TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

> Exam TANA09 Datatekniska beräkningar

Date: 14-18, 13th of January, 2024.

Allowed:

1. Pocket calculator

Examiner: Fredrik Berntsson
Marks: 25 points total and 10 points to pass.

Jour: Fredrik Berntsson - (telefon 013282860)

Good luck!
(5p) 1: a) Let $x=113.782378$ be an exact value and let $\bar{x}=113.81$ be an approximation of x. Give a bound for both the absolute error and the relative error in \bar{x}. Also how many significant digits do the approximate value \bar{x} have?
b) We want to store the number $x=18.7892189$ on a computer using the floating point system $(10,5,-10,10)$. What approximate number \bar{x} would actually be stored on the machine?
c) Let \bar{a} and b be two positive real numbers, with small errors Δa and Δb. Clearly explain why it might be problematic to compute $\bar{a}-\bar{b}$. Also, explain why computing $\bar{a}+\bar{b}$ doesn't cause the same problems.
d) Let $z=(1+y) \exp (x / 2)$, where $x=0.29 \pm 0.02$, and $y=0.62 \pm 0.03$. Compute the approximate value \bar{z} and give an error bound.
(2p) 2: Let x_{1}, x_{2}, x_{3} and x_{4} be given interpolation points. In the Lagrange interpolation formula we use basis functions $\ell_{i}(x)$ such that $\ell_{i}\left(x_{j}\right)=1$ if $i=j$ and zero otherwise. Give an explicit expression for the basis function $\ell_{2}(x)$ for the case with $n=4$ interpolation points. What is the degree of the basis polynomial?
(3p) 3: We need to evaluate the function

$$
f(x)=\mathrm{e}^{x}-3 x
$$

for small x on a computer with machine precision $\mu=1.11 \cdot 10^{-16}$. Perform a computational error analysis and find a bound for the relative error in the computed value $f(x)$. When doing the analysis you should assume that all computations are done with a relative error at most μ. Also use your error bound to determine if catastrophic cancellation occurs during the computations. If cancellation occurs also suggest an alternative formula that should give better accuracy.
(3p) 4: Non-linear equations $f(x)=0$ can be solved using fixed point iteration where the problem is reformulated so that a root x^{*}, i.e. $f\left(x^{*}\right)=0$, is a fixed point to the iteration $x_{n+1}=g\left(x_{n}\right)$, that is $x^{*}=g\left(x^{*}\right)$.
a) Show that the iteration $x_{n+1}=g\left(x_{n}\right)$ is convergent if $\left|g^{\prime}\left(x^{*}\right)\right| \leq C<1$ and the starting guess x_{0} is sufficiently close to the root.
b) The equation $f(x)=\mathrm{e}^{-x^{2}}-x=0$ has a root $x^{*} \approx 0.65$. Formulate a fixed point iteration for finding a root to $f(x)=0$ and show that the proposed method is convergent.
c) The equation $f(x)=\mathrm{e}^{-x^{2}}-x=0$ is solved using the Newton-Raphson method and an approximate root $\bar{x}=0.652919 \approx x^{*}$ is obtained. Estimate the error in the approximation \bar{x}.
(3p) 5: Do the following
a) A computer program has computed the decomposition $P A=L U$ and the output is

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-0.7 & 1 & 0 \\
0.3 & 1.8 & 1
\end{array}\right) \quad U=\left(\begin{array}{ccc}
1.7 & -2.3 & -1.4 \\
0 & 1.2 & -0.5 \\
0 & 0 & 3.1
\end{array}\right) \quad P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

Determine if pivoting was used correctly during the computations.
b) Let A and B be $n \times n$ matrices and x, y, be $n \times 1$ vectors. How many floating point operations are required to implement the formula

$$
z=(I+A)(B x+y),
$$

where I is the identity matrix, as efficiently as possible? In a practical test one implementation of the formula was tested on a computer and the following run times were reported

n	1000	2000	4000	8000
time (ms)	1060	8360	66300	529000

Was the implementation done using the most efficient method? Motivate your answer carefully.
(4p) 6: Do the following:
a) Let $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$ be a cubic polynomial. We want to find values for the coefficients so that $p(0)=p(1)=0$ and $p^{\prime}(0)=p^{\prime}(1)=1$. Show how to derive a linear system of equations such that the solution $c=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)^{T}$ are the coefficients of a cubic polynomial satisfying these conditions. Also find the specific polynomial satisfying all the above conditions.
b) Spline interpolation can be used to approximnate a function $y=f(x)$. We have a table

x	-2	-1	0	1	2
$f(x)$	0	1	3	1	0

We attempt to approximate $f(x)$ by a cubic spline $s(x)$. Clearly state the conditions that have to be satisfied for $s(x)$ to be a cubic spline that interpolates the above table. Also state if the given information sufficient for the spline $s(x)$ to be uniquely determined?
(2p) 7: A numerical method, depends on a discretization parameter h, and has a truncation error that can be described as $R_{T} \approx C h^{p}$. We use the method to compute a few approximations $T(h)$ of the exact result $T(0)$ and obtain

h	0.9	0.3	0.1
$\mathrm{~T}(\mathrm{~h})$	2.3721	2.1409	2.1152

Use the table to determine C and p. Also estimate the value of h needed for the error to be of magnitude 10^{-4}.
(3p) 8: Let A be an $m \times n, m>n$, matrix.
a) Suppose that A has full column rank. Use the singular value decomposition $A=U \Sigma V^{T}$ to give a general formula for the solution to the least squares problem

