
TATA27 14th August 2017

Partial Differential Equations

Comment: All definitions and theorems have been given in lectures. The
remaining content is similar to given homework questions or is work done in
lectures.

1. Use the method of characteristics to find a smooth function u : R2 → R
which solves the equation

xux(x, t) + ut(x, t) + 8u(x, t) = 0 for all (x, t) ∈ R2

and satisfies the condition u(x, 0) = (x+2)/(1+x2) for all x ∈ R. [16 marks]

Solution:
We search for appropriate curves (X,T ) such that the solution on the curves

s 7→ z(s) := u(X(s), T (s)) behaves nicely. We have

z′(s) =
d

ds
u(X(s), T (s)) = X ′(s)∂1u(X(s), T (s)) + T ′(s)∂2u(X(s), T (s)),

so it seems reasonable to set X ′(s) = X(s) and T ′(s) = 1. Thus X(s) = cXe
s

and T (s) = s+ cT for constants cX , cT ∈ R. We can then rewrite the PDE as

z′(s) + 8z(s) = X(s)∂1u(X(s), T (s)) + ∂2u(X(s), T (s)) + 8u(X(s), T (s)) = 0.

This is an ODE with general solution z(s) = Ae−8s for arbitrary A ∈ R.
Now fix (x, t). If we choose cX = x and cT = t, then X(s) = xes and T (s) =

s + t, and when s = 0 the characteristic curve passes through (X(0), T (0)) =
(x, t) and when s = −t the curve passes through (X(−t), T (−t)) = (xe−t, 0).
When s = −t we can use the initial condition to find the value of z:

z(−t) = u(X(−t), T (−t)) = u(xe−t, 0) =
xe−t + 2

1 + (xe−t)2)
.

But on the other hand, using the form of the general solution to the character-
istic ODE, z(−t) = Ae8t, so A = e−8t(xe−t + 2)/(1 + (xe−t)2)). Equally, for
s = 0,

u(x, t) = z(0) = Ae−2×0 = A = e−8t xe−t + 2

1 + (xe−t)2)
=
xe−9t + 2e−8t

1 + x2e−2t
,

which gives us an expression for the solution u at (x, t).

2. Let Ω ⊂ Rn be a bounded open set and b ∈ Rn be a vector which satisfies
b · x + n > 0 for all x ∈ Ω.

(a) Prove that continuous functions u : Ω→ R which solve

∆u(x) + b · ∇u(x) = 0

for x ∈ Ω satisfy the weak maximum principle:

max
Ω

u = max
∂Ω

u.

[Hint: The function x 7→ ε|x|2 for ε > 0 may be useful.] [10 marks]
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(b) Suppose a continuous function g : ∂Ω → R is given. Prove that there
cannot exist more than one continuous function u : Ω → R which solves
the boundary value problem{

∆u+ b · ∇u = 0 in Ω;
u = g on ∂Ω.

[6 marks]

Solution:

(a) For ε > 0 set v(x) = u(x)+ε|x|2. As the sum of two continuous functions,
v is continuous on Ω and so must attain a maximum somewhere in the
compact set Ω = Ω ∪ ∂Ω. We will now rule out the possibility that v
attains its maximum in Ω. Suppose to the contrary that v attains this
maximum x ∈ Ω. Then we know x is a critical point, so ∇v(x) = 0 and,
by the second derivative test, ∆v(x) =

∑n
j=1 ∂

2
j v(x) ≤ 0. Therefore

∆v(x) + b · ∇v(x) = ∆v(x) + 0 ≤ 0 + 0 = 0.

But on the other hand, we can compute

∆v(x) +b ·∇v(x) = ∆u(x) +b ·∇u(x) + 2εn+ 2εb ·x ≥ 2ε(b ·x+n) > 0,

via the differential equality u satisfies and the condition on b. These two
inequalities contradict each other, so v cannot attain its maximum in Ω.

Therefore v must attain its maximum at a point y ∈ ∂Ω. Thus, for any
x ∈ Ω,

u(x) ≤ v(x) ≤ v(y) = u(y) + ε|y|2 ≤ u(y) + εC2 ≤ max
∂Ω

u+ εC2,

where C is the constant obtained from the fact Ω is bounded. Since the
above inequality holds for any ε > 0, we have u(x) ≤ max∂Ω u for any
x ∈ Ω, so

max
Ω

u ≤ max
∂Ω

u

Because ∂Ω ⊆ Ω we have that max∂Ω u ≤ maxΩ u and combining these
two inequalities we get that maxΩ u = max∂Ω u and the maximum of u is
attained on ∂Ω.

(b) Suppose we had two solutions u1 and u2. Then u := u2 − u1 satisfies the
same equation, but has the boundary value 0. Thus

max
Ω

u = max
∂Ω

u = max
∂Ω

0 = 0.

Thus u2 − u1 = u ≤ 0 and so u2 ≤ u1. Swapping the roles of u1 and
u2 we find that u1 ≤ u2. Hence u1 = u2 and there can be at most one
continuous solution.
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3.
Consider a solution u to the damped string equation

∂ttu(x, t)− c2∂xxu(x, t) + r∂tu(x, t) = 0 (x ∈ R, t > 0)

for c2 = T/ρ and given constants T, ρ, r > 0. Define the energy of a solution u
at time t by the formula

E[u](t) =
1

2

∫ ∞
−∞

ρ(∂tu(x, t))2 + T (∂xu(x, t))2dx.

(a) Assuming u and its derivatives are sufficiently smooth and tend to zero as
x→ ±∞, show that the energy E[u] is a non-increasing function.

