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(5p) 1: a) Let a = 0.08852661 be an exact value. Round the value a to 4 correct decimals
to obtain an approximate value ā. Also give a bound for the relative error in
ā.

b) Let x = 24.2231. Give a bound for the relative error when x is stored on a
computer using the floating point system (10, 5,−10, 10).

c) Explain why the formula y = cosx−1 can give poor accuracy when evaluated,
for small x, on a computer. Also propose an alternative formula that can be
expected to work better.

d) Let y = log a, where a = 3.87 ± 0.03. Compute the approximate value ȳ and
give an error bound.

(2p) 2: Let the table,

x 0.4 0.7 0.9
f(x) 1.284 1.413 1.475

of correctly rounded function values, be given. Use linear interpolation to approxi-
mate the function value f(0.58). Also give a complete error estimate.

(2p) 3: We compute the function
f(x) = 1− 2x cos(x)

for small x values on a computer with unit round off µ=1.11 · 10−16. Preform an
analysis of the computational errors to obtain a bound for the relative error in the
computed results f(x). For the analysis you may assume that all computations are
performed with a relative error at most µ. Also, use the obtained bound to argue
if cancellation occurs during the computations. In case of cancellation also suggest
an alternative formula that can be expected to give better accuracy.

3



(3p) 4: Non-linear equations f(x) = 0 can be solved using fixed point iteration where the
problem is reformulated so that a root x∗, i.e. f(x∗) = 0, is a fixed point to the
iteration xn+1 = g(xn), that is x∗ = g(x∗).

a) Show that the iteration xn+1 = g(xn) is convergent if |g′(x∗)| < C < 1 and the
starting guess x0 is sufficiently close to the root.

b) The equation f(x) = e2x − 2 + 3x = 0 has a root x∗ ≈ 0.19. Formulate a
fixed point iteration for finding a root to f(x) = 0 and show that the proposed
method is convergent.

c) The equation f(x) = e2x − 2+ 3x = 0 is solved using fixed point iteration and
an approximate root x̄ = 0.1845 ≈ x∗ is obtained. Estimate the error in the
approximation x̄.

(4p) 5: Do the following

a) A computer program has computed the decomposition PA = LU and the
output is

L=




1 0 0
−0.7 1 0
0.3 1.8 1


 U=




1.7 −2.3 −1.4
0 1.2 −0.5
0 0 3.1


 P =




1 0 0
0 0 1
0 1 0


 .

Determine if pivoting was used correctly during the computations. Motivate
your answer!

b) Let A and B be n× n matrices and x, y, be n× 1 vectors. How many floating
point operations are required to implement the formula

z = (I + A)(Bx+ y),

where I is the identity matrix, as efficiently as possible? In a practical test one
implementation of the formula was tested on a computer and the following run
times were reported

n 1000 2000 4000 8000
time (ms) 1060 8360 66300 529000

Was the implementation done using the most efficient method? Motivate your
answer carefully.

c) Let

A =




0.3 −0.9 −1.3
2.1 −0.1 0.7
−1.1 −1.6 0.8


 ,

and compute ‖A‖∞.

d) Let r = b−Ax̂ be the residual for an approximate solution to the linear system
Ax = b. Prove the formula:

‖x− x̂‖ ≤ ‖A−1‖‖r‖.
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(4p) 6: Suppose A ∈ R
m×n, m > n. The least squares method can be used to minimize

‖Ax− b‖2.

a) Draw a clear sketch that shows that x solves the minimization problem if the
residual r = b − Ax is orthogonal to all the column vectors from A. Also,
clearly, demonstrate how this leads to x satisfying the normal equations.

b) Suppose we have a set of measurements (xk, yk) for k = 1, . . . , m. We want to
adapt a function of the type

yk ≈ c1 + c2xk + c3 cos(πxk) + c4 sin(πxk)

to the measurements by using the least squares method. Clearly show what
the matrix A and the right hand side b is for this particular case.

c) Suppose A ∈ R
m×n, m > n, and that we have the reduced QR decomposition

A = Q1R. Show how the decomposition can be used to find the vector x that
minimize ‖Ax− b‖2.

d) Suppose the reduced QR decomposition is known. Use the decomposition to
write an orthogonal projection P such that the residual is r = Pb.

(2p) 7: A numerical method, depends on a discretization parameter h, and has a truncation
error that can be described as RT ≈ Chp. We use the method to compute a few
approximations T (h) of the exact result T (0) and obtain

h 0.9 0.3 0.1
T(h) 2.8782 1.8975 1.7885

Use the table to determine C and p. Also estimate the value of h needed for the
error to be of magnitude 10−3.

