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CONJUGATE DIRECTION METHODS

Conjugate direction methods are motivated by a desire to accelerate
the convergence rate of steepest descent, while avoiding the overhead asso-
ciated with Newton’s method. They were originally developed for solving
the quadratic problem

minimize f(z) = {z’Qz — bz

(6.1
subject to z € Rn, (6.1)

where @ is positive definite, or equivalently, for solving the linear system

Qz = b. (6.2)

They can also be used for solution of the more general system Az = b, where

A is invertible but not positive definite, after conversion to the positive
definite system A’Axz = A’b.
Conjugate direction methods can solve these problems after at most n

~ iterations but they are best viewed as iterative methods, since usually fewer

than n iterations are required to attain a sufficiently accurate solution,
particularly when n is large. They can also be used to solve nonquadratic
optimization problems. For such problems, they do not in general terminate
after a finite number of iterations, but still, when properly implemented,
they have attractive convergence and rate of convergence properties. We
will first develop the methods for quadratic problems and then discuss their
application to more general problems.

Given a positive definite n x n matrix @, we say that a set of nonzero

vectors d,...,d* are Q-conjugate, if
di'Qdi =0, for all 4 and j such that i # j. (6.3)
If d1,...,d* are Q-conjugate, then they are linearly independent, since if

one of these vectors, say d*, were expressed as a linear combination of the

others,
d*é = oldl + - - - + ak=1dk-1

then by multiplication with d*'Q we would obtain using the Q-conjugacy
ofdt and di, j=1,...,k—1,

d¥ Qdk = aldF'Qdl + - - - + ak=1dk QdF-1 = 0,

which is impossible since d¥ # 0 and @ is positiwe definite.

For a given set of n Q-conjugate directions d°,...,d"—1, the corre-
sponding conjugate direction method for unconstramed mmlmlzatlon of the
quadratic function

f(x) = }o'Q - ba,  (6.4)
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is given by
xktl = gk 4 akdk, k=0,...,n—1, (6.5)

where 20 is an arbitrary starting vector and a* is obtained by the line
minimization rule ~

f(zk + akdk) ==kngn f(zF + adk). (6.6)

The principal result about conjugate direction methods is that suc-

cesstve iterates minimize f over a progressively expanding linear manifold

that eventually includes the global minimum of f. In particular, for each k,
z%+1 minimizes f over the linear manifold passing through 20 and spanned
by the conjugate directions d,...,dk, that is,

zkt+l = arg min f(z), - (6.7)
zeMk
where
Mk ={z|z= 20 + v, v € (subspace spanned by d°, ..., d¥)} (6.8)
= 20 + (subspace spanned by df, ..., d¥). '
In parti(_:ular, ™ minimizes f over 7.
To show this, note that by Eq. (6.6), we have for all 4
Of (zt + ad?) Y f(zi+)di = 0
Oa ;
a=x !
and, forizO,...,k—l,
Vf(xk—l-l)/di — (ka-{—vl — b)/dz’
. k !
= [ gi+1 + Z addi | Qdi - bds
- g=itl
= g+l Qdé — b/ ds
= Vi),
where we have used the conj‘ugacy ofd and d7, j =i+1,...,k. Combining
the last two equations we obtain ’

so that

Of(z0 +40d0 + - - - + ykdF)

v i =ad
i=1l,..,k

V f(zk+1)dé =0, z =0,...,k, (6.9)
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which verifies Eq. (6.7).

