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(5p) 1: a) Let x = 113.782378 be an exact value and let x̄ = 113.81 be an approximation
of x. Give a bound for both the absolute error and the relative error in x̄. Also
how many significant digits do the approximate value x̄ have?

b) We want to store the number x = 18.7892189 on a computer using the floating
point system (10, 5,−10, 10). What approximate number x̄ would actually be
stored on the machine?

c) Let ā and b̄ be two positive real numbers, with small errors ∆a and ∆b. Clearly
explain why it might be problematic to compute ā − b̄. Also, explain why
computing ā+ b̄ doesn’t cause the same problems.

d) Let z = (1+y) exp(x/2), where x = 0.29±0.02, and y = 0.62±0.03. Compute
the approximate value z̄ and give an error bound.

(2p) 2: Let x1, x2, x3 and x4 be given interpolation points. In the Lagrange interpolation
formula we use basis functions ℓi(x) such that ℓi(xj) = 1 if i = j and zero otherwise.
Give an explicit expression for the basis function ℓ2(x) for the case with n = 4
interpolation points. What is the degree of the basis polynomial?

(3p) 3: We need to evaluate the function

f(x) = ex − 3x

for small x on a computer with machine precision µ = 1.11 · 10−16. Perform a
computational error analysis and find a bound for the relative error in the computed
value f(x). When doing the analysis you should assume that all computations are
done with a relative error at most µ. Also use your error bound to determine
if catastrophic cancellation occurs during the computations. If cancellation occurs
also suggest an alternative formula that should give better accuracy.
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(3p) 4: Non-linear equations f(x) = 0 can be solved using fixed point iteration where the
problem is reformulated so that a root x∗, i.e. f(x∗) = 0, is a fixed point to the
iteration xn+1 = g(xn), that is x∗ = g(x∗).

a) Show that the iteration xn+1 = g(xn) is convergent if |g′(x∗)| ≤ C < 1 and the
starting guess x0 is sufficiently close to the root.

b) The equation f(x) = e−x2

−x = 0 has a root x∗ ≈ 0.65. Formulate a fixed point
iteration for finding a root to f(x) = 0 and show that the proposed method is
convergent.

c) The equation f(x) = e−x2

−x = 0 is solved using the Newton-Raphson method
and an approximate root x̄ = 0.652919 ≈ x∗ is obtained. Estimate the error
in the approximation x̄.

(3p) 5: Do the following

a) A computer program has computed the decomposition PA = LU and the
output is

L=





1 0 0
−0.7 1 0
0.3 1.8 1



 U=





1.7 −2.3 −1.4
0 1.2 −0.5
0 0 3.1



 P =





1 0 0
0 0 1
0 1 0



 .

Determine if pivoting was used correctly during the computations.

b) Let A and B be n× n matrices and x, y, be n× 1 vectors. How many floating
point operations are required to implement the formula

z = (I + A)(Bx+ y),

where I is the identity matrix, as efficiently as possible? In a practical test one
implementation of the formula was tested on a computer and the following run
times were reported

n 1000 2000 4000 8000
time (ms) 1060 8360 66300 529000

Was the implementation done using the most efficient method? Motivate your
answer carefully.
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(4p) 6: Do the following:

a) Let p(x) = c0+c1x+c2x
2+c3x

3 be a cubic polynomial. We want to find values
for the coefficients so that p(0) = p(1) = 0 and p′(0) = p′(1) = 1. Show how to
derive a linear system of equations such that the solution c = (c0, c1, c2, c3)

T

are the coefficients of a cubic polynomial satisfying these conditions. Also find
the specific polynomial satisfying all the above conditions.

b) Spline interpolation can be used to approximnate a function y = f(x). We
have a table

x -2 -1 0 1 2
f(x) 0 1 3 1 0

We attempt to approximate f(x) by a cubic spline s(x). Clearly state the con-
ditions that have to be satisfied for s(x) to be a cubic spline that interpolates
the above table. Also state if the given information sufficient for the spline
s(x) to be uniquely determined?

