
TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

Exam TANA09 Datatekniska beräkningar

Date: 14-18, 15th of January, 2020.

Allowed:

1. Pocket calculator

Examiner: Fredrik Berntsson

Marks: 25 points total and 10 points to pass.

Jour: Fredrik Berntsson - (telefon 013 28 28 60)

Vists at around 15.00 and 16.30.

Good luck!
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(5p) 1: a) Let a = 0.05347352661 be an exact value. Round the value a to 4 significant
digits to obtain an approximate value ā. Also give a bound for the absolute
error in ā.

b) Let x = 12.7152. Give a bound for the relative error when x is stored on a
computer using the floating point system (10, 3,−10, 10).

c) Let f(x) = (ex − 1)/x. For small values of x we make the approximation
f(x) ≈ f̄(x) = 1+ x

2
. The truncation error when f(x) is approximated by f̄(x)

can be written |RT | . Cxp. What is the value of the integer p? Clearly present
calculations that motivates your answer.

d) Let y =
√
a, where a = 2.48 ± 0.04. Compute the approximate value ȳ and

give an error bound.

(2p) 2: Let the table

x 1 3 5
f(x) 1.5 2.2 3.4

be given. Use Lagrange interpolation formula to write the second degree polynomial
that interpolates the above table.

(3p) 3: We compute the function

f(x) =
cos(x)− 1

sin(x)

for small x values on a computer with unit round off µ=1.11 · 10−16. We find that
the results are quite poor and that the relative error in the result tends to grow as
x → 0. Explain the poor accuracy by performing an analysis of the computational
errors and give a bound for the relative error in the computed result f(x). For the
analysis you may assume that all computations are performed with a relative error
at most µ. Also suggest an alternative formula that can be expected to give better
accuracy.
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(3p) 4: Non-linear equations f(x) = 0 can be solved using fixed point iteration where the
problem is reformulated so that a root x∗, i.e. f(x∗) = 0, is a fixed point to the
iteration xn+1 = g(xn), that is x∗ = g(x∗).

a) Show that the iteration xn+1 = g(xn) is convergent if |g′(x∗)| < C < 1 and the
starting guess x0 is sufficiently close to the root.

b) The equation f(x) = 1 + x2 − 3
√
x = 0 has a root x∗ ≈ 0.11. Formulate a

fixed point iteration for finding a root to f(x) = 0 and show that the proposed
method is convergent.

c) The equation f(x) = 1 + x2 − 3
√
x is solved using fixed point iteration and

an approximate root x̄ = 0.1140 ≈ x∗ is obtained. Estimate the error in the
approximation x̄.

(3p) 5: Consider 4× 4 matrices.

a) The Gauss transformation used in the first step of computing the LU decom-
position can be written as

M1 =









1 0 0 0
m21 1 0 0
m31 0 1 0
m41 0 0 1









.

Write down the matrix M−1

1 . Also give a formal proof that shows that your
proposed matrix actually is the correct inverse.

b) Let

A =





1 2 −1
2 −1 1.2
−1 1.7 0.9



 ,

and compute ‖A‖∞.

c) Suppose we want to solve a linear system Ax = b, but where only an approxi-
mate right hand side bδ, satisfying an error bound ‖∆b‖ ≤ δ, is available. Show
that

‖∆x‖
‖x‖ ≤ κ(A)

‖∆b‖
‖b‖ .

where κ(A) is the condition number, and where ‖ · ‖ denotes any of the norms
‖ · ‖2, ‖ · ‖1, or ‖ · ‖∞,
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(4p) 6: Points (xi, yi) on an ellipse satisfy the equation c1x
2+c2xy+c3y

2+c4x+c5y+1 = 0.
Let the following data be given

xi 0.2366 0.3375 0.2286 0.1145 -0.0866 -0.5321 -0.6732
yi 1.2995 1.4137 1.6712 1.8473 2.0610 2.3195 2.4774

and do the following

a) Formulate the problem of finding the coefficients c1, c2,. . . , and c5 as a least
squares problem Ax = b. Give the matrix A, the solution x and the right hand
side b explicitly.

Hint Give A and b in terms of the data (xi, yi) symbolically. Don’t write
numbers.

b) We compute the reduced QR decomposition, i.e. QR = A, of the above matrix
A. Give the dimensions of the matrices Q and R.

c) In the general case where A is an m× n matrix, b is a vector of length m, and
the reduced QR decomposition is given. Clearly show how many floating point
operations that are required to compute the solution x to the least squares
problem min ‖Ax− b‖2.