It is easy to visualize the expanding manifold minimization property
of Eq. (6.7) when b = 0 and @ = I (the identity matrix). In this case,
the equal cost surfaces of f are concentric spheres, and the notion of Q-
conjugacy reduces to usual orthogonality. By a simple algebraic argument,
we see that minimization along n orthogonal directions yields the global
minimum of f, that is, the center of the spheres. (This becomes evident
once we rotate the coordinate system so that the given n orthogonal di-
rections coincide with the coordinate directions.) The case of a general
positive definite ) can be reduced to the case where Q = I by means
of a scaling transformation. By setting y = Q/2z, minimizing 12/Qz is

equivalent to minimizing 1|y||2. If w0,...,wn=1 are any set of orthogonal
" nonzero vectors in 7, the algorithm :
yktl = yk 4 akwk k=0,....n—1, (6.10)
- where

ok = argmin }ly* + awk|?,
«

terminates in at most n steps with y» = 0. To pass back to the z-coordinate
system, we multiply Eq. (6.10) by Q~1/2 and obtain

gh+l = gk + okdk, k=0,...-,n——'1,

where d¥ = Q~1/2wk. The orthogonality property of w?,..., w1, that
is, wi'wi = 0 for i # j, is equivalent to the requirement that the directions
d°,...,dn—1 be Q-conjugate, that is, di’Qds = 0 for i # j.

Thus, using the transformation y = Q/2z, we can think of any con-
jugate direction method for minimizing 1z/Qx as a method that minimizes
3llyl|? by successive minimization along n orthogonal directions (see Fig.
1.6.1).

Generating @-Conjugate Directions

Given any set of linearly independent vectors £0,. .., &k, we can con-
struct a set of mutually @-conjugate directions d9, ..., d* such that for all
1=0,...,k, we have

(subspace spanned by df,...,d?) = (subspace spanned by £0,..., &%),

' o (6.11)
using the so called Gram-Schmidt procedure. Indeed, let us do this recur-
sively, starting with . .
| d0 = £o. (6.12)
Suppose that, for some 7 < k, we have selected Q-conjugate d°,...,d! so
that the above property holds. We then take di+! to be of the form

ditl = gitl 4 Z cli+)ymgm . — (6.13)

m=0
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Figure 1.6.1. Geometric interpretation of conjugate direction methods in terms
of successive minimization along n orthogonal directions. In (a) the function lylI?
is minimized successively along the directions w?, ..., w™ 1, which are orthogonal
in the usual sense (w''wd = 0 for i # j). When this process is viewed in the
coordinate system of variables z = Q~1/ 2y, it yields the conjugate direction
method that uses the Q-conjugate directions d°,...,d"~1 with d¢ = Q—1/ 2w, as
shown in (b). v

and choose the coefficients c(*+1)™ so that di+1 is Q-conjugate to dO, . . . , di.
This will be so if for each j =0, ...,71,

: ) -
.di+1/de — §i+1/de + (Z c(’i+1)mdm) Qd] = 0. | (614)

m=0

Since dY, ..., d¢ are Q-conjugate, we have d™'Qdi = 0 if m # j, and Eq.
(6.14) yields :
Ei+1'Qdi

(i+l)j — A
€ b'Qd

=0,...,i.  (6.15)

Note that the denominator d7'Qds in the above equation is nonzero, since
d,...,d" are assumed Q-conjugate and are therefore nonzero. Note also
that di+1 5 0, since otherwise from Egs. (6.11) and (6.13), &i+1 would
‘be a linear combination of £9,...,¢&¢ contradicting the linear indepen-

dence of £0,...,£k. Finally, note from Eq. (6.13) that &i+1 lies in the |

subspace spanned by df, ..., di+1, while di+1 lies in the subspace spanned
by £°,...,&+1 since dO,...,d¢ and £9,. .., &% span the same space [cf. Eq.
(6.11)]. Thus, Eq. (6.11) is satisfied when 4 is increased to i + 1 and the
Gram-Schmidt procedure defined by Eqs. (6.12), (6.13), and (6.15), has the
property claimed. Figure 1.6.2 illustrates the procedure.

It is also worth noting what will happen if the vectors £9, ..., &i are
linearly independent, but the next vector £i+! is linearly dependent on
these vectors. In this case it can be seen (compare also with Fig. 1.6.2)
that the equations (6.13) and (6.15) are still valid, but the new vector di+1
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d2= 3‘;2 +¢20g0 4 c21g1
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Figure 1.6.2. Illustration of the Gram-Schmidt procedure for generating Q-
conjugate directions d?, .. ., d* from a set of linearly independent vectors £9, . .., £,
so that

(subspace spanned by d°, . .. ,d®) = (subspace spanned by £°,...,¢ k).