(3p) 8: a) Let

s(x) =

{
−x2 + x+ 1 0 ≤ x < 1,
x3 − 2x2 + 2x 1 ≤ x < 2.

Is s(x) a cubic spline? Motivate your answer

b) Let P1 = (1 , 0)T , P2 = (1 , 3)T , P3 = (4 , 3)T and P4 = (4 , 2)T . Draw a
sketch that clearly shows the convex hull formed by these points. Also use the
available information to draw the cubic Beziér curve formed by the four points
P1, . . . , P4 as accurately as possible.

c) Use the identity 1 = 12 = (1− t+ t)2 to derive the expression for a quadratic
Beziér curve. Also draw a clear sketch that shows an example of a continuously
differentiable curve consisting of three different quadratic Beziér curves. The
sketch should include all the control points, dashed lines connecting the control
points, and also the curve itself. Also state how many control points are needed
in total to create the continuous curve.
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Answers

(5p) 1: For a) we obtain the approximate value ā = 0.0885 which has 4 correct decimal
digits. The absolute error is at most |∆a| ≤ 0.5 · 10−4 and thus the relative error is
bounded by ∆a|/|a| ≤ 0.5 · 10−4/0.0885 ≤ 0.57 · 10−3.

In b) the unit round off for the floating point system is µ = 0.5 · 10−5. This is an
upper bound for the relative error when a number is stored on the computer.

For c) Since cos(x) ≈ 1, for small x, we catastrophic cancellation will occur when
cos(x) − 1 is computed resulting in a large relative error in the result. A better
formula would be

cos(x)− 1 =
(cos(x)− 1)(cos(x) + 1)

cos(x) + 1)
=

cos2(x)− 1

cos(x) + 1)
=

sin2(x)

cos2(x) + 1
,

where the cancellation is removed.

For d) The approximate value is ȳ = log ā = log 3.87 = 1.35 with |RB| ≤ 0.5 · 10−2.
The error propagation formula gives

|∆y| . |
∂y

∂a
||∆a| = |

1

a
||∆a| < 0.008.

The total error is |RTOT | ≤ 0.008 + 0.5 · 10−2 < 0.013. Thus y = 1.35± 0.02.

(2p) 2: We use Newtons interpolation formula and the ansatz p(x) = p1(x) + RT (x) =
c0 + c1(x− 0.4) + c2(x− 0.4)(x− 0.7), where the last term will be used to estimate
the truncation error. Inserting the function values from the table leads to p(0.4) =
c0 = 1.284 and p(0.7) = c0 + c1(0.3) = 1.413 which means c1 = 0.43. The last
equation is p(0.9) = c0 + c1(0.5) + c2(0.5)(0.2) = 1.475 which gives c2 = −0.24.
Thus

p1(x) = 1.284 + 0.43(x− 0.4) and RT (x) = −0.24(x− 0.4)(x− 0.7).

We obtain f(0.58) ≈ p1(0.58) = 1.361 with |RB| < 0.5 · 10−3 and RT ≤ | −
0.24(0.58 − 0.4)(0.58 − 0.7)| < 0.52 · 10−2. The errors in the function values used
also gives an error RXF < 0.5·10−3 in the result. Thus f(0.58) = 1.361±0.62·10−2 =
1.361± 0.7 · 10−2.

(2p) 3: The computational order is

f(x) = 1− 2x cos(x) = 1− 2xa + 1− b = c.

The error propagation formula gives us

|∆f | . |
∂f

∂a
||∆a|+ |

∂f

∂b
||∆b|+ |

∂f

∂c
||∆c| = |2x||∆a|+ |1||∆b|+ |1||∆c| .

µ(|2xa|+ |b|+ |c|) ≈ µ(|2x|+ |2x|+ 1) ≈ µ,

where we have used cos(x) ≈ 1, f(x) = c ≈ 1 and that x is small. There is no
cancellation present in these calculations. Everything turns out fine and both the
absolute and relative errors are bounded by µ (since the function value f(x) ≈ 1).
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(3p) 4: For a) we use the mean value theorem and write

|xn − x∗| = |g(xn−1)− g(x∗)| = |g′(ξ)||xn−1 − x∗| ≤ C|xn−1 − x∗|.

where ξ ∈ [xn−1, x
∗] which means |g′(ξ) ≤ C if xn−1 is close enough to the root. We

repeat the same argument to obtain |xn − x∗| ≤ Cn|x0 − x∗| → 0 as n → ∞.

