
TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

Exam TANA15 Numerical Linear Algebra, Y4, Mat4

Datum: 20:e Mars, 2024.

Hjälpmedel:

1. Föreläsningsanteckningar utskrivna från kurshemsidan utan egna anteck-
ningar.

2. Räknedosa i fickformat, med nollställt minne och utan instruktionsbok.

Examinator: Fredrik Berntsson

Maximalt antal poäng: 25 poäng. För godkänt krävs 10 poäng.

Jourhavandelärare Fredrik Berntsson (telefon 013 28 28 60)

Good luck!
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(4p) 1: Do the following

a) Prove that dim(Null(A)) + dim(Range(A)) = n.

Hint Pick a basis for Null(A) and complete to a basis for all of Rn.

b) Prove the inequality ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞.

c) Show that if P is an orthogonal projection and λ is an eigenvalue of P then λ
is either 0 or 1.

(4p) 2: Let,

f(x) =

(
exp(2x1 + x2)− 2
sin(3x1 − x2)

)
.

a) Compute the Jacobian Jf and formulate the Newton method for finding a root
of the equation f(x) = 0.

b) Let x(0) = (0 , 0)T and perform one step of the Newton metod and compute
the next iterate x(1).

(4p) 3: Suppose A is an m×n, m > n, matrix and the linear system Ax = b doesn’t have a
exact solution. The Total least squares solution x satisfies (A+E)x = b+ r, where
[E, r] is given by

min ‖[E, r]‖2 such that (A+ E)x = b+ r.

Do the following:

a) Show that the Total least squares problem always has a solution.

b) Use the singular value decomposition to derive the solution to the problem.
Note that it may not always be possible to find the Total least squares solution
using the singular value decomposition and in the case it fails you should give
a clear criteria that shows if the formula worked or not.
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(4p) 4: Any matrix A ∈ R
m×n, m > n, has a singular value decomposition A = UΣV T . Do

the following:

a) Consider a linear system Ax = b, m > n, where rank(A) = k < n. Use the SVD
to a basis for the both the range Range(A) and its orthogonal complement.
Also give a criteria that guarantees that a solution to the linear system exists.
Your criteria should be expressen in terms of the basis vectors and the vector
b. Also the criteria should be efficient to check for the case when k ≈ n ≈ m.

b) Consider the linear system ATx = b, where as before rank(A) = k < n. Provide
a criteria for existance of a solution to the linear system expressed in terms of
b and the singular vectors. Also write down the formula for the solution x. Is
the solution unique? Motivate clearly.

(4p) 5: Do the following:

a) Clearly demonstrate how a bidiagonal reduction A = UBV T can be computed
using Householder reflections. You have to specify which elements of the matrix
are used to create each reflection. It is enough to consider the 4× 4 case.

b) Give the definition of the singular values of an m× n, m > n, matrix A. Also
suppose we have all the eigenvalues {λi} of BTB, where A = UBV T is the
bidiagonal reduction. Clearly show how to obtain the singular values of A in
terms of the eigenvalues of B. What are the dimensions of the matrices B and
BTB?

(5p) 6: a) Show that any matrix A ∈ R
n×n can be factorized as A = QTQH , where Q is

unitary and T upper triangular. This is called the Schur decomposition.

b) A matrix B is called non-defective if it has a full set of eigenvectors, i.e. the
decomposition B = XDX−1 exists. Use the Shur decomposition to prove that
if A is defective then for any ε > 0 there is a non-defective matrix B such that
‖A−B‖2 ≤ ε.

Remark From b) we conclude that if a matrix is supposed to be defective and
we compute a numerical approximation it is likely that the matrix turns out to be
non-defective due to round-off errors.
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Lösningsförslag till tentan 20:a Mars 2023.