Given d°,...,d* 1, the ith direction is obtained as d' = £ — éi, where £ is a
vector on the subspace spanned by d°,...,d*~! (or £9,...,£"1) chosen so that
d* is Q-conjugate to d°,...,d*~!. (It can be shown that the vector & is the

projection of £* on this subspace with respect to the norm ||z||g = +/z'Qz, that
is, minimizes ||¢* —z||q over all z in this subspace; see Exercise 5.1.) - :

as given by Eq. (6.13) will be zero.f We can use this property to construct
a set of QQ-conjugate directions that span the same space as a set of vectors
£€9,...,&% that are not a priori known to be linearly independent. This
construction can be accomplished with an extended version of the Gram-
Schmidt procedure that generates directions via Egs. (6.13) and (6.15), but
each time the new direction d*+! as given by Eq. (6.13) turns out to be zero,
it is simply discarded rather than added to the set of preceding directions.

The Conjugate Gradient Method

The most important conjugate direction method, the conjugate gra-
dient method, is obtained by applying the Gram-Schmidt procedure to the

gradient vectors £0 = —g0,...,£n~1 = —gn—1 where we use the notation
gk =V f(zk) = Qzk —b. - (6.16)
Thus the conjugate gradient method is defined by
g+l = ok 4 akdk, | (6.17)

t From Eq. (6.13) and the linear independence of £°,...,&", it is seen that
d*! can be uniquely expressed as d*** =~/Z:n=0 4™d™, where Y™ are some
scalars. By multiplying this equation with d’' @ and by using the Q-conjugacy of
the directions d°,...,d* and Eq. (6.14), we see that y™ =0 for all m = 0,.. ., i.
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where the stepsize o is obtained by line minimization, and the direction
dk is obtained by applying the kth step of the Gram-Schmidt procedure
to the vector —g* and the preceding directions d°,...,d*—1. In particular,
from the Gram-Schmidt equations (6.13) and (6.15), we have

k—1 k,de )
Ic
+§:do@@ : (6.18)

Note here that
do = —g0

and that the method terminates with an optimal solution if g¢ = 0. The
method also effectively stops if d* = 0, but we will show that this can only
happen if gk = 0.

The key property of the conjugate gradient method is that the di-
rection formula (6.18) can be greatly simplified. In particular, all but one
- of the coefficients in the sum of Eq. (6.18) turn out to be zero because,
in view of the expanding manifold minimization property, the gradient g*

is orthogonal to the subspace spanned by dO,...,d*—1 [cf. Eq. (6.9)]. We

have the following proposition.

Pr0p051t10n 1.6. 1 The dlrectlons of the conjugate gradlent method
’ ‘are generated by e s

: ‘Lwhere ﬂk is glven by ~
, : gk’ gk

: | gk 1k T b

; ‘Furthermore the method termmates Wlth an optlmal solutlon after at ‘

,‘.,fi»most n steps e o St U

Proof: We first use induction to show that all the gradients g* generated
up to termination are linearly independent. The result is clearly true for
k = 1. Suppose that the method has not terminated after k steps, and
that ¢9,...,g%—1 are linearly independent. Then, since the method is by
definition a conjugate direction method, we have

(subspace spanned by d°,...,d*~1) = (subspace spanned by ¢°,...,gk~1)
(6.19)
[cf. Eq. (6.11)]. There are two possibilities:

(a) gk =0, in which case the method terminates.
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(b) g% # 0, in which case the expanding manifold minimization property
of the conjugate direction method [cf. Eq. (6.9)] implies that

g* is orthogonal to d°, ..., dk-1. (6.20)

Since the subspaces spanned by (d°,...,d*-1) and by (¢9,...,g*F"1)
are the same [cf. Eq. (6.19)], we see that

gk is orthogonal to g%,...,gk=1. (6.21)

Therefore, g* is linearly independent of °, ..., g1, thus completing
the induction.