(2p) 7: To compute the derivative f ′(2) we can use the formula

Df(2) =
1

2h
(−f(x+ 2h) + 4f(x+ h)− 3f(x)).

When the formula is applied for a few different h values we obtain the results

h 0.2 0.1 0.05
error 0.342 0.0861 0.0209

Assume that the error is proportional to hp and use the table to determine p.
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(3p) 8: a) Let

s(x) =

{

x+ 1 0 ≤ x < 1,
x3 − 3x2 + 4x 1 ≤ x < 2.

Is s(x) a cubic spline? Motivate your answer

b) Let P1 = (1 , 0)T , P2 = (1 , 3)T , P3 = (4 , 3)T and P4 = (4 , 2)T . Draw a
sketch that clearly shows the convex hull formed by these points. Also use the
available information to draw the cubic Beziér curve formed by the four points
P1, . . . , P4 as accurately as possible.

c) Let h > 0 be a step size. The B–spline basis function B(x) is the unique
natural cubic spline that interpolates the table

B(x) 0 1/6 2/3 1/6 0
x -2h -h 0 h 2h

Introduce the functions Bk(x) = B(x−kh), and a uniform grid x1 < x2 < . . . <
xn, with h = xi−xi−1. Answer the following questions: What is the dimension
of the space consisting of all the cubic splines defined on the grid {xi}ni=1?
Which of the basis functions Bk(x) are non-zero on the interval [x1, xn]? Also
show that the functions {Bk(x)} are linearly independent. Write down a basis
for for the linear space consisting of all cubic splines defined on the grid {xi}ni=1.
Motivate your choice carefully.
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Answers

(5p) 1: For a) we obtain the approximate value ā = 0.05347 which has 4 significant digits.
The absolute error is at most |∆a| ≤ 0.5 · 10−5.

In b) the unit round off for the floating point system if µ = 0.5 · 10−3. This is an
upper bound for the relative error when a number is stored on the computer.

For c) we insert the Taylor series for ex into the expression for f(x) to obtain

f(x) =
(1 + x+ x2

2
+ x3

6
+ . . .)− 1

x
= 1 +

x

2
+

x2

6
+ . . . = f̄(x) +RT .

Thus the leading term in the truncation error is x2/6 and p = 2.

d) The approximate value is ȳ =
√
ā =

√
2.48 = 1.57 with |RB| ≤ 0.5 · 10−2. The error

propagation formula gives

|∆y| . |∂y
∂a

||∆a| = | 1

2
√
a
||∆a| < 0.013.

The total error is |RTOT | ≤ 0.013 + 0.5 · 10−2 < 0.02. Thus y = 1.57± 0.02.

(2p) 2: The interpolating polynomial is

p(x) = 1.5
(x− 3)(x− 5)

(1− 3)(1− 5)
+ 2.2

(x− 1)(x− 5)

(3− 1)(3− 5)
+ 3.4

(x− 1)(x− 3)

(5− 1)(5− 3)
.

There is no need to simplify the expression.

(3p) 3: The computational order is

f(x) =
1− cos(x)

sin(x)
=

1− c

s
=

d

s
= e.

The error propagation formula gives us

|∆f | . |∂f
∂c

||∆c|+|∂f
∂s

||∆s|+|∂f
∂d

||∆d|+|∂f
∂c

||∆e| = |1
s
||∆c|+|1− c

s2
||∆s|+|1

s
||∆d|+|∆e| ≤

µ(|c
s
|+ |1− c

s
|+ |d

s
|+ |e|) ≈ µ

x
,

where we have used c ≈ 1, s ≈ x and d/s = e = f ≈ x/2. An alternate formula
that avoids the cancellation is

f(x) =
sin(x)

1 + cos(x)
.
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(3p) 4: For a) we use the mean value theorem and write

|xn − x∗| = |g(xn−1)− g(x∗)| = |g′(ξ)||xn−1 − x∗| ≤ C|xn−1 − x∗|.

where ξ ∈ [xn−1, x
∗] which means |g′(ξ) ≤ C if xn−1 is close enough to the root. We

repeat the same argument to obtain |xn − x∗| ≤ Cn|x0 − x∗| → 0 as n → ∞.

For b) we rewrite f(x) = 1+x2−3
√
x = 0 as (1+x2)2 = 9x. One possible iteration

formula is thus xn+1 = g(xn) = (1 + x2
n)

2/9. Since

g′(x) =
2

9
(1 + x2)2x and g′(0.11) = 0.0495 < 1,

the method is convergent.