(2p) 7: A numerical method, depends on a discretization parameter h, and has a truncation
error that can be described as RT ≈ Chp. We use the method to compute a few
approximations T (h) of the exact result T (0) and obtain

h 0.9 0.3 0.1
T(h) 2.3721 2.1409 2.1152

Use the table to determine C and p. Also estimate the value of h needed for the
error to be of magnitude 10−4.

(3p) 8: Let A be an m× n, m > n, matrix.

a) Suppose that A has full column rank. Use the singular value decomposition
A = UΣV T to give a general formula for the solution to the least squares
problem

min
x∈Rn

‖Ax− b‖2.

Clealy motivate your answer.

b) The least squares solution x, see a), is also a solution to the linear system
Ax = b if b ∈ Range(A). Use the singular value decomposition to give a basis
for the space Range(A). Also formulate a criteria that uses the vector b and
also the basis for Range(A) to check if the least squares solutuion x is also a
solution to the linear system Ax = b. Clearly motivate your answer.
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Answers

(5p) 1: For a) the absolute error is |∆x| = |113.782378− 113.81| < 0.03. The relative error
is |∆x|/|x| < 0.03/113.81 < 2.7 · 10−4. Since the absolute error satisfies |∆x| <
0.05 = 0.5 · 10−1 we have one correct decimal and thus 4 significant digits.

In b) we rewrite the number as x = 1.87892189 · 101 to see that x̄ = 1.87892 · 101

is actually stored on the computer.

For c) problems can occur if ā and b̄ is of approximately equal magnitude since in
that case ā− b̄ is much smaller than either of ā or b̄. This means that the resulting
relative error in the result may be very large. This is called catastrophic cancellation.
For the addition the result ā+ b̄ is always larger than ā or b̄. Thus the result cannot
have a large relative error (unless either of ā or b̄ has a large relative error).

For d) The approximate value is z̄ = (1+ȳ) exp(x̄/2) = (1+0.62) exp(0.29/2) = 1.87
with |RB| ≤ 0.003. The error propagation formula gives

|∆z| . |
∂z

∂x
||∆x|+ |

∂z

∂y
||∆y| = |

1

2
(1 + y) exp(x/2)||∆x|+ | exp(x/2)||∆y| < 0.054

The total error is |RTOT | ≤ 0.054 + 0.003 < 0.06. Thus y = 1.87± 0.06.

(3p) 2: The basis function satisfies ℓ2(x2) = 1 and ℓ2(xi) = 0, i 6= 2. Thus

ℓ2(x) =
(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
.

The degree of ℓ2(x) is n = 3.

(2p) 3: The computational order is

f(x) = ex − 3x = a− 3x = a− b = c,

The error propagation formula gives us

|∆f | . |
∂f

∂a
||∆a|+ |

∂f

∂b
||∆b|+ |

∂f

∂c
||∆c| = |1||∆a|+ |1||∆b|+ |1||∆c| .

µ(|a|+ |b|+ |c|) ≈ µ(|1|+ |3x|+ |1|) ≈ 2µ,

where we have used that ex ≈ 1 and f(x) = c ≈ 1, when x is small.There is no risk
of cancellation here. The relative error is bounded by 2µ (since f(x) ≈ 1).

(3p) 4: For a) we let x∗ be the fixed point. Then

|xn − x∗| = |g(xn−1)− g(x∗)| = |g′(ξn)||xn−1 − x∗|,

where ξn ∈ (xn−1, x
∗). Since |g′(x∗) ≤ C < 1 it will hold that |g′(ξn)| ≤ C ′ < 1,

provided that the previous iterate xn−1 is close enough to x∗. This means that the
iterations will converge.
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For b) the easiest possible method would be xn+1 = g(xn) = e−x2
n. We compute

g′(x) = −2xe−x2

, and |g′(0.65)| = |−0.8520| < 1. Thus the iterations will converge.

