TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

> Exam TANA09 Datatekniska beräkningar

Date: 14-18, 14th of January, 2023.

Allowed:

1. Pocket calculator

Examiner: Fredrik Berntsson
Marks: 25 points total and 10 points to pass.

Jour: Fredrik Berntsson - (telefon 013282860)

Good luck!
(5p) 1: a) Let $a=0.08199237$ be an exact value. Round the value a to 3 correct decimals to obtain an approximate value \bar{a}. Also give a bound for the relative error in \bar{a}.
b) We want to store the number $x=294.37723$ on a computer using the floating point system ($10,4,-10,10$). What approximate number \bar{x} would actually be stored on the machine?
c) Let \bar{a} and \bar{b} be two positive real numbers, with small errors Δa and Δb. Clearly explain why it might be problematic to compute $\bar{a}-\bar{b}$. Also, explain why computing $\bar{a}+\bar{b}$ doesn't cause the same problems.
d) Let $y=\alpha(1+x)^{2}$, where $x=0.34 \pm 0.02$, and $\alpha=2.13 \pm 0.07$. Compute the approximate value \bar{y} and give an error bound.
(3p) 2: Let the table,

x	1.3	1.5	1.6
$f(x)$	0.6772	0.7251	0.74976

of correctly rounded function values, be given. Use linear interpolation to estimate the function value $f(1.39)$. Also estimate the error in the computed approximation.
(2p) 3: We compute the function

$$
f(x)=\cos (2 x)-(1-x)^{2}
$$

for small x values on a computer with unit round off $\mu=1.11 \cdot 10^{-16}$. Preform an analysis of the computational errors to obtain a bound for the relative error in the computed results $f(x)$. For the analysis you may assume that all computations are performed with a relative error at most μ. Also, use the obtained bound to argue if cancellation occurs during the computations.
(3p) 4: Consider the function $f(x)=\cos (x)-x \mathrm{e}^{x}$. We want to use Newton-Raphsons method for finding a root. Do the following
a) Formulate the Newton-Raphson method and derive the resulting iteration formula when the method is applied to the above function $f(x)$.
b) When Newton-Raphson's method is applied to the function $f(x)$ above with the starting guess $x_{0}=1$ we obtain the following table

k	x_{k}	$f\left(x_{k}\right)$
0	1.0000000	$-2.2 \cdot 10^{0}$
1	0.6530794	$-4.6 \cdot 10^{-1}$
2	0.5313434	$-4.2 \cdot 10^{-2}$
3	0.5179099	$-4.6 \cdot 10^{-4}$
4	0.5177574	$-5.9 \cdot 10^{-8}$

We decide to use $\bar{x}=0.5178$ as an approximation of x^{*}. Estimate the error in the approximation \bar{x}.
c) State the definition of the order of convergence for an iterative method for finding the root x^{*} of an equation $f(x)=0$. Also use the tabl above to estimate the order of convergence for the Newton-Raphson method.
(3p) 5: Do the following:
a) Suppose $A \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{R}^{m \times n}, m>n$. How many arithmetic operations are required to evaluate the formula $z=(A+I) B x+y$, where x and y are vectors.
b) Suppose we have a linear system $A x=b$ where

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 3 \\
2 & 1 & -2 \\
1 & 2 & -1
\end{array}\right) \text { and } b=\left(\begin{array}{c}
6 \\
1 \\
-3
\end{array}\right)
$$

Find a Permutation matrix P_{1} and a Gauss-transformation L_{1} such that $U_{1}=$ $L_{1} P_{1} A_{1}$ has zeros below the diagonal in the first column. Pick L_{1} and P_{1} so that U_{1} is the intermediate result you would obtain after the first step in computing the $L U$ decomposition of the matrix A when partial pivoting is used.
(4p) 6: Do the following:
a) Let $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$ be a cubic polynomial. We want to find values for the coefficients so that $p(0)=p(1)=0$ and $p^{\prime}(0)=p^{\prime}(1)=1$. Show how to derive a linear system of equations such that the solution $c=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)^{T}$ are the coefficients of a cubic polynomial satisfying these conditions. Also find the specific polynomial satisfying all the above conditions.
b) Spline interpolation can be used to approximnate a function $y=f(x)$. We have a table

