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(5p) 1: a) Let a = 22.73531443. Round the value a correctly to 5 significant digits to
obtain the approximation ā. Give both the approximate value ā and an upper
bound for the absolute error |∆a| in the approximation.

b) Let x = −102.232. Give a bound for the absolute error when x is stored on a
computer using the floating point system (10, 3,−10, 10).

c) Explain why the formula y =
√
1 + x−1 can give poor accuracy when evalua-

ted, for small x, on a computer. Also propose an alternative formula that can
be expected to work better.

d) Let z = x2y, where x = 2.35 ± 0.01 and y = 1.17 ± 0.02. Compute the
approximate value z̄ and an error bound.

(2p) 2: Do the following:

a) Use Lagrange interpolation to find the polynomial of degree 2 that interpolates
the table

x 1 2 3
f(x) 1.3 0.6 1.9

b) Suppose the value f(2) = 0.6 has an error and we actually have f(2) = 0.6±
0.03. Find the maximum error in the interpolating polynomial, for the interval
1 < x < 3, due to the error in the function value f(2) = 0.6.

(3p) 3: Let x, y, and z be column vectors of length n. We want to implement the formula

w = (I + xyT )(I − yxT )z

where I is the identity matrix as efficiently as possible. Do the following

a) How many floating point operations are required to implement the formula?
Also how many memory slots are reguired for storing intermediate results?

b) In a practical test one implementation of the formula was tested on a computer
and the following run times were reported

n 1000 2000 4000 8000
time (ms) 537 4369 35721 283913

Was the implementation done using the most efficient method? Motivate your
answer carefully.
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(4p) 4: Consider the function f(x) = 2e−x/2 − x2 −√
x. We want to use Newton-Raphsons

method for finding a root. Do the following

a) Formulate the Newton-Raphson method and derive the resulting iteration for-
mula when the method is applied to the above function f(x).

b) When Newton-Raphson’s method is applied to the function f(x) above with
the starting guess x0 = 1.0 we obtain the following table

k xk f(xk)
0 1.0000 −7.9 · 10−1

1 0.7466825 −4.5 · 10−2

2 0.7304596 −1.7 · 10−4

3 0.7303989 −2.3 · 10−9

We decide to use x̄ = 0.7304 as an approximation of x∗. Estimate the error in
the approximation x̄.

c) Prove that the Newton iteration has quadratic convergence to a single root x∗

provided that the starting guess is sufficiently good.

(3p) 5: Do the following:

a) Explain what is ment by a matrix norm beeing induced from a vector norm.
Also show that if A and B are matrices then for an induced norm ‖AB‖ ≤
‖A‖‖B‖.

b) Prove that ‖I‖ = 1 and ‖A‖‖A−1‖ ≥ 1 for all matrix norms induced by a
vector norm.

c) Let x̄ = (1.23 , 0.37 , −2.6)T and assume that the elements x̄k are correctly
rounded. Compute both the absolute and relative error measured in ‖ · ‖∞.
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(3p) 6: Suppose A ∈ R
m×n, m > n. The least squares method can be used to minimize

‖Ax− b‖2.

Do the following:

a) Suppose we have m points (xi, yi) that are supposed to be located on a circle.
A model for this situation is that the points (xi, yi) satisfy an equation

c1(x
2

i + y2i ) + c2xi + c3yi + 1 = 0,

where the parameters c1, c2 and c3 uniquely determines the circle. Formulate
the problem of identifying a circle from points (xi, yi), i = 1, 2, . . . , m, as a
least squares problem. Clearly show the A matrix and the b vector for this
case.

b) Let A = Q1R be the reduced QR decomposition of the matrix A. Clearly
demonstrate how the reduced QR decomposition can be used to compute ‖r‖2
where r = b−Ax is the residual and x is the least squares solution.

c) Consider the vector a as an n× 1 matrix. Write out its reduced QR decompo-
sition explicitly. Also write down a formula for the solution of the least squares
problem ax ≈ b, where b is a given n× 1 vector.

(2p) 7: A numerical method, depends on a discretization parameter h, and has a truncation
error that can be described as RT ≈ Chp. We use the method to compute a few
approximations T (h) of the exact result T (0) and obtain

h 0.1 0.2 0.3 0.4 0.5
T(h) 1.7631 1.7675 1.7786 1.8052 1.8456

Use the table to determine C and p.