For b) we rewrite f(x) = e2x−2+3x = 0 as x = (2− e2x)/3. One possible iteration
formula is thus xn+1 = g(xn) = (2− e2xn)/3. Since

g′(x) = −2e2x/3 and g′(0.19) = 0.9749 < 1,

the method is convergent (but really slow).

In c) the error estimate is given by

|x− x̄| ≤
|f(x̄)|

|f ′(x̄)|
≤

2.13 · 10−4

5.89
< 3.7 · 10−5.

(4p) 5: For a) we just observe that one of the multipliers (i.e. ℓ32 = 1.8) is larger than one.
Thus pivoting wasn’t used correctly.

For b) we note that a matrix-vector operation reguires n2 multiply/additions. Thus
w = Bx+y is computed using 2n2+n operations. The same us true for z = w+Aw.
The total number of operations is this 4n2 + 2n. If the formula were implemented
correctly the run time should be given by to T (n) = cn2, or T (2n)/T (n) = 22 = 4.
In the table we have, for instance, T (4000)/T (2000) = 66300/8360 ≈ 7.9, which is
closer to 23 = 8. So likely the formula wasn’t implemented correctly but a matrix-
matrix multiply was used somewhere.

For c) we note that the second row gives the largest sum and ‖A‖∞ = | − 1.1|+ | −
1.6|+ |0.8| = 3.5.

Finally, d) is solved by noting that r = b− Ax̂ = A(A−1b− x̂) = A(x− x̂). Thus

‖x− x̂‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖.

(4p) 6: For a) the sketch has to make clear that the residual r = b − Ax is orthogonal
to the subspace range(A). Since the columns of A = (a1, . . . , am) for a basis for
range(A) then aTi r = 0, for i = 1, 2, . . . , m, which gives the normal equations
AT r = AT (b−Ax) = 0 or ATAx = AT b.

For b) we note that each data point (xi, yi) gives one row of the over determined
system Ax = b. The model is y = c1+c2x+c3 cos(πx)+c4 sin(πx). Thus the system
Ax = b is




1 x1 cos(πx1) sin(πx1)
1 x2 cos(πx2) sin(πx2)
...

...
...

...
1 xm cos(πxm) sin(πxm)







c1
c2
c3
c4


 =




y1
y2
...
ym


 .
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For c), we let

A = Q

(
R
0

)
= Q1R

where Q = (Q1, Q2). Since Q is orthogonal we find that

‖Ax− b‖22 = ‖QT (Ax− b)‖22 = ‖

(
R
0

)
x−

(
QT

1 b
QT

2 b

)
‖22 = ‖Rx−QT

1 b‖
2

2 + ‖QT
2 b‖

2

2.

The minimum is achived for x = R−1QT
1 b. Thus only the reduced QR decomposition

is needed.

Finnally, for d), we observe that Ax = Q1Q
T
1 b since Q1 contains the orthogonal

basis for range(A). This means that r = b − Ax = b − Q1Q
T
1 b = (I − Q1Q

T
1 )b, or

P = I −Q1Q
T
1 .

(2p) 7: Since T (h) = T (0) + Chp we get

T (9h)− T (3h)

T (3h)− T (h)
≈

(9p − 3p)Chp

(3p − 1p)Chp
= 3p

Insert numbers from the table we obtain

3p =
2.8782− 1.8975

1.8975− 1.7885
= 8.9972.

Which fits almost perfectly with p = 2. In order to determine C we use the last
equation T (3h) − T (h) = (32 − 12)Ch2 and insert h = 0.1 to obtain C = 1.3625.
Finally RT = 10−3 if h =

√
10−3/1.3625 = 0.0271. Thus h < 0.027 is required.

(3p) 8: For a) s(x) is not a cubic spline since the derivative s′(x) is not continuous at x = 1.
More precisely s′1(1) = −2x|x=1 = −2 and s′2(1) = 3x2 − 4x+ 2|x=1 = 1.
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For b) the sketch is

P1

P2
P3

P4

The convex hull is the area enclosed by the dashed lines. Important features of the
Beziér curve is that since both P1/P2 and P3/P4 have the same x-coordinate the
tangent direction of the curve is vertical at both the starting and ending points.

In c) the identity 1 = (1− t+ t)2 = (1− t)2 +2(1− t)t+ t2 gives us the weights for
the control points. The quadratic Beziér curve is thus

p(t) = P1(1− t)2 + P22(1− t)t + P3t
2, 0 ≤ t ≤ 1,

where the control points P1, P2, P3 are vectors in the plane R
2. The sketch should

clearly show that if you have three quadratic Beziér segments then you need a total
of n = 7 control points.
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