[8 marks]

(b) Prove that there cannot exist more than one solution u to the damped
string equation which satisfies the same assumptions you made in (a)
together with the initial conditions u(x, 0) = f(x) and ∂tu(x, 0) = g(x),
for given smooth functions f and g. [8 marks]

Solution:

(a) We have

d

dt

(
1

2

∫ ∞
−∞

ρ(∂tu(x, t))2dx

)
=

1

2

∫ ∞
−∞

ρ∂tu(x, t)∂ttu(x, t)dx

=
1

2

∫ ∞
−∞

∂tu(x, t)(T∂xxu(x, t)− rρ∂tu(x, t))dx

= −1

2

∫ ∞
−∞

∂txu(x, t)∂xu(x, t)dx− 1

2

∫ ∞
−∞

rρ(∂tu(x, t))2dx

= − d

dt

(
1

2

∫ ∞
−∞

T (∂xu(x, t))2dx

)
− 1

2

∫ ∞
−∞

rρ(∂tu(x, t))2dx.

Therefore

E[u]′(t) =
d

dt

(
1

2

∫ ∞
−∞

ρ(∂tu(x, t))2 + T (∂xu(x, t))2dx

)
= −1

2

∫ ∞
−∞

rρ(∂tu(x, t))2dx ≤ 0,

hence the energy E[u] is a non-increasing function.

(b) Suppose there exists two such solutions, u1 and u2. Then w = u2 − u2

also solves the damped string equation with initial conditions w(x, 0) =
u2(x, 0)−u1(x, 0) = f(x)−f(x) = 0 and ∂tw(x, 0) = ∂tu(x, 0)−∂tu(x, 0) =
g(x)− g(x) = 0. Thus

E[w](0) =
1

2

∫ ∞
−∞

ρ(0)2 + T (0)2dx = 0.

Moreover, E[w](t) is a non-negative integral which is non-increasing in
time t, so we must have E[w](t) = 0 for all t ≥ 0. This together with the
smoothness of w implies, in particular, that ∂xw(x, t) = 0 for all x and
t, and so we know that x 7→ w(x, t) must be a constant function for each
fixed t. But since w(x, t)→ 0 as x→ ±∞, we conclude w(x, t) = 0 for all
x and t. Thus u1 = u2 and there cannot exist two distinct solutions.
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4. Let Ω be an open set with C1 boundary and h : ∂Ω → R a C1 function.
Define the energy of each continuously differentiable v : Ω→ R to be

Eh[v] =
1

2

∫
Ω

|∇v(x)|2dx−
∫
∂Ω

h(x)v(x)dσ(x).

Show that a function u ∈ C2(Ω) which satisfies the boundary value problem{
∆u = 0 in Ω, and
∂u
∂n := n · ∇u = h on ∂Ω

is such that
Eh[u] ≤ Eh[v]

for all v ∈ C1(Ω). Here n is the outward unit normal to ∂Ω. [16 marks]

Solution: Suppose u ∈ C2(Ω) satisfies the boundary value problem{
∆u = 0 in Ω, and
∂u
∂n := n · ∇u = h on ∂Ω

For v ∈ C1(Ω) set w = v − u. Then, using Green’s first identity,

Eh[v] =
1

2

∫
Ω

|∇v(x)|2dx−
∫
∂Ω

h(x)v(x)dσ(x)

=
1

2

∫
Ω

|∇w(x) +∇u(x)|2dx−
∫
∂Ω

h(x)(w(x) + u(x))dσ(x)

=
1

2

∫
Ω

|∇w(x)|2dx + Eh[u] +

∫
Ω

∇w(x) · ∇u(x)dx−
∫
∂Ω

h(x)w(x)dσ(x)

=
1

2

∫
Ω

|∇w(x)|2dx + Eh[u]−
∫

Ω

w(x)∆u(x)dx +

∫
∂Ω

(
∂u

∂n
(x)− h(x)

)
w(x)dσ(x)

=
1

2

∫
Ω

|∇w(x)|2dx + Eh[u]

≥ Eh[u].

5. Suppose that a solution u to the Schrödinger equation

−i∂tu(x, t) = ∂xxu(x, t)− x2u(x, t)

is of the form u(x, t) = T (t)v(x).

(a) Show that v satisfies the equation

v′′(x) + (λ− x2)v(x) = 0, (♥)

for some constant λ. [6 marks]
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(b) We saw in lectures that, by performing the substitution v(x) = w(x)ex
2/2,

it is possible to show (♥) is equivalent to

w′′(x)− 2xw′(x) + (λ− 1)w(x) = 0. (♦)

Show that if w is a power series, that is w(x) =
∑∞

k=0 akx
k, then we must

have
(k + 2)(k + 1)ak+2 = (2k + 1− λ)ak for each k.

[6 marks]

(c) Find a polynomial solution w to (♦) when λ = 9. [4 marks]

Solution:

(a) Substituting u(x, t) = T (t)v(x) in Schrödinger’s equation and dividing by
T (t)v(x) gives

−iT
′(t)

T (t)
=
v′′(x)− x2

v(x)

Since the left-hand side only depends on t and the right-hand side only
depends on x, both must be equal to −λ, say, for some constant λ. There-
fore

v′′(x) + (λ− x2)v(x) = 0,

for some constant λ.

(b) Substituting this power series in (♦) we get

∞∑
k=0

k(k − 1)akx
k−2 −

∞∑
k=0

2kakx
k + (λ− 1)

∞∑
k=0

akx
k = 0.

Equating powers of x we see a power series solution must satisfy

(k + 2)(k + 1)ak+2 = (2k + 1− λ)ak for each k

and a0 and a1 can be chosen arbitrarily.

(c) A calculation using the recursion relation from (b) shows that up to a
multiplicative constant w(x) = 16x4 − 48x2 + 12.
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