x	-2	-1	0	1	2
$f(x)$	0	1	3	1	0

We attempt to approximate $f(x)$ by a cubic spline $s(x)$. Clearly state the conditions that have to be satisfied for $s(x)$ to be a cubic spline that interpolates the above table. Also state if the given information sufficient for the spline $s(x)$ to be uniquely determined?
(2p) 7: A numerical method, depends on a discretization parameter h, and has a truncation error that can be described as $R_{T} \approx C h^{p}$. We use the method to compute a few approximations $T(h)$ of the exact result $T(0)$ and obtain

h	0.9	0.3	0.1
$\mathrm{~T}(\mathrm{~h})$	1.57213	1.706951	1.72197

Use the table to determine C and p. Also estimate the value of h needed for the error to be of magnitude 10^{-4}.
(3p) 8: Let A be an $n \times n$ matrix.
a) Suppose that A has full rank. Use the singular valur decomposition $A=U \Sigma V^{T}$ to give a general formula for the solutions x of the system $A x=b$. Clealy motivate your answer.
b) Show how the singular value decomposition $A=U \Sigma V^{T}$ can be used for solving the minimization problem

$$
\min _{\|x\|_{2}=1}\|A x\|_{2}
$$

Give both the minmizer x and the minimum in terms of singular values and singular vectors.

Answers

(5p) 1: For a) we obtain the approximate value $\bar{a}=0.082$ which has 3 correct decimal digits. The absolute error is at most $|\Delta a| \leq 0.5 \cdot 10^{-3}$ and thus the relative error is bounded by $\Delta a\left|/|a| \leq 0.5 \cdot 10^{-3} / 0.082 \leq 0.61 \cdot 10^{-2}\right.$.
In b) we rewrite the number as $x=2.9437723 \cdot 10^{2}$ to see that $\bar{x}=2.9438 \cdot 10^{2}$ is actually stored on the computer.
For \mathbf{c}) problems can occur if \bar{a} and \bar{b} is of approximately equal magnitude since in that case $\bar{a}-\bar{b}$ is much smaller than either of \bar{a} or \bar{b}. This means that the resulting relative error in the result may be very large. This is called catastrophic cancellation. For the addition the result $\bar{a}+\bar{b}$ is always larger than \bar{a} or \bar{b}. Thus the result cannot have a large relative error (unless either of \bar{a} or \bar{b} has a large relative error).
For d) The approximate value is $\bar{y}=\bar{\alpha}(1+\bar{x})^{2}=2.13(1+0.34)^{2}=3.8$ with $\left|R_{B}\right| \leq 0.5 \cdot 10^{-1}$. The error propagation formula gives

$$
\left.|\Delta y| \lesssim\left|\frac{\partial y}{\partial \alpha}\right||\Delta \alpha|+\left|\frac{\partial y}{\partial x}\right||\Delta x|=\left|(1+x)^{2}\right| \Delta \alpha|+|\alpha 2(1+x)|| \Delta x \right\rvert\,<0.24
$$

The total error is $\left|R_{T O T}\right| \leq 0.24+0.5 \cdot 10^{-2}<0.3$. Thus $y=3.8 \pm 0.3$.
(3p) 2: We Newtons interpolation formula and let

$$
p_{1}(x)=c_{0}+c_{1}(x-1.3)+c_{2}(x-1.3)(x-1.5),
$$

where the quadratic term is used to obtain the truncation error. The interpolation conditions gives

$$
\begin{gathered}
p_{1}(1.3)=c_{0}=0.6772, p_{1}(1.5)=c_{0}+c_{1}(1.5-1.3)=0.7251, \quad \text { and } \\
p_{1}(1.6)=c_{0}+c_{1}(1.6-1.3)+c_{2}(1.6-1.3)(1.6-1.5)=0.74976
\end{gathered}
$$

