n interpolation conditions and two end point conditions makes the spline unique. The function $B_{k}(x)$ is non-zero on the interval $(k-2) h<x<(k+2) h$. Also $x_{n}=(n-1) h$. Thus the functions $B_{k}(x)$, for $k=-1,0,1, \ldots, n$ are non-zero on $\left[x_{1}, x_{n}\right]$. This is a total of $n+2$ functions. The easiest way to show that the functions are linearly independent is to start with $\left\{B_{k}(x)\right\}_{k=-1}^{j-1}$ and add the next function $B_{j}(x)$. Since $B_{j}(x)$ is non-zero on the last interval $(j+1) h<x<(j+2) h$, where all the previous functions are zero, the function B_{j} has to be linearly independent of B_{k} for $k<j$. Repeat the argument and all the basis functions are linealy independent. Finally the basis is $\left\{B_{k}(x)\right\}_{k=-1}^{n}$ since the functions are linearly independent and the number of functions match the dimension of the space.