1: For a) suppose the dimension of the null space is k. Then there is a basis {x1, x2, . . . , xk}
for the nullspace. Add n− k linearly independent vectors {x̃k+1, . . . , x̃n} so that we
have a basis for R

n. Now take a vector y that belongs to the subspace Range(A),
i.e. y = Ax for some x ∈ R

n. We can express x using the above basis and since
Axi = 0, for i = 1, . . . , k, we find that y is a linear combination of the vectors
{Ax̃k+1, . . . , Ax̃}. So the dimension is at most n − k. To show that the dimension
is exactly n− k we assume that there is a linear combination so that

0 =
n∑

i=k+1

ciAx̃i = A(
n∑

i=k+1

ciAx̃i) = Az,

so z belongs to the nullspace which contradicts the assumption that the set of
vectors

{x1, x2, . . . , xk, x̃k+1, . . . , x̃n}
was a basis. So the dimension of the range is exactly n− k.

For b) we demonstrate the first inequality by

‖x‖2∞ = max
1≤i≤n

|xi|2 ≤
n∑

i=1

|xi|2 = ‖x‖22.

Also, since |xi| ≤ ‖x‖∞, we have

‖x‖22 =
n∑

i=1

|xi|2 ≤
n∑

i=1

‖x‖2∞ = n‖x‖∞.

For c) we simply note that λ is an eigenvalue of P is there is a vector x 6= 0
such that Px = λx. The property that signify projections is that Px = x for all
x ∈ Range(P ). Thus for such x we get x = λx showing that 1 is an eigenvalue. For
all vectors x that does not belong to Range(P ) the equation is Px = λx. Since Px
obviously belongs to the range this is only possible if λ = 0.

2: For a) we recall that (Jf)ij(x) = (∂xj
fi(x)). Thus

Jf(x) =

(
2e3x1+x2 e3x1+x2

3 cos(3x1 − x2) − cos(3x1 − x2)

)
,

where x = (x1, x2)
T . The Newton method is formulated as follows: Solve Jf (x

(n))s(n) =
−f(x(n)),and update x(n+1) = x(n) + x(n).

For b) we evaluate f(x(0)) = f((0, 0)T ) = (1, 0)T , and

Jf ((0, 0)
T ) =

(
2 1
3 −1

)
.
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In the Newton step we first solve the linear system Jfs
(0) = −f(x(0), or

(
2 1
0 1

)
s(0) =

(
3
−1

)
,

which gives s(0 = (0.2, 0.6). Thus x(1) = x(0) + s(0) = (0.2, 0.6)T .

3: For a) we simply observe that the equation (A + E)x = b + r is satisfied, for any
x, if E = −A and r = −b. The minimum is also bounded from below (by 0). Thus
there is some E, r that gives the minimum.

For b) we can assume that the agumented matrix [A, b] has full rank since otherwise
the minimum would be zero and the linear system Ax = b have a solution. We then
compute the singular value decomposition [A, b] = UΣV T of the m×(n+1) matrix.
The smallest perturbation [E, r] that makes the matrix [A+E, b+ r] rank deficient
is given by the last singular component [E, r] = −σn+1un+1v

T
n+1. There is an x such

that (A + E)x = (b + r) if [A + E, b + r](x,−1)T = 0, i.e. (x,−1)T belongs to the
null space of [A+E, b+r]. By the construction above the null space is exactly vn+1.
So we just take the last singular vector and multiply by a constant so that the last
component becomes 1. Thus x = vn+1(1 : n)/vn+1(n + 1). This is the total least
squares solution.

This obviously fails if vn+1(n+1) = 0. In that case we have to figure out something
else to find the total least squares solution.

4: For a) we remark that we can write A in the form

A =

k∑

i=1

σiuiv
T
i .

Here we clearly see that Range(A) = span(u1, . . . , uk). The orthogonal complement
is Range(A)⊥ = span(uk+1, . . . , um). Existance of solution means that b ∈ Range(A)
which means b doesn’t have a component in Range(A)⊥. For large k the easiest way
to check this is uT

i b = 0, for i = k + 1, . . . , m.

For b) we simply apply the transpose to the above formula for A to obtain

AT =
k∑

i=1

σiviu
T
i .

This means that now we have Range(AT ) = span(v1, . . . , vk). A criteria for existance
is thus vTi b = 0, for i = k + 1, . . . , n. If this criteria is satisfied we can write

b =

k∑

i=1

(vTi b)vi = ATx =

k∑

i=1

σi(u
T
i x)vi.
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Identifying coefficients gives us vTi b = σi(u
T
i x), for i = 1, . . . , k. We can express x

in the basis {u1, . . . , um} so

x =
m∑

i=1

(uT
i x)ui =

k∑

i=1

vTi b

σi

ui +
m∑

i=k+1

ciui

where ci are free parameters. The solution is not unique.

