TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

> Exam TANA09 Datatekniska beräkningar

Date: 14-18, 18th of Mars, 2022.

Allowed:

1. Pocket calculator

Examiner: Fredrik Berntsson
Marks: 25 points total and 10 points to pass.

Jour: Fredrik Berntsson - (telefon 013282860)

Good luck!
(5p) 1: a) Let $a=0.0390267$ be an exact value. Round the value a to 5 correct decimals to obtain an approximate value \bar{a}. Also give a bound for the relative error in \bar{a}.
b) Let $x=13.245$ and $y=7.8802$ be two numbers that belong to the floating point system $(10,4,-9,9)$. What would be the result of $z=x+y$ if the computations where carried out on a computer using the floating point system $(10,4,-9,9)$?
c) Explain why the formula $y=\cos (x)-1$ can give poor accuracy when evaluated, for small x, on a computer. Also propose an alternative formula that can be expected to work better.
d) Let $y=\sqrt{2 x}$, where $x=0.35 \pm 0.02$. Compute the approximate value \bar{y} and give an error bound.
(2p) 2: Let the table,

x	1.3	1.4	1.5	1.6	1.7
$f(x)$	0.917	1.031	1.183	1.129	1.056

of correctly rounded function values, be given. Use linear interpolation to find an approximation of the function value $f(1.57)$. Also estimate the error in the obtained result.
(3p) 3: We compute the function

$$
f(x)=\sqrt{1+x}-\sqrt{1-x}
$$

for small x values on a computer with unit round off $\mu=1.11 \cdot 10^{-16}$. We find that the results are quite poor and that the relative error in the result tends to grow as $x \rightarrow 0$. Explain the poor accuracy by performing an analysis of the computational errors and give a bound for the relative error in the computed result $f(x)$. For the analysis you may assume that all computations are performed with a relative error at most μ.
(3p) 4: A cubic Beziér curve is given by an expression

$$
p(t)=c_{1}(t) P_{1}+c_{2}(t) P_{2}+c_{3}(t) P_{3}+c_{4}(t) p_{4}, \quad 0<t<1
$$

where $P_{1}, P_{2} P_{3}$ and P_{4} are control points, and $c_{i}(t), i=1,2,3,4$ are the weights.
a) Use the identity $1=(1-t+t)^{3}$ to dervie the weights $c_{i}(t)$ for the cubic Beziér curve.
b) Suppose we want to combine two cubic Beziér curves to one single curve. The combined curve should start in the point $(0,3)$, pass through the point $(1,1)$ and end in the point $(2,0)$. The curves tanget should be horizontal at start and end points and also vertical at the interpolation point $(1,1)$. Answer the following queastions: Are these requirements enough to make the curve unique? Provide a set of control points and clearly argue that all the requirements are satisfied. Finally draw a sketch illustrating the two curve segments.
(3p) 5: Do the following
a) A computer program has computed the decomposition $P A=L U$ and the output is

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-0.7 & 1 & 0 \\
0.3 & 1.8 & 1
\end{array}\right) \quad U=\left(\begin{array}{ccc}
1.7 & -2.3 & -1.4 \\
0 & 1.2 & -0.5 \\
0 & 0 & 3.1
\end{array}\right) \quad P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

Determine if pivoting was used correctly during the computations. Motivate your answer!
b) Let L be given as above and compute $\|L\|_{\infty}$.
c) Suppose we want to solve a linear system $A x=b$ but have errors in the vector b. Show the error estimate

$$
\frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|}
$$

where $\|\cdot\|$ is any induced norm and $\kappa(A)$ is the condition number.
(4p) 6: Consider the cubic polynomial $f(x)=x^{3}-9 x^{2}+24 x-20$. We want to use NewtonRaphsons method for finding a root. Do the following
a) Formulate the Newton-Raphson method and derive the resulting iteration formula when the method is applied to the above cubic polynomial.
b) When Newton-Raphson's method is applied to the function $f(x)$ above with the starting guess $x_{0}=1.8$ we obtain the following table

k	x_{k}	$\left\|x_{k}-x^{*}\right\|$
0	1.8000	0.2000
1	1.8970	0.1030
2	1.9476	0.0524
3	1.9736	0.0264
4	1.9867	0.0133

