
TATA27 25th October 2017

Partial Differential Equations

Comment: All definitions and theorems have been given in lectures. The
remaining content is similar to given homework questions or is work done in
lectures.

1. One day Baby Elwin and his brother Arthur go on a trip to the science
museum Fenomenmagasinet with their father. They play with a model the Göta
Canal and Arthur suggests the following first order PDE as a model for shallow
water waves along a thin canal:

ut(x, t) + u(x, t)ux(x, t) = 0 for all x ∈ R and t > 0.

Here u(x, t) is the height of the water at time t and a distance x along the canal.
Although the equation is nonlinear the method of characteristics can still be

used to construct solutions.

(a) Show that this method leads to the system of ODEs X ′(s) = z(s)
T ′(s) = 1
z′(s) = 0

where s 7→ (X(s), T (s)) is a characteristic curve in the (x, t)-plane and
z(s) = u(X(s), T (s)). [4 marks]

(b) Motivate why the characteristic curves must be straight lines. [6 marks]

(c) Sketch some typical characteristic curves s 7→ (X(s), T (s)) when the so-
lution u satisfies the initial condition

u(x, 0) =

 0 if x < 0;
x if x ∈ [0, 1];
1 if x > 1.

[6 marks]

Solution:

(a) Differentiating z(s) = u(X(s), T (s)) we obtain

z′(s) = T ′(s)ut(X(s), T (s)) +X ′(s)ux(X(s), T (s)).

Comparing the right-hand side with the PDE leads us to choose T ′(s) = 1
and X ′(s) = u(X(s), T (s)) = z(s). With this choice, if u solves the PDE,
then

z′(s) = ut(X(s), T (s)) + u(X(s), T (s))ux(X(s), T (s)) = 0.

(b) The equation z′(s) = 0 implies z is a constant function, say z(s) = c for
some c ∈ R. Thus X ′(s) = c so X(s) = cs + d for some constant d.
Solving T ′(s) = 1 gives T (s) = s+ f for some constant f .

In conclusion s 7→ (X(s), T (s)) = (cs+ d, s+ f) is a parametrisation of a
line and thus the characteristic curves are indeed straight lines.
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(c) Fix x ∈ R and consider the characteristic curve s 7→ (X(s), T (s)) which
passes though (x, 0) when s = 0 (so X(0) = x and T (0) = 0). By compar-
ison with what we found in part (a), this means the constant d is equal
to x and the constant f is equal to 0. Thus the characteristic curve is
s 7→ (cs+ x, s) and it only remains to compute the constant c.

If x < 0 then c = z(0) = u(X(0), T (0)) = u(x, 0) = 0, so c = 0 and the
characteristic curve has the form s 7→ (x, s). This is a vertical straight
line.

If 0 ≤ x ≤ 1 then c = z(0) = u(X(0), T (0)) = u(x, 0) = x, so c = x and
the characteristic curve has the form s 7→ (xs + x, s). This is a straight
line in the direction (x, 1).

If x > 1 then c = z(0) = u(X(0), T (0)) = u(x, 0) = 1, so c = 1 and the
characteristic curve has the form s 7→ (s+ x, s). This is a straight line in
the direction (1, 1).

2. It’s breakfast time for Baby Elwin and his father is warming up his porridge
in a saucepan on the hob. Denote the interior of the volume occupied by the
porridge by Ω and its boundary by ∂Ω. Neglecting the effects of convection and
stirring, the temperature of the porridge u is modelled by the heat equation

∂tu(x, t)−∆u(x, t) = 0

for x ∈ Ω and 0 < t ≤ T . The initial temperature of the porridge u(x, 0)
(x ∈ Ω) is known and Elwin’s dad can control the boundary values u(x, t) for
x ∈ ∂Ω and t > 0.

(a) Assuming that Ω is a bounded domain and the temperature u is a con-
tinuous function in Ω × [0, T ], prove that the highest temperature of the
porridge occurs at a point (x, t) ∈ Ω × [0, T ] for which either t = 0 or
x ∈ ∂Ω. (That is, prove the weak maximum principle for the heat equa-
tion.) [8 marks]

If Baby Elwin’s dad instead uses the microwave to heat up the porridge the
model is modified to the inhomogeneous heat equation

∂tu(x, t)−∆u(x, t) = F (x, t) (x ∈ Ω and 0 < t ≤ T )

where F (x, t) is controlled by Elwin’s dad, but the boundary values of u are
now fixed at room temperature.