For c) we let x̄ = 0.652919 and use the error estimate

|x̄− x∗| =
|f(x̄)|

|f ′(x̄)|
≈

| − 6.67 · 10−7|

| − 1.85|
< 4 · 10−7.

(3p) 5: For a) we simply observe that correct pivoting means that |Lij | ≤ 1 but here
|L32| = 1.8.

For b) we note that we first evaluate z1 = Bx + y. A matrix vector multiply Bx
requires approximately 2n2 arithmetic operations and the vector addition requires
n additions. The remaining computation is (I+A)z1 = z1+Az1 which is exactly the
same computation as before. Thus the arithmetic work involved in the computation
should be approximately 4n2. This counts both multiplications and additions.

With the assumption that computation time is roughly proportional to the amount
of arithmetic work the time can be written as t(n) ≈ cn2. Thus t(2n)/t(n) ≈
(c(2n)2)/(cn2) = 4. Thus double n should mean 4 times longer computation time.
In the table however t(2000)/t(1000) ≈ 8. We conclude that the formula was not
implemented efficiently.

Its likely that a matrix–matrix multiply, e.g. AB, was evaluated at some point since
thats an O(n3) operation and 23 = 8.

(4p) 6: For a) we note that p(0) = c0 = 0 and p(1) = c0 + c1 + c2 + c3 = 0 gives two
equations. Then p′(x) = c1 + 2c2x + 3c3x

2 so we also obtain p′(0) = c1 = 1 and
p′(1) = c1 + 2c2 + 3c3 = 1. Thus the system of equations is









1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

















c0
c1
c2
c3









=









0
0
1
1









.

We can solve the linear system by noting that c0 = 0 and c1 = 1. Then we are left
with two equations for c2 and c3. The solution is p(x) = x− 3x2 + 2x3.

For b) the conditions for s(x) to be a cubic spline are (i) on each sub interval
[xi, xi+1] the spline s(x) should be given by a cubic polynomial, and (ii) s(x),
s′(x) and s′′(x) should be continuous on the whole interval [x1, xn]. Also (iii) the
interpolation conditions s(xi) = f(xi) needs to be satisfied. The given information
is not sufficient since we also need two end point conditions for the spline to be
unique.

(2p) 7: Since T (h) = T (0) + Chp we get

T (9h)− T (3h)

T (3h)− T (h)
≈

(9p − 3p)Chp

(3p − 1p)Chp
= 3p
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Insert numbers from the table we obtain

3p =
2.3721− 2.1409

2.1409− 2.1152
= 8.9767

Which fits very well with p = 2. In order to determine C we use the last equation
T (3h) − T (h) = (32 − 12)Ch2 and insert h = 0.1 to obtain C = 0.321. Finally
RT = 10−4 if h =

√

10−4/0.321 = 0.0177. Thus h < 0.0017 is required.

(3p) 8: For a) we write x using the basis given by the columns of the V matrix as

x =

n
∑

i=1

civi.

In order to determine x we compute

Ax =
n

∑

i=1

ciAvi =
n

∑

i=1

ciσiui,

and write b in the U basis,

b =

m
∑

i=1

(uT
i b)ui.

We see that

Ax− b =
n

∑

i=1

(ciσi − (uT
i b))ui +

m
∑

i=n+1

(uT
i b)ui.

Thus

x =
n

∑

i=1

uT
i b

σi

vi,

sets the first n coefficients to zero. This will minimize the norm ‖Ax− b‖2. The rest
of the coefficients we can’t influence.

For b) we note that the residual is

r = Ax− b =
m
∑

i=n+1

(uT
i b)ui.

If the residual is r = 0 then we have a solution to the linear system Ax = b. Thus
the criteria for existance could be written as

uT
i b = 0, for i = n+ 1, . . . , m.

Since the range Range(A) has basis {u1, u2, . . . , un} we have to formulate it a bit
differently. One way is to say that

b−

n
∑

i=1

(uT
i b)ui = 0.
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