Since at most n linearly independent gradients can be generated, it
follows that the gradient will be zero after at most n iterations and the
method will terminate with the minimum of f.

To conclude the proof, we use the orthogonality properties (6.20) and
(6.21) to verify that the calculation of the coefficients multiplying d7 in the
Gram-Schmidt formula (6.18) can be simplified as stated in the proposition.
We have for all j such that g7 # 0, .

[cf. Egs. (6.16) and (6.17)]. We note that aJ # 0, since if af = 0 we would
have gi+1 = gJ implying, in view of Eq. (6.21), that g/ = 0. Therefore, we
have using Egs. (6.21) and (6.22)

S, (0 if j=0,...,i—2,
9'Qd = —g¥(g*1 — gi) = { Lgi'gt if j=1i-1,

and also that 1
&7'Qd = —di' (gi+1 — g7).

Substituting the last two relations in the Gram-Schmidt formula (6.18) we

obtain \
dk = —gk 4 Bkdk-1 (6.23)

where

. gk’ gk
pr= TSy | (6.24)
From Eq. (6.23) we have dk—1 = —gk—1 4 gk=1dk-2, Using this equation,
~ and the orthogonality of g* and g¥~1, and of d¥—2 and gk — gk—1 [cf. Egs.
(6.20) and (6.21)], the denominator in Eq. (6.24) is written as gk—1"gk—1,
and the desired formula for 8% follows. Q.E.D.

Note that by using the orthogonality of g*¥ and g*—! the formula

/
gk gk :
k— 2 J
B =S (6.25)
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of Prop. 1.6.1 can also be written as

gk’ (gk — gk-1)
k —
Bk = pr (6.26)

While the alternative formulas (6.25), and (6.26) produce the same results
for quadratic problems, their differences become significant when the con-
jugate gradient method is extended to nonquadratic problems, as we will
discuss shortly.

Preconditioned Conjugate Gradient Method

This method is really the conjugate gradient method implemented in
 a new coordinate system. Suppose we make a change of variables, z = Sy,
where S is an invertible symmetric X n matrix, and we apply the conjugate
gradient method to the equivalent problem

minimize h(y) = f(Sy) = 3y/'SQSy — V' Sy |
subject to y € R ‘ :

The method is described by
Y+l = yk 4 okdk, (6.27)

where a* is obtained by line minimization and dk is generated by [cf. Egs.
(6.23) and (6.25)]

&= —Vh(y0),  dF=-Vh(yk)+prd*-1,  k=1,..,n—1, (6.28)

where ‘
Vh(y*)' Vh(y*)

pF = Vh(y k~1)IVh(yk—1)"

Setting zF = Syk, Vh(y*) = Sg*, d* = Sdk, and H = 52, we obtain from
Egs. (6.27)-(6.29) the equivalent method

| (6.29)

gh+l = gk 4 okdk, (6.30)

d0 = —Hg0  dk=—Hgh+tpkdi-1,  k=1.n—-1, (6.31)

gk’ Hgk
gk—1 Hgk-1
and o is obtained by line minimization.

The method described by the above equations is called the precondz-
tioned conjugate gradient method with scaling matriz H. To see that this

k — (6.32)
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method is a conjugate direction method, note that since V2h(y) = SQS,
the vectors d0,...,d»1 are (SQS)-conjugate. Since d* = Sd*, we obtain
that d9,...,d?~1 are Q-conjugate. Therefore, the scaled method termi-
nates with the minimum of f after at most n iterations, just as the ordinary
conjugate gradient method. The motivation for scaling is to improve the
rate of convergence within an n-iteration cycle (see the following analysis).
This is important for a nonquadratic problem, but it may be important
even for a quadratic problem if n is large and we want to obtain an ap-
proximate solution without waiting for the method to terminate.