(b) Do solutions u to the inhomogeneous equation satisfy the same maximum
principle from (a) for all possible choices of F? Motivate your answer.

[5 marks]

(c) On the basis of the phenomena discussed above, which method of heating
porridge would you recommend for fathers looking after their children.
Briefly motivate your answer. [3 marks]

Solution:
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(a) For ε > 0 set v(x, t) = u(x, t) + ε|x|2. As the sum of two continuous
functions, v is continuous on Ω × [0, T ] and so must attain a maximum
somewhere in the compact set Ω × [0, T ]. We will now rule out the pos-
sibility that v attains its maximum in Ω × (0, T ]. Suppose to the con-
trary that v attains this maximum at some point (x, t) ∈ Ω × (0, T ].
Then we must have ∂tv(x, t) ≥ 0 and, by the second derivative test,
∆v(x) =

∑n
j=1 ∂

2
j v(x) ≤ 0. Therefore

∂tv(x, t)−∆v(x, t) ≥ 0− 0 = 0.

But on the other hand, we can compute

∂tv(x, t)−∆v(x, t) = ∂tu(x, t)−∆u(x, t)− 2εn = 0− 2εn < 0,

via the differential equation u satisfies. These two inequalities contradict
each other, so v cannot attain its maximum in Ω× (0, T ].

Therefore v must attain its maximum at a point (y, s) such that either
y ∈ ∂Ω or s = 0. Thus, for any (x, t) ∈ Ω× [0, T ],

u(x, t) ≤ v(x, t) ≤ v(y, s) = u(y, s)+ε|y|2 ≤ u(y, s)+εC2 ≤ max
(∂Ω×(0,T ])∪(Ω×{0})

u+εC2,

where C is the constant obtained from the fact Ω is bounded. Since the
above inequality holds for any ε > 0, we have u(x, t) ≤ max(∂Ω×(0,T ])∪(Ω×{0}) u

for any (x, t) ∈ Ω× [0, T ], so

max
Ω×[0,T ]

u ≤ max
(∂Ω×(0,T ])∪(Ω×{0})

u

Because (∂Ω × (0, T ]) ∪ (Ω × {0}) ⊆ Ω × [0, T ] the reverse inequality is
immediate.

(b) No. To see this we can choose our favourite function which attains a
maximum in Ω × (0, T ] and take this as our function u. With this u in
hand we can compute ∂tu−∆u to find the corresponding inhomogeneity
F which makes u a solution to the PDE.

(c) The hob is better. As a consequence of the Weak Maximum Principle, the
porridge can never be hotter than its initial temperature and the boundary
temperature and it is thus relatively easy to ensure Baby Elwin does not
burn himself. On the other hand, there is no such maximum principle for
the inhomogeneous equation, so the porridge heated in the microwave may
have ’hot spots’ in the middle, which, being in the middle of the porridge,
would be hard for his father to detect before feeding the porridge to Baby
Elwin.

3.
Baby Elwin has a toy guitar which both he and his brother Arthur enjoy

playing with. One day, while their father is looking after them, Arthur suggests
the displacement of the string at a point x along the string’s length ` at time t
is modelled by a function u(x, t) which satisfies the damped string equation

∂ttu(x, t)− c2∂xxu(x, t) + r∂tu(x, t) = 0 (x ∈ (0, `), t > 0)
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for given constants c, r > 0 and the boundary conditions

u(0, t) = u(`, t) = 0

for all t > 0.

(a) Show that if we look for a solution of the form u(x, t) = X(x)T (t) (that
is, we separate variables) the functions X and T must satisfy

c2X ′′(x) + λX(x) = 0

and
T ′′(t) + rT (t) + λT (t) = 0

respectively, for some constant λ. [4 marks]

(b) Show that the boundary conditions imply λ must be taken to be positive if
we wish to find a non-zero solution via this method. Calculate the precise