Solve gives $c=\left(c_{0}, c_{1}, c_{2}\right)^{T}=(0.6772,0.2395,0.0237)^{T}$. This gives us $\bar{f}(1.39)=$ $c_{0}+c_{1}(1.39-1.3)=0.6988$, with $\left|R_{B}\right| \leq 0.5 \cdot 10^{-4}$. The truncation error is estimated $\left|R_{T}\right| \leq|0.0237(1.39-1.3)(1.39-1.5)|<2.4 \cdot 10^{-4}$. We also have $\left|R_{X F}\right| \leq 0.5 \cdot 10^{-4}$ since the function values in the table are correctly rounded to four decimal digits. Thus the total error is $\left|R_{T O T}\right| \leq 4 \cdot 10^{-4}$ and we can answer $f(1.39)=0.6988 \pm 4$. 10^{-4}.
(2p) 3: The computational order is

$$
f(x)=f(x)=\cos (2 x)-(1-x)^{2}=\cos (a)-b^{2}=c-d=e .
$$

The error propagation formula gives us
$|\Delta f| \lesssim\left|\frac{\partial f}{\partial a}\right||\Delta a|+\left|\frac{\partial f}{\partial b}\right||\Delta b|+\left|\frac{\partial f}{\partial c}\right||\Delta c|+\left|\frac{\partial f}{\partial d}\right||\Delta d|+\left|\frac{\partial f}{\partial e}\right||\Delta e|=|\sin (a)||\Delta a|+|2 b||\Delta b|+$ $|1||\Delta c|+|1||\Delta d|+|1||\Delta e| \lesssim \mu\left(|a \sin (a)|+\left|2 b^{2}\right|+|c|+|d|+|e|\right) \approx \mu(|0|+|2|+|1|+|1|+|0|) \approx 4 \mu$, where we have used that $a=2 x$ is small and thus $a \sin (a) \approx 0$. So the absolute error in the computation is bounded by 4μ but since $f(x) \rightarrow 0$ as $x \rightarrow 0$ the relative error can be very large. Thus we have cancellation in the computation.
(3p) 4: For a) we recall that given a starting approximation x_{0} the Newton-Raphson method computes

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)},
$$

and we only need to calculate the derivative $f^{\prime}(x)=-\sin (x)-(x+1) \mathrm{e}^{x}$.
For b) we use the error estimate

$$
\left|\bar{x}-x^{*}\right| \lesssim \frac{|f(\bar{x})|}{\left|f^{\prime}(\bar{x})\right|} \approx \frac{1.2971 \cdot 10^{-4}}{3.0433}<4.3 \cdot 10^{-5}
$$

For \mathbf{c}) we define the order of convergence as the largest integer p such that

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k}-x^{*}\right|}{\left|x_{k-1}-x^{*}\right|^{p}}=C<\infty
$$

Since x^{*} is unknown we cannot directly apply the definition. The simplest solution is to assume that the iteraton x_{4} has a much smaller error than the other iterations x_{1}, x_{2}, x_{3}. Thus we approximate $x^{*}=0.5177574$ and compute the errors $\left|x_{0}-x^{*}\right| \approx$ $4.8 \cdot 10^{-1},\left|x_{1}-x^{*}\right| \approx 1.4 \cdot 10^{-1},\left|x_{2}-x^{*}\right| \approx 1.4 \cdot 10^{-2}$, and $\left|x_{3}-x^{*}\right| \approx 1.5 \cdot 10^{-4}$. Since $\left(\left|x_{1}-x^{*}\right|\right)^{2} \approx\left(1.4 \cdot 10^{-1}\right)^{2} \approx 2 \cdot 10^{-2} \approx\left|x_{2}-x^{*}\right|$ and $\left(\left|x_{2}-x^{*}\right|\right)^{2} \approx\left(1.4 \cdot 10^{-2}\right)^{2} \approx$ $\left|x_{3}-x^{*}\right|$ we conclude that the table shows that $p=2$ for Newton-Raphsons method.
(3p) 5: For a) we evaluate the expression using the following operations

$$
z=(A+I) B x+y=(A+I) x_{1}+y=A x_{1}+x_{1}+y=x_{2}+x_{1}+y=x_{3}+y=x_{4}
$$

Computing the matrix vector product $x_{1}=B x$ requires mn multiplications and additions each, i.e. a total of $2 m n$ operations. The product $x_{2}=A x_{1}$ requires $2 m^{2}$ operations. The remaining two vector additons require m additions (as $y, x_{1} \in \mathbb{R}^{m}$). So the operation count is $m(2 m+2 n+2)$.
For b) we note that the largest element in the first column is on the second row and thus

$$
P_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

With this choice we have

$$
A_{1}=P_{1} A=\left(\begin{array}{ccc}
2 & 1 & -2 \\
-1 & 0 & 3 \\
1 & 2 & -1
\end{array}\right)
$$