5: For a) we illustrate the algorithm as follows: First we use a reflection H1 applied
from the left. The reflection is selected so the elements A(2 : 4, 1) are set to zero.
Second we apply a reflection H2 from the right to zero out the elements Ã(1, 3 : 4).
We get

H1




x x x x

x x x x

x x x x

x x x x


 .




+ + + +

0 + + +

0 + + +

0 + + +


HT

2 =




x + 0 0

0 + + +

0 + + +

0 + + +


 .

Now we continue with reflections H3 and H4 that zero out A(3 : 4, 2) and A(2, 4).
We get

H3




x x 0 0

0 x x x

0 x x x

0 x x x


HT

4 =




x x 0 0

0 + + +

0 0 + +

0 0 + +


HT

4 =




x x 0 0

0 x + 0

0 0 + +

0 0 + +


 .

Finally we apply one reflection H5 from the left to zero out the element A(4, 3).
We get

H5




x x 0 0

0 x x 0

0 0 x x

0 0 x x


 =




x x 0 0

0 x x 0

0 0 + +

0 0 0 +


 ,

which is bidiagonal.

For b) there easiest way to define the singular values is to say that the singular
value decomposition is A = UΣV T , where U and V are orthogonal matrices and Σ is
diagonal. The singular values σk are the diagonal elements of Σ provided that U and
V are chosen so that the diagonal elements are positive and sorted in descending
order. The dimension of BTB is n × n and the dimension of BBT is m × m. If
A = UBV T then ATA = UBTBUT so the eigenvalues of BTB are the same as
those of ATA. Also suppose A = ŪΣV̄ T is the singular value decomposition of A.
Then ATA = V̄ ΣTΣV̄ T . So the eigenvalues of ATA are λi = σ2

i , where σi are the
singular values of A. Thus σi =

√
λi, i = 1, 2, . . . , n. We are just missing m−n zero

singular values to get the correct dimension.

6: For a) we pick an eigenpair (λ, x). If we compute the full QR decomposition of
x ∈ R

n×1 we obtain an orthogonal matrix suxch that Q = (x,Q2), where QH
2 x = 0.

This is assuming that ‖x1‖2 = 1. We find that

QHAQ = (x,Q2)
TA(x,Q2) = (x,Q2)

H(Ax,AQ2) = (x,Q2)
H(λx,AQ2) =
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(
λxHx xHAQ2

λQH
2 x QH

2 AQ2

)
=

(
λ wH

0 B

)
,

where we have the correct structure. This is the first step of finding the Hessen-
berg decomposition. Now we make the induction argument that the Hessenberg
decomposition exists for dimension n− 1 and find B = Q1H1Q

H
1 . We then have

QHAQ =

(
λ wH

0 Q1H1Q
H
1

)
=

(
1 0
0 Q1

)
=

(
λ wH

0 H1

)(
1 0
0 Q1

)H

.

For b) we simply note that AH = (QTQH)H = QTHQH . For symmetric matrices,
i.e. A real and AT = A, we thus get AT = AH = QTHQH = A = QTQH . Thus TH =
T which means that T is a diagonal since we already knew that T is upper triangular.
Also the diagonal elements satisfy (T )ii = ¯(T )ii which means the elements on the
diagonal are real. Since the diagonal elements of T are also the eigenvalues of A
this shows that the eigenvalues are real.

For c) we assume that A is defective and compute its Shur decomposition A =
QTQH . For A to be defective it has to have at least one eigenvalue λ1 with an
algebraic multiplicity γ1(λ1) strictly larger than the geometric multiplicity γ2(λ1).
Thus, if all diagonal elements of T were different then the matrix A would be non-
defective. Thus we pick a diagonal matrix D = diag(ǫ1, . . . , ǫn) so that T +D has
unique diagonal elements. Then B = Q(T +D)QH is non-defective and ‖A−B‖2 =
‖D‖2 ≤ max |ǫi| = ǫ.
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