(3p) 8: a) Suppose the n × n matrix A has rank k < n and that the linear system
of equations Ax = b has a solution. Use the singular valur decomposition
A = UΣV T to give a general formula for all solutions x of the system Ax = b.
Clealy motivate your answer.

b) Let A be an m×n matrix, m > n. Show how the singular value decomposition
A = UΣV T can be used for solving the minimization problem

min
‖x‖2=1

‖Ax‖2.

Give both the minmizer x and the minimum in terms of singular values and
singular vectors.
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Answers

(5p) 1: For a) we obtain the approximate value ā = 22.735 which has 3 correct decimal
digits. The absolute error is at most |∆a| ≤ 0.5 · 10−3.

In b) the unit round off for the floating point system is µ = 0.5 · 10−3. This
is an upper bound for the relative error. Thus the absolute error is bounded by
|∆x| ≤ µ|x| ≤ 0.5 · 10−3103 ≤ 0.052

For c) Since y =
√
1 + x ≈ 1, for small x, catastrophic cancellation will occur when√

1 + x − 1 is computed resulting in a large relative error in the result. A better
formula would be

√
1 + x− 1 =

(
√
1 + x− 1)(

√
1 + x+ 1)√

1 + x+ 1
=

1 + x− 1√
1 + x+ 1

=
x√

1 + x+ 1
,

where the cancellation is removed.

For d) The approximate value is z̄ = x2y = (2.35)2(1.17) = 6.46 with |RB| ≤
0.5 · 10−2. The error propagation formula gives

|∆z| . |∂z
∂x

||∆x|+ ∂z

∂y
||∆y| = |2xy||∆x|+ |x2||∆y| ≤ 0.17.

The total error is |RTOT | ≤ 0.17 + 0.5 · 10−2 < 0.2. Thus z = 6.46± 0.2. Possibly it
would have been better to use z̄ = 6.5.

(2p) 2: For a) the polynomial is

p2(x) = 1.3
(x− 2)(x− 3)

(1− 2)(1− 3)
+ 0.6

(x− 1)(x− 3)

(2− 1)(2− 3)
+ 1.9

(x− 1)(x− 2)

(3− 1)(3− 2)
.

There is no reason to simplify the expression further.

For b) we note that if the function value f(2) = f2 = 0.6 has en error then the
Lagrange polynomial changes as

p̄2(x) = p2(x) + ∆f2
(x− 1)(x− 3)

(2− 1)(2− 3)
.

The function |(x− 1)(x− 3)| has a maximum for x = 2 which means that

|p̄2(x)− p2(x)| ≤ |∆f2|
(2− 1)(2− 3)

(2− 1)(2− 3)
≤ 0.03.

(3p) 3: For a) we observe that xT z is a scalar product that requires n multiplications and
additions. Thus (I− yxT )z = z− (xT z)y requires only 4n floating point operations.
We also need one slot of temporary storage for the scalar product and also one
vector to store the intermediate result w1 = (xTy)z. The same temporary vector
can be overwritten when the subtractions w2 = z − w1 are computed. The second
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component (I+xyT )w2 similarily needs one more temporary vector and also an extra
4n floating point operations. Though it could be argued that this is the memory
where we will store the final result w. Thus the formula required 8n floating point
operations and either n or 2n memory slots.

For b) we remark that if the formula were implemented correctly the run time
should be given by to T (n) = cn, or T (2n)/T (n) = 21 = 1. In the table we have,
for instance, T (4000)/T (2000) = 35721/4369 ≈ 8.17, which is closer to 23 = 8. So
likely the formula wasn’t implemented correctly but rather the expression where
implemented by first computing both matrices A1 = I+xyT and A2 = I−yxT and
then computing the matrix-matrix multiply A1A2.

(4p) 4: For a) Newton Raphsons method is xk+1 = xk − f(xk)/f
′(xk), where the function

f(x) and its derivative f ′(x) = −e−x/2 − 2x− 1

2
x−1/2 is needed. There is no need to

simplify the formula. For b) the error estimate is

|x− x̄| ≤ |f(x̄)|
|f ′(x̄)| ≤

2.94 · 10−6

2.73
< 1.1 · 10−6.

In c) we recall that Newton-Raphsons method is defined by the iteration function

φ(x) = x− f(x)

f ′(x)
, and φ′(x) = −f(x)f ′′(x)

(f ′(x))2
.