For the elimination step the multipliers are $m_{21}=-1 / 2=-0.5$ and $m_{31}=1 / 2=$ 0.5 . Therefore the Gauss transformation is

$$
L_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 1 & 0 \\
-0.5 & 0 & 1
\end{array}\right)
$$

where we recall that the elements under the elimination matrix are $-m_{i j}$.
(4p) 6: For a) we note that $p(0)=c_{0}=0$ and $p(1)=c_{0}+c_{1}+c_{2}+c_{3}=0$ gives two equations. Then $p^{\prime}(x)=c_{1}+2 c_{2} x+3 c_{3} x^{2}$ so we also obtain $p^{\prime}(0)=c_{1}=1$ and $p^{\prime}(1)=c_{1}+2 c_{2}+3 c_{3}=1$. Thus the system of equations is

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right) .
$$

We can solve the linear system by noting that $c_{0}=0$ and $c_{1}=1$. Then we are left with two equations for c_{2} and c_{3}. The solution is $p(x)=x-3 x^{2}+2 x^{3}$.
For b) the conditions for $s(x)$ to be a cubic spline are (i) on each sub interval [x_{i}, x_{i+1}] the spline $s(x)$ should be given by a cubic polynomial, and (ii) $s(x)$, $s^{\prime}(x)$ and $s^{\prime \prime}(x)$ should be continuous on the whole interval $\left[x_{1}, x_{n}\right]$. Also (iii) the interpolation conditions $s\left(x_{i}\right)=f\left(x_{i}\right)$ needs to be satisfied. The given information is not sufficient since we also need two end point conditions for the spline to be unique.
(2p) 7: Since $T(h)=T(0)+C h^{p}$ we get

$$
\frac{T(9 h)-T(3 h)}{T(3 h)-T(h)} \approx \frac{\left(9^{p}-3^{p}\right) C h^{p}}{\left(3^{p}-1^{p}\right) C h^{p}}=3^{p}
$$

Insert numbers from the table we obtain

$$
3^{p}=\frac{1.57213-1.706951}{1.706951-1.72197}=8.9767
$$

Which fits very well with $p=2$. In order to determine C we use the last equation $T(3 h)-T(h)=\left(3^{2}-1^{2}\right) C h^{2}$ and insert $h=0.1$ to obtain $C=-0.18774$. Finally $R_{T}=10^{-4}$ if $h=\sqrt{10^{-4} / 0.18774}=0.02307$. Thus $h<0.0023$ is required.
(3p) 8: For a) we write the solution x using the vasis given by the columns of the V matrix as

$$
x=\sum_{i=1}^{n} c_{i} v_{i} .
$$

In order to determine x we compute

$$
A x=\sum_{i=1}^{n} c_{i} A v_{i}=\sum_{i=1}^{n} c_{i} \sigma_{i} u_{i}=b=\sum_{i=1}^{n}\left(u_{i}^{T} b\right) u_{i} .
$$

Thus

$$
x=\sum_{i=1}^{n} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i} .
$$

For b) we use the singular value decomposition to write $\|A x\|_{2}=\left\|U \Sigma V^{T} x\right\|_{2}=$ $\|\Sigma y\|_{2}$, where $y=V^{T} x$. Since V is orthogonal $\|x\|_{2}=\|y\|_{2}$. Thus the minimization problem is equivalent to

$$
\min _{\|y\|_{2}=1}\|\Sigma y\|_{2}^{2}=\min _{\|y\|_{2}=1} \sum_{i=1}^{n} \sigma_{i}^{2} y_{i}^{2} \geq \sigma_{n}^{2} \sum_{i=1}^{n} y_{i}^{2}=\sigma_{n}^{2}
$$

since σ_{n} is the smallest singular value, with equality if $y=e_{n}$ which means that $x=V^{T} e_{n}=v_{n}$. The solution cannot be unique since x and $-x$ will give the same minimum. However if $\sigma_{n-1}>\sigma_{n}$ at least thats the only source of non-uniqueness.