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2} .
$$

Clealy motivate your answer.
b) The least squares solution x, see a), is also a solution to the linear system $A x=b$ if $b \in \operatorname{Range}(A)$. Use the singular value decomposition to give a basis for the space Range (A). Also formulate a criteria that uses the vector b and also the basis for $\operatorname{Range}(A)$ to check if the least squares solutuion x is also a solution to the linear system $A x=b$. Clearly motivate your answer.
(5p) 1: For a) the absolute error is $|\Delta x|=|113.782378-113.81|<0.03$. The relative error is $|\Delta x| /|x|<0.03 / 113.81<2.7 \cdot 10^{-4}$. Since the absolute error satisfies $|\Delta x|<$ $0.05=0.5 \cdot 10^{-1}$ we have one correct decimal and thus 4 significant digits.
In b) we rewrite the number as $x=1.87892189 \cdot 10^{1}$ to see that $\bar{x}=1.87892 \cdot 10^{1}$ is actually stored on the computer.
For c) problems can occur if \bar{a} and \bar{b} is of approximately equal magnitude since in that case $\bar{a}-\bar{b}$ is much smaller than either of \bar{a} or \bar{b}. This means that the resulting relative error in the result may be very large. This is called catastrophic cancellation. For the addition the result $\bar{a}+\bar{b}$ is always larger than \bar{a} or \bar{b}. Thus the result cannot have a large relative error (unless either of \bar{a} or \bar{b} has a large relative error).
For d) The approximate value is $\bar{z}=(1+\bar{y}) \exp (\bar{x} / 2)=(1+0.62) \exp (0.29 / 2)=1.87$ with $\left|R_{B}\right| \leq 0.003$. The error propagation formula gives

$$
|\Delta z| \lesssim\left|\frac{\partial z}{\partial x}\right||\Delta x|+\left|\frac{\partial z}{\partial y}\right||\Delta y|=\left|\frac{1}{2}(1+y) \exp (x / 2)\right||\Delta x|+|\exp (x / 2)||\Delta y|<0.054
$$

The total error is $\left|R_{T O T}\right| \leq 0.054+0.003<0.06$. Thus $y=1.87 \pm 0.06$.
(3p) 2: The basis function satisfies $\ell_{2}\left(x_{2}\right)=1$ and $\ell_{2}\left(x_{i}\right)=0, i \neq 2$. Thus

$$
\ell_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)}
$$

The degree of $\ell_{2}(x)$ is $n=3$.
(2p) 3: The computational order is

$$
f(x)=\mathrm{e}^{x}-3 x=a-3 x=a-b=c,
$$

The error propagation formula gives us

$$
\begin{gathered}
|\Delta f| \lesssim\left|\frac{\partial f}{\partial a}\right||\Delta a|+\left|\frac{\partial f}{\partial b}\right||\Delta b|+\left|\frac{\partial f}{\partial c}\right||\Delta c|=|1||\Delta a|+|1||\Delta b|+|1||\Delta c| \lesssim \\
\mu(|a|+|b|+|c|) \approx \mu(|1|+|3 x|+|1|) \approx 2 \mu,
\end{gathered}
$$

where we have used that $\mathrm{e}^{x} \approx 1$ and $f(x)=c \approx 1$, when x is small. There is no risk of cancellation here. The relative error is bounded by 2μ (since $f(x) \approx 1$).
(3p) 4: For a) we let x^{*} be the fixed point. Then

$$
\left|x_{n}-x^{*}\right|=\left|g\left(x_{n-1}\right)-g\left(x^{*}\right)\right|=\left|g^{\prime}\left(\xi_{n}\right)\right|\left|x_{n-1}-x^{*}\right|,
$$

where $\xi_{n} \in\left(x_{n-1}, x^{*}\right)$. Since $\mid g^{\prime}\left(x^{*}\right) \leq C<1$ it will hold that $\left|g^{\prime}\left(\xi_{n}\right)\right| \leq C^{\prime}<1$, provided that the previous iterate x_{n-1} is close enough to x^{*}. This means that the iterations will converge.