Since x∗ is a single root, i.e. f ′(x∗) 6= 0, we see that φ′(x∗) = 0. A Taylor series
expansion shows that

φ(xk) = φ(x∗) + φ′(x∗)(xk − x∗) +
φ′′(ξ)

2
(xk − x∗)2, ξ ∈ (xk, x

∗).

Since φ(xk) = xk+1, φ(x∗) = x∗ and φ′(x∗) = 0 we obtain

xk+1 − x∗ =
φ′′(ξ)

2
(xk − x∗)2,

which shows that the convergence is quadratic.

(3p) 5: For a) a matrix norm is induced if its definition is based on a vector norm, i.e.

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

For such norms we have

‖AB‖=max
x 6=0

‖ABx‖
‖x‖ =max

x 6=0

‖ABx‖
‖Bx‖

‖Bx‖
‖x‖ ≤max

y 6=0

‖Ay‖
‖y‖ ‖B‖≤‖A‖‖B‖.

For b) from the definition of the matrix norm, and since Ix = x we have

‖I‖ = max
x 6=0

‖Ix‖
‖x‖ = max

x 6=0

‖x‖
‖x‖ = 1, so 1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖.
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For c) if x̄ = (1.23 , 0.37 , −2.6)T is correctly rounded then the error vector satisfies
|δx| ≤ (0.005 , 0.005 , 0.05)T . Thus ‖x− x̄‖∞ ≤ 0.5 · 10−1 is the absolute error and
‖x− x̄‖∞/‖x‖∞ ≤ 0.05/2.6 < 0.02 is the relative error.

(3p) 6: For a) we note that for each point (xi, yi) we get one row of the system Ax = b.
More precisely the system is











x2
1 + y21 x1 y1

x2
2 + y22 x2 y2

...
...

...
x2
m + y2m xm ym















c1
c2
c3



 =











−1
−1
...

−1











.

For b) there are many options. The simplest is to note that since Q1 is a basis for
range(A) then Ax = Q1Q

T
1 b. This means that we need to compute ‖b − Ax‖2 =

‖b − Q1Q
T
1 b‖2. The other option is to simnply compute x = R−1(QT

1 b) and then
compute r = b− Ax directly.

For c) the vector a can be seen as a matrix in R
n×1. This means that

a = (a/‖a‖2)‖a‖2 = Q1R

where Q1 ∈ R
n×1 and R ∈ R

1×1. The formula for the least squares solution can be
written using the normal equations aTax = aT b or x = (aT b)/(aTa). This is the
same as x = R−1QT

1 b with the decomposition above.

(2p) 7: Since T (h) = T (0) + Chp we get

T (4h)− T (2h)

T (2h)− T (h)
≈ (4p − 2p)Chp

(2p − 1p)Chp
= 2p

From the table we can insert the numbers for h = 0.4, h = 0.2 and h = 0.1 to
obtain

2p =
1.8052− 1.7675

1.7675− 1.7631
= 8.5682.

Which fits well with p = 3. In order to determine C we use the last equation
T (2h)− T (h) = (23 − 13)Ch3 and insert h = 0.1 to obtain C = 0.6286.

(3p) 8: For a) we note that if rank(A) = k then {vk+1, . . . , vn} is a basis for null(A) and
{v1, . . . , vk} is a basis for its orthogonal complement (null(A))⊥. Thus for evey x
we can write

x = x1 + x2 = (
k

∑

i=1

civi) + (
n

∑

i=k+1

civi).

In order to determine x1 we compute

Ax = A(x1 + x2) = Ax1 + 0 =
k

∑

i=1

ciσiui = b =
n

∑

i=1

(uT
i b)ui.
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Where (uT
i b) = 0, for i = k+1, . . . , n, since it is said that the solution exists. Thus

x1 =
k

∑

i=1

uT
i b

σi
vi and x2 =

n
∑

i=k+1

civi,

where ci, i = k + 1, . . . , n, are undetermined parameters.

For b) we use the singular value decomposition to write ‖Ax‖2 = ‖UΣV Tx‖2 =
‖Σy‖2, where y = V Tx. Since V is orthogonal ‖x‖2 = ‖y‖2. Thus the minimization
problem is equivalent to

min
‖y‖2=1

‖Σy‖22 = . min
‖y‖2=1

n
∑

i=1

σ2

i y
2

i ≥ σ2

n

n
∑

i=1

y2i = σ2

n,

since σn is the smallest singular value, with equality if y = en which means that
x = V T en = vn.
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