Application to Nonquadratic Problems

The conjugate gradient method can be applied to the nonquadratic
problem » ~
: minimize f(x)
subject to z € Rn.

It takes the form
zk+l = gk + akdk, (6.33)

where o* is obtained by iine minimization
f(zk + akdk) = min f(z* + ad), - (6.34)
and d¥ is generated by
dk = —Vf(mk) + pkdk-1. - (6.35)
The mos"t' common way to compute 3* is [cf Eq. (6.26)]

V(@) (V (k) - Vi)

gk = — TV (6.36)

The direction d* generated by the formula df = —V f(z¥k) + Brdr—1 is a
direction of descent, since from Eq. (6.34) we obtain V f(z*)'dk—1 = 0, so
that

Vf(kyds =~V + RV (b yant = |V

For nonquadratic problems, the formula (6.36) is typically superior to al-
ternative formulas such as '

V f(zk)'V f(xk
o LTI o

[cf. Eq. 6.25)]. A heuristic explanation is that due to nonquadratic terms
in the objective function and possibly inaccurate line searches, conjugacy
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of the generated directions is progressively lost and a situation may arise
where the method “jams” in the sense that the generated direction d* is
nearly orthogonal to the gradient Vf(z*). When this occurs, we have
Vf(zk+1l) ~ V f(zk). In that case, the scalar k+1, generated by

Vf(@k+1) (Vf(ak+1) — Vf(a*))
Vf(zk)yV f(z*) ’

B+l =

will be nearly zero and the next direction dktl = —V f(zkt1) + Bh+1dk
will be close to —V f(x*k+1) thereby breaking the jam. By contrast, when
Eq. (6.37) is used, under the same circumstances the method typically
continues to jam. _

Regardless of the direction update formula used, one must deal with
the loss of conjugacy that results from nonquadratic terms in the cost
function. The conjugate gradient method is often employed in problems
where the number of variables n is large, and.it is not unusual for the
method to start generating nonsensical and inefficient directions of search
after a few iterations. For this reason it is important to operate the method
in cycles of conjugate direction steps, with the first step in the cycle being
a steepest descent step. Some possible restarting policies are: :

(a) Restart with a steepest descent step n iterations after the preceding
restart.

(b) Restart with a steepest descent step k iterations after the preceding
restart with & < n. This is recommended when the problem has
special structure so that the resulting method has good convergence
rate (see the following Prop. 1.6.2).

(c) Restart W1th a steepest descent step if either n 1terat10ns have taken
place since the preceding restart or if

V@@ > Vi (6.38)

where v is a fixed scalar with 0 < v < 1. The above relation is a. test
on loss of conjugacy, for if the generated directions were conjugate
then we would have V f(z*)'V f(zk—1) = 0.

Note that in all these restart procedures the steepest descent iteration
serves as a spacer step and guarantees global convergence (Prop. 1.2.6 in
Section 1.2). If the scaled version of the conjugate gradient method is
used, then a scaled steepest descent iteration is used to restart a cycle.
The scaling matrix may change at the beginning of a cycle but should
remain unchanged during the cycle.

An important practical issue relates to the line search accuracy that
is necessary for efficient computation. On one hand, an accurate line search
is needed to limit the loss of direction conjugacy and the attendant deterio-

ration of convergence rate. On the other hand, insisting on a very accurate
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line search can be computationally expensive. Some trial and error may
therefore be required in practice. For a discussion of implementations that
are tolerant of line search inaccuracies see [Per78] and [Sha78|. For a com-
putational study comparing different implementations, see [PaG86.

Conjugate Gradient-Like Methods for Linear Systems™

The conjugate gradient method can be used to solve the linear system
of equations

where A is an invertible n X m matrix and b is a given vector in ™. One
way to do this is to apply the conjugate gradient method to the posmve
definite quadratic optimization problem

minimize 1a’A’Az —VAx
subject to z € R,

which corresponds to the equivalent linear system A’Ax = A’b. This,
however, has several disadvantages, including the need to form the matrix
A’A, which may have a much less favorable sparsity structure than A.