State the definition of order of convergence p for an iterative method. Also use the table to determine the order of convergence when Newton-Raphson's method is applied to this specific function $f(x)$.
c) Use the results from b) and known properties of Newton-Raphson's method to determine if $x^{*}=2$ is a double or single root. Explain briefly why you reach the conclusion.
(2p) 7: A numerical method, depends on a discretization parameter h, and has a truncation error that can be described as $R_{T} \approx C h^{p}$. We use the method to compute a few approximations $T(h)$ of the exact result $T(0)$ and obtain

h	0.9	0.3	0.1
$\mathrm{~T}(\mathrm{~h})$	2.923	3.172	3.201

Use the table to determine C and p. Also estimate the value of h needed for the error to be of magnitude 10^{-3}.
(3p) 8: a) Suppose the $m \times n$ matrix A, with $m>n$, has rank n, and that the linear system $A x=b$ has a solution. Use the singular value decomposition $A=$ $U \Sigma V^{T}$ to give the a formula for the solution x of the system $A x=b$. Is the solution unique? Clealy motivate your answers.
b) Let A be an $m \times n$ matrix, $m>n$. Show how the singular value decomposition $A=U \Sigma V^{T}$ can be used for solving the minimization problem

$$
\min _{\|x\|_{2}=1}\|A x\|_{2}
$$

Give both the minmizer x and the minimum in terms of singular values and singular vectors.

Answers

(5p) 1: For a) we obtain the approximate value $\bar{a}=0.03903$ which has 5 correct decimal digits. The absolute error is at most $|\Delta a| \leq 0.5 \cdot 10^{-5}$ and thus the relative error is bounded by $\Delta a\left|/|a| \leq 0.5 \cdot 10^{-5} / 0.03903 \leq 0.128 \cdot 10^{-3}\right.$.
In \mathbf{b}) we first compute the exact result $z=13.245+7.8802=21.1252$ and round the result to fit the number system $(10,4,-9,9)$. to obtain $\bar{z}=21.125=2.1125 \cdot 10^{1}$.
For $\mathbf{c})$ Since $\cos (x) \approx 1$, for small x, we catastrophic cancellation will occur when $\cos (x)-1$ is computed resulting in a large relative error in the result. A better formula would be

$$
\cos (x)-1=\frac{\cos (x)-1)(\cos (x)+1)}{\cos (x)+1}=\frac{\cos ^{2}(x)-1^{2}}{\cos (x)+1}=\frac{-\sin ^{2}(x)}{\cos (x)+1}
$$

where the cancellation is removed.
For d) The approximate value is $\bar{y}=\sqrt{2 \bar{x}}=\sqrt{2 \cdot 0.35}=0.84$ with $\left|R_{B}\right| \leq 0.5 \cdot 10^{-2}$. The error propagation formula gives

$$
\left.|\Delta y| \lesssim\left|\frac{\partial y}{\partial x}\right||\Delta x|=\left|(2 \cdot 0.35)^{-1 / 2}\right| 0.02 \right\rvert\,<0.024 .
$$

The total error is $\left|R_{T O T}\right| \leq 0.024+0.5 \cdot 10^{-2}<0.03$. Thus $y=0.84 \pm 0.03$.
(3p) 2: First we note that the closest points to $x=1.57$ in the table are $x_{1}=1.5, x_{2}=1.6$, and $x_{3}=1.7$.
Making the anzatz $p_{1}(x)=c_{0}+c_{1}(x-1.5)+c_{2}(x-1.5)(x-1.6)$, where the last term will be used to estimate the truncation error R_{T}, we obtain

$$
p_{1}(1.5)=c_{0}=1.183, \quad p_{1}(1.6)=c_{0}+c_{1}(1.6-1.5)=1.129 \Longrightarrow c_{1}=-0.54
$$