In c) the error estimate is given by

|x− x̄| ≤ |f(x̄)|
|f ′(x̄)| ≤

7.95 · 10−5

4.2
< 1.9 · 10−5.

(3p) 5: For a) we propose the inverse

M−1

1 =









1 0 0 0
−m21 1 0 0
−m31 0 1 0
−m41 0 0 1









.

There are several ways to show that this is indeed the inverse. The simplest to write
down is that

M−1

1 M1x = M−1

1









x1

x2 +m21x1

x3 +m31x1

x4 +m41x1









=









x1

x2 +m21x1 −m21x1

x3 +m31x1 −m31x1

x4 +m41x1 −m41x1









= x,

for every vector x. Thus M−1

1 M1 = I.

For b) we note that the second row gives the largest sum and ‖A‖∞ = |2|+ |−1|+
|1.2| = 4.2.

Finally, c) is solved by noting that the systems A(x + ∆x) = b + ∆b and Ax = b
both holds. Subtracting gives A∆x = ∆b or ∆x = A−1∆b. Taking norms we find
that ‖∆x‖ ≤ ‖A−1‖‖∆b‖. Also ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖. Thus

‖∆x‖
‖x‖ ≤ ‖A−1‖‖∆b‖

‖b‖/‖A‖ = ‖A‖‖A−1‖‖∆b‖
‖b‖ .
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(4p) 6: For a) we remark that each data point (xi, yi) gives one row of the over determined
system Ax = b. The model is c1x2

i +c2xy+c3y
2
i +c4xi+c5yi = −1. Thus the system

Ax = b is










x2
1 x1y1 y21 x1 y1

x2
2 x2y2 y22 x2 y2
...

...
...

...
...

x2
7 x7y7 y27 x7 y7























c1
c2
c3
c4
c5













=











−1
−1
...
−1











.

For b), we note that A is 7 × 5 and Q has the same dimension. Also R is 5 × 5
upper triangular.

Finally for c) we note that the solution is computed using the formula x = R−1QT b,
where R is n × n upper triangular and Q is m × n. The matrix vector multiplica-
tion requires mn multiplications and additions, or 2mn floating point operations.
Multiplication by R−1 is equivalent to solving the upper triangular system using
backwards substitution. The formula for a general step is

xi = (

n
∑

j=i+1

rijxj)/rii,

which requires n − i − 1 multiplications and additions, and also one division. The
total amount of work is approximately

n
∑

i=1

2(n− i) ≈ n2.

Thus computing the solution requires 2mn + n2 floating point operations.

(2p) 7: We denote the error by ǫh ≈ Chp. Then

ǫh1

ǫh2

≈ Chp
1

Chp
2

= (
h1

h2

)p.

Insert numbers from the table we obtain

2p = (
0.2

0.1
)p ≈ ǫ0.2

ǫ0.1
=

0.342

0.0861
≈ 3.97 and 2p ≈ ǫ0.1

ǫ0.05
=

0.0861

0.0209
≈ 4.11.

We see that 2p = 4 which means p = 2.

(3p) 8: For a) the function s(x) is a cubic spline since s(x), s′(x) and s′′(x) are continuous
at x = 1.
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For b) the sketch is

P1

P2
P3

P4

The convex hull is the area enclosed by the dashed lines. Important features of the
Beziér curve is that since both P1/P2 and P3/P4 have the same x-coordinate the
tangent direction of the curve is vertical at both the starting and ending points.

In c) the dimension of the space of cubic splines defined on the grid {xi}ni=1 is n+2
since adding n interpolation conditions and two end point conditions makes the
spline unique. The function Bk(x) is non-zero on the interval (k−2)h < x < (k+2)h.
Also xn = (n−1)h. Thus the functions Bk(x), for k = −1, 0, 1, . . . , n are non-zero on
[x1, xn]. This is a total of n+2 functions. The easiest way to show that the functions
are linearly independent is to start with {Bk(x)}j−1

k=−1
and add the next function

Bj(x). Since Bj(x) is non-zero on the last interval (j+1)h < x < (j+2)h, where all
the previous functions are zero, the function Bj has to be linearly independent of Bk

for k < j. Repeat the argument and all the basis functions are linealy independent.
Finally the basis is {Bk(x)}nk=−1

since the functions are linearly independent and
the number of functions match the dimension of the space.
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