An alternative possibility is to introduce the vector z defined by

z=Az

and to solve the system AA’z = b or equivalently the p051t1ve deﬁmte
quadratlc problem
minimize %—z’ Adiz — bz
- subject to z € R™,

whose cost function gradient is zero at z if and only if AA’z = b. By
streamlining the computations, it is possible to write the conjugate gradient
method for the preceding problem directly in terms of the vector z, and
without explicitly forming the product AA’. The resulting method is known
as Craig’s method; it is given by the following iteration where H is a positive
definite symmetric preconditioning matrix:

Kk pk

rk'r

k+1 — ok k gk k—
z xk 4 akdF, o T
where the vectors r* and d* are génerated by the recursions

rk+1/ pk+1

rk+l = pk 4 ok HAdF, dk+l = —A/Hrk+l 4 — gk
rk/pk

with the initial conditions

70 = H(Az0 —b), do = —A'Hro.
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The verification of these equations is left for the reader.

There are other conjugate gradient-like methods for the system Az =
b, which are not really equivalent to the conjugate gradient method for any
quadratic optimization problem. One possibility, due to [SaS86], known as
the Generalized Minimum Residual method (GMRES), is to start with a
vector 20 and obtain z* as the vector that minimizes |Az — b||? over the
linear manifold 20 + S*, where

Sk = (subspace spanned by the vectors r, Ar, A%r,..., Ak=1r),
and r is the initial residual
r= Az0 —b.

This successive subspace minimization process can be efficiently imple-
mented, but we will not get into the details further (see [SaS86]). It can be
shown that z* is a solution of the system Az = b if and only if A*r belongs
to the subspace S* (write the minimization of || Az —b||? over 0+ S* as the
equivalent minimization of ||£ — 7|2 over all £ in the subspace AS¥). Thus
if none of the vectors z0, . ..,z"~2 is a solution, the subspace S”~! is equal
to ®~, implying that zn—! is an unconstrained minimum of ||Az — bl|?,

and therefore solves the system Az = b. It follows that the method will

terminate after at most n iterations.

GMRES can be viewed as a conjugate gradient method only in the
special case where A is positive definite and symmetric. In that case it
can be shown that the method is equivalent to a preconditioned conjugate
gradient method applied to the quadratic cost || Az — b||2. This is based on
the expanding subspace minimization property of the conjugate gradient
‘method (see also Exercise 6.4). Note, however, that GMRES can be used
for any matrix A that is invertible.

Rate of Convergence of the Conjugate Gradient Method*

There are a number of convergence rate results for the conjugate
gradient method. Since the method terminates in at most n steps for a
quadratic cost, one would expect that when viewed in cycles of n steps,
its rate of convergence for a nonquadratic cost would be comparable to
the rate of Newton’s method. Indeed there are results which roughly state
that if the method is restarted every n iterations and {x*} converges to a
nonsingular local minimum z*, then the error ek = ||z"* — z*|| converges
superlinearly. (Note that here the error is considered at the end of cycles
of n iterations rather than at the end of each iteration.) Such results
are reassuring but not terribly interesting because the conjugate gradient
method is most useful in problems where n is large (see the discussion at
the end of Section 1.7), and for such problems, one hopes that practical
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convergence will occur after fewer than n iterations. Therefore, the single-
step rate of convergence of the method is more interesting than its rate of
convergence in terms of n-step cycles. The following analysis gives a result
of this type, based on an interpretation of the conjugate gradient method
as an optimal process. .
Assume that the cost is positive definite quadratic of the form

f(z) = 32'Qx.