For the truncation error we also compute

$$
p_{1}(1.7)=c_{0}+c_{1}(1.7-1.5)+c_{2}(1.7-1.5)(1.7-1.6)=1.056 \Longrightarrow c_{2}=-0.95
$$

So $p_{1}(x)=1.183-0.54 \cdot(x-1.5)$ and $R_{T}(x)=-0.95(x-1.5)(x-1.6)$. Thus we obtain $p_{1}(1.57)=1.145, R_{B} \leq 0.5 \cdot 10^{-3},\left|R_{T}(1.57)\right| \leq 2 \cdot 10^{-3}$. We also have to remember the errors in the table giving $R_{X F} \leq 0.5 \cdot 10^{-3}$. Thus $f(1.57)=$ $1.145 \pm\left(0.5 \cdot 10^{-3}+2 \cdot 10^{-3}+0.5 \cdot 10^{-3}\right)=1.145 \pm 3 \cdot 10^{-3}$.
(3p) 3: We first determine the computational order as

$$
f(x)=\sqrt{1+x}-\sqrt{1-x}=\sqrt{a}-\sqrt{b}=c-d=e .
$$

The relative errors in the intermediate results, e.g. $|\Delta a| /|a|$, are boudned by μ. The error propagation formula gives

$$
|\Delta f| \lesssim\left|\frac{1}{2 \sqrt{a}}\right||\Delta a|+\left|\frac{1}{2 \sqrt{b}}\right||\Delta b|+|\Delta c|+|\Delta d|+|\Delta e| .
$$

In order to simplify the result we use $a \approx b \approx c \approx d \approx 1$ for small x. Also

$$
f(x)=\frac{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{1+x}+\sqrt{1-x})}{\sqrt{1+x}-\sqrt{1-x}}=\frac{2 x}{\sqrt{1+x}-\sqrt{1-x}} \approx x
$$

for small x. We obtain

$$
|\Delta f| \lesssim \mu\left(\frac{1}{2}+\frac{1}{2}+1+1+|x|\right) \approx 3 \mu
$$

Since $f(x) \approx x$ for small x the bound for the relative error is $|\Delta f| /|f| \leq 3|x|^{-1} \mu$.
(3p) 4: For a) we compute $(1-t+t)^{3}=(1-t)^{3}+3(1-t)^{2} t+3(1-t) t^{2}+t^{3}=c_{1}(t)+$ $c_{2}(t)+c_{3}(t)+c_{4}(t)$.
For b) we recall that the tangent on a Beziér cubic curve satisfies $s^{\prime}(0)=3\left(P_{2}-P_{1}\right)$ and $s^{\prime}(1)=3\left(P_{4}-P_{3}\right)$. Thus the curve is horizontal at the start point if P_{1} and P_{2} has the same y-coordinate. This does not put any requirements on the x-coordinate of P_{2}. Thus we can pick points $P_{1}=(0,3), P_{2}=(0.5,3), P_{3}=(1,1.5)$, and $P_{4}=(1,1)$ for the first curve segment. The curve will have a vertical tangent at the end point since P_{3} and P_{4} has the same x-coordinate. The y-coordinate can be chosen freely. Similarily the second curve segment is determined by the control points $p_{4}=(1,1)$, $P_{5}=(1,0.5), P_{6}=(1.5,0)$ and $P_{7}=(2,0)$. As explained above the curve is not unique.
(3p) 5: For a) we just observe that one of the multipliers (i.e. $\ell_{32}=1.8$) is larger than one. Thus pivoting wasn't used correctly.
For b) we note that the largest row-sum is given by the last row so $\|L\|_{\infty}=$ $0.3+1.8+1=3.1$.
In \mathbf{c}) we note the solution with the noisy b vector can be written $A(x+\Delta x)=$ $b+\Delta b$ and thus $A(\Delta x)=\Delta b$, or $\|\Delta x\|=\left\|A^{-1} \Delta b\right\| \leq\left\|A^{-1}\right\|\|\Delta b\|$. We also have $\|b\|=\|A x\| \leq\|A\|\|x\|$. Thus

$$
\frac{\|\Delta x\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|\Delta b\|}{\|b\| /\|A\|}=\|A\|\left\|A^{-1}\right\| \frac{\|\Delta b\|}{\|b\|}
$$

where $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ is the condition number.
(4p) 6: For a) we give the definition of the Newton-Raphson method as $x_{k+1}=x_{k}-$ $f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$, where for our case $f^{\prime}(x)=3 x^{2}-18 x+24$. There is no reason at all to simplify the resulting iteration formula.
For b) we state the order of convergence as the p value such that $\left|x_{k}-x^{*}\right| \approx$ $C\left|x_{k-1}-x^{*}\right|^{p}$, or

$$
\frac{\left|x_{k}-x^{*}\right|}{\left|x_{k-1}-x^{*}\right|^{p}}=C .
$$

The goal is to select the value p so that the quotient is approximately a constant independently of the iteration number k. If we use $p=1$ we see that $k=1$ gives
$C=0.2 / 1.03=1.9417, k=2$ gives $C=0.1030 / 0.0524=1.9656$, etc. This means that $p=1$ and we have linear convergence.
In c) we recall that Newtons method is supposed to have quadratic convergence if the root x^{*} is a single root. Also the convergence is linear for double roots. Thus the function $f(x)$ the root $x^{*}=2$ is a double root.
(2p) 7: Since $T(h)=T(0)+C h^{p}$ we get

$$
\frac{T(9 h)-T(3 h)}{T(3 h)-T(h)} \approx \frac{\left(9^{p}-3^{p}\right) C h^{p}}{\left(3^{p}-1^{p}\right) C h^{p}}=3^{p}
$$

Insert numbers from the table we obtain

$$
3^{p}=\frac{2.9122-3.1689}{3.1689-3.1974}=9.0070
$$

Which fits perfectly with $p=2$. In order to determine C we use the last equation $T(2 h)-T(h)=\left(3^{2}-1^{2}\right) C h^{2}$ and insert $h=0.1$ to obtain $C=-0.356$. Finally $R_{T}=10^{-3}$ if $h=\sqrt{10^{-3} / 0.356}=0.053$. Thus $h<0.053$ is required.
(3p) 8: For a) we note that if $\operatorname{rank}(A)=n$ then the matrix only has the trivial null space. Thus any solution we find is unique. Thus the solution can be written as

$$
x=\sum_{i=1}^{n} c_{i} v_{i}
$$

In order to determine the coefficients c_{i} we compute

$$
A x=\sum_{i=1}^{n} c_{i} \sigma_{i} u_{i}=b=\sum_{i=1}^{m}\left(u_{i}^{T} b\right) u_{i} .
$$

Where $\left(u_{i}^{T} b\right)=0$, for $i=n+1, \ldots, m$, since it is said that the solution exists. Thus

$$
x=\sum_{i=1}^{n} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i},
$$

is the sought after unique solution.
For b) we use the singular value decomposition to write $\|A x\|_{2}=\left\|U \Sigma V^{T} x\right\|_{2}=$ $\|\Sigma y\|_{2}$, where $y=V^{T} x$. Since V is orthogonal $\|x\|_{2}=\|y\|_{2}$. Thus the minimization problem is equivalent to

$$
\min _{\|y\|_{2}=1}\|\Sigma y\|_{2}^{2}=\min _{\|y\|_{2}=1} \sum_{i=1}^{n} \sigma_{i}^{2} y_{i}^{2} \geq \sigma_{n}^{2} \sum_{i=1}^{n} y_{i}^{2}=\sigma_{n}^{2}
$$

since σ_{n} is the smallest singular value, with equality if $y=e_{n}$ which means that $x=V^{T} e_{n}=v_{n}$.