For b) the easiest possible method would be $x_{n+1}=g\left(x_{n}\right)=\mathrm{e}^{-x_{n}^{2}}$. We compute $g^{\prime}(x)=-2 x \mathrm{e}^{-x^{2}}$, and $\left|g^{\prime}(0.65)\right|=|-0.8520|<1$. Thus the iterations will converge. For \mathbf{c}) we let $\bar{x}=0.652919$ and use the error estimate

$$
\left|\bar{x}-x^{*}\right|=\frac{|f(\bar{x})|}{\left|f^{\prime}(\bar{x})\right|} \approx \frac{\left|-6.67 \cdot 10^{-7}\right|}{|-1.85|}<4 \cdot 10^{-7}
$$

(3p) 5: For a) we simply observe that correct pivoting means that $\left|L_{i j}\right| \leq 1$ but here $\left|L_{32}\right|=1.8$.
For \mathbf{b}) we note that we first evaluate $z_{1}=B x+y$. A matrix vector multiply $B x$ requires approximately $2 n^{2}$ arithmetic operations and the vector addition requires n additions. The remaining computation is $(I+A) z_{1}=z_{1}+A z_{1}$ which is exactly the same computation as before. Thus the arithmetic work involved in the computation should be approximately $4 n^{2}$. This counts both multiplications and additions.
With the assumption that computation time is roughly proportional to the amount of arithmetic work the time can be written as $t(n) \approx c n^{2}$. Thus $t(2 n) / t(n) \approx$ $\left(c(2 n)^{2}\right) /\left(c n^{2}\right)=4$. Thus double n should mean 4 times longer computation time. In the table however $t(2000) / t(1000) \approx 8$. We conclude that the formula was not implemented efficiently.
Its likely that a matrix-matrix multiply, e.g. $A B$, was evaluated at some point since thats an $\mathcal{O}\left(n^{3}\right)$ operation and $2^{3}=8$.
(4p) 6: For a) we note that $p(0)=c_{0}=0$ and $p(1)=c_{0}+c_{1}+c_{2}+c_{3}=0$ gives two equations. Then $p^{\prime}(x)=c_{1}+2 c_{2} x+3 c_{3} x^{2}$ so we also obtain $p^{\prime}(0)=c_{1}=1$ and $p^{\prime}(1)=c_{1}+2 c_{2}+3 c_{3}=1$. Thus the system of equations is

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right) .
$$

We can solve the linear system by noting that $c_{0}=0$ and $c_{1}=1$. Then we are left with two equations for c_{2} and c_{3}. The solution is $p(x)=x-3 x^{2}+2 x^{3}$.
For b) the conditions for $s(x)$ to be a cubic spline are (i) on each sub interval [x_{i}, x_{i+1}] the spline $s(x)$ should be given by a cubic polynomial, and (ii) $s(x)$, $s^{\prime}(x)$ and $s^{\prime \prime}(x)$ should be continuous on the whole interval $\left[x_{1}, x_{n}\right]$. Also (iii) the interpolation conditions $s\left(x_{i}\right)=f\left(x_{i}\right)$ needs to be satisfied. The given information is not sufficient since we also need two end point conditions for the spline to be unique.
(2p) 7: Since $T(h)=T(0)+C h^{p}$ we get

$$
\frac{T(9 h)-T(3 h)}{T(3 h)-T(h)} \approx \frac{\left(9^{p}-3^{p}\right) C h^{p}}{\left(3^{p}-1^{p}\right) C h^{p}}=3^{p}
$$

Insert numbers from the table we obtain

$$
3^{p}=\frac{2.3721-2.1409}{2.1409-2.1152}=8.9767
$$

Which fits very well with $p=2$. In order to determine C we use the last equation $T(3 h)-T(h)=\left(3^{2}-1^{2}\right) C h^{2}$ and insert $h=0.1$ to obtain $C=0.321$. Finally $R_{T}=10^{-4}$ if $h=\sqrt{10^{-4} / 0.321}=0.0177$. Thus $h<0.0017$ is required.
(3p) 8: For a) we write x using the basis given by the columns of the V matrix as

$$
x=\sum_{i=1}^{n} c_{i} v_{i} .
$$

In order to determine x we compute

$$
A x=\sum_{i=1}^{n} c_{i} A v_{i}=\sum_{i=1}^{n} c_{i} \sigma_{i} u_{i}
$$

and write b in the U basis,

$$
b=\sum_{i=1}^{m}\left(u_{i}^{T} b\right) u_{i} .
$$

We see that

$$
A x-b=\sum_{i=1}^{n}\left(c_{i} \sigma_{i}-\left(u_{i}^{T} b\right)\right) u_{i}+\sum_{i=n+1}^{m}\left(u_{i}^{T} b\right) u_{i} .
$$

Thus

$$
x=\sum_{i=1}^{n} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

sets the first n coefficients to zero. This will minimize the norm $\|A x-b\|_{2}$. The rest of the coefficients we can't influence.
For \mathbf{b}) we note that the residual is

$$
r=A x-b=\sum_{i=n+1}^{m}\left(u_{i}^{T} b\right) u_{i} .
$$

If the residual is $r=0$ then we have a solution to the linear system $A x=b$. Thus the criteria for existance could be written as

$$
u_{i}^{T} b=0, \quad \text { for } i=n+1, \ldots, m .
$$

Since the range Range (A) has basis $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ we have to formulate it a bit differently. One way is to say that

$$
b-\sum_{i=1}^{n}\left(u_{i}^{T} b\right) u_{i}=0 .
$$