(To simplify the following exposition, we have assumed that the linear term
bz is zero, but with minor modifications, the following analysis holds also
when b # 0.) Let g denote as usual the gradient V f(z?) and consider an
algorithm of the form

rl = 0 + fyOOgO’

72 = mb 4 41060 4 yllgl,

oh+l = g0 4 yk0g0 4 - . ykkgk (6.39)

where ~# are arbitrary scalars. Since ¢ = Qx¢, we see that for suitable
scalars cké, the above algorithm can be written for all k as

ZEHL = 20 1 cHOQEO + cF1Q220 + - - + Rk QEH1Z0 = (I + QP*(Q))a,

where P¥ is a polynomial of degree k. ‘ :

Among algorithms of the form (6.39), the conjugate gradient method
is optimal in the sense that for every k, it minimizes f(zk+!) over all sets
of coefficients Y9, ..., vkk. It follows from the equation above that in the
conjugate gradient method we have, for every k, / B

f@k+1) = min §29Q(I + QPHQ) % (640)
= ,

Let A1, ..., \n be the eigenvalues of @, and let e1,...,en be corresponding

orthogonal eigenvectors, normalized so that ||e;|| = 1. Sincee1, ..., en form

a basis, any vector z0 € R™ can be written as

n
20 =3 e
i=1

for some scalars &;. Since

Qx0 = Z&Qei = }: §iliei,
1=1 i=1 ‘
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we have, using the orthogonality of e1, ..., en and the fact ||le;| =1,
. n
f(.’L'O) = %.’L‘OIon = % (Z 67,61,> (Z 62)\ 61,) =3 Z/\zg
=1 =1

Applying the same process to Eq. (6.40), we obtain for any polynomial P¥
of degree k

n

Flak) < 330 (14 APE()) A
=1 )
and it follows that
F(zR+1) < max(1+ MP*(A))*f(a0), V¥ Pk, k. (6.41)

One can use this relationship for different choices of polynomials P* to
obtain a number of convergence rate results. We provide one such result,
which shows that the first k& conjugate gradient iterations in an n-iteration
cycle eliminate the effect of the k& largest eigenvalues of Q.

 terval [a,b] with a > O and the remaining k eigenvalues are greater
- than b. Then for every :co the vector zk+1l generated after k + 1 steps j
i of the conjugate gradlent method satlsﬁes ' : i

b+

fThls relatlon also holds for the precondltloned conjuga,te gradlent
~method (6 30) (6. 32) 1f the elgenvalues of Q are replaced by those of\ :
CHYQHEY. o , e

Prop031t10n 1. 6 2 Assume that Q has n-— k elgenvalues in an 111—1 e

v‘ f(xk+1)< (b \a>2f~(a:0).. (6.42)‘: |

Proof: Let A1,...,\x be the eigenvalues of @ that are greater than b and
consider the polynomial P* defined by '

1+)\Pk(/\)=(a+b)i1_“>\k (“;“b—x) (A1 — \)- ’--(Ak_—,\). (6.43)

Since 1 4+ A\P*()\;) = 0, we have, using Egs. (6.41), (6.43), and a simple

calculation,

b—

. 2
f(zF+1) < max (A= 3(a+b)) —

T ai<h (%(a + b))Z

) = ( ) F(a0).

Q.E.D.
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One consequence of the above proposition is that if the eigenvalues of
Q take only k distinct values then the conjugate gradient method will find
the minimum of the quadratic function f in at most k iterations. (Take
a = b.) Some other possibilities are explored in the problem section.

It is worth mentioning two more rate of convergence results regarding
the conjugate gradient method as applied to the positive definite quadratic

function
f(z) = 3(z —z*)Q(z — z*).

Let M and m be the largest and smallest eigenvalues of f, respectively.
Then, for any starting point 20 and any 1terat10n index k, it can be shown
(see [P0187]) that

1/2
l|zk —z*|| <2 (m> \/\/:_'_ ? |20 — z=||, (6.44)

M CEO — ¥k 2
fah) < Ml =]

2(2k +1)2
These relations again suggest a more favorable convergence rate than the
one of steepest descent; compare with the results of Section 1.3.

(6.45)

EXERCISES

6.1

Show that the Gram-Schmidt procedure has the progectlon property stated
in Fig. 1.6.2.

6.2 [Ber74]

Let Q have the form

k
Q =M+ Z 'Uiv:l)
i=1
where M is positive definite, and v; are some vectors in R™. Show that the
vector z®t1 generated after k + 1 steps of the conjugate gradient method

satisfies ; ) ,
£ < (32) 1)

where a and b are the smallest and largest eigenvalues of M, respectively.
Show also that the vector z*! generated by the preconditioned conjugate
gradient method with H = M ™! minimizes f. Hint: Use the interlocking
eigenvalues lemma [Prop. A.18(d) in Appendix A].
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6.3 (Hessian with Clustered Eigenvalues [Ber82a])

Assume that @ has all its eigenvalues concentré,ted at k intervals of the form
[2i — 6i, 2i + 63, 1=1,...,k,
where we assume that §; > 0,71=1,...,k, 0 <21 — 61, and
0<z1 <22 << 2k, 2z + 6; < zi41 — Oit1, 1=1,...,k—1.

Show that the vector z**! generated after k+1 steps of the conjugate gradient

method satisfies
- f(@") < Rf(2),

where
. 2 2 2
pomae ] Blatson?
1 22 2222
822k + 6k — 21)% (2k + 6k — 22)” -+ (26 + 6k — 26-1)°
T B
6.4

Consider the conjugate gradient method applied to the minimization of f () =
12'Qz—b'z, where Q is positive definite and symmetric. Show that the iterate

z" minimizes f over the linear manifold

z° + (subspace spanned by ¢°,Qg°, ..., Q" '¢°),

where ¢° = Vf(z°). , . P

6.5

Let f be positive definite quadratic. Consider the following method: The first
iteration is a steepest descent iteration with the stepsize determined by line
minimization. For k = 2,...,n, the kth iteration finds z* that minimizes f
over the two-dimensional subspace spanned by g* and zF — zF~1. Show that
this method is equivalent to the conjugate gradient method.

6.6

Suppose that d°,...,d" are Q-conjugate directions, let z, ...,z be the
vectors generated by the corresponding conjugate direction method, and as-
sume that z*t! # 2* for all 4 = 0,...,k. Show that a vector dl is Q-
conjugate to d°, .. .,d" if and only if d*** 5 0 and d**' is orthogonal to the
gradient differences g"*' — g%, 1 =0,..., k.
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6’7

Describe the behavior of the conjugate gradient method for a positive semidef-
inite quadratic function. Consider the case where there is no optimal solution
and the case where there are infinitely many optimal solutions.

6.8

Let f(z) = 1a’'Qx —b'z, where Q is positive definite and symmetric. Suppose
that z; and 2 minimize f over linear manifolds that are parallel to subspaces
S: and S2, respectively. Show that if z1 # z2, then z; — z2 is Q-conjugate .
to all vectors in the intersection of S and Sz. Use this property to construct
a conjugate direction method that does not evaluate gradients and uses only
line minimizations.

1.7 QUASI-NEWTON METHODS

Quasi-Newton methods are gradient methods of the form
wk+l = gk + okdk, (7.1)

dk = —DFV f(z*), - (7.2)

where DF is a positive definite matrix, which may be adjusted from one
iteration to the next so that the direction d* tends to approximate the
Newton direction. Some of these methods are quite popular becatse they
typically converge fast, while avoiding the second derivative calculations
associated with Newton’s method. Their main drawback relative to the
conjugate gradient method is that they require storage of the matrix Dk
as well as the matrix-vector multiplication overhead associated with the
calculation of the direction d* (see the subsequent discussion).

An important idea for many quasi-Newton methods is that two suc-
cessive iterates z¥, z*+1! together with the corresponding gradients V f(zk),
V f(zk+1), yield curvature information by means of the approximate rela-
tion ,

gk = V2 f(zk+1)pF, (7.3)

where ‘
pk = gk+l — gk, (7.4)

gk =V f(zh+1) — Vf(z*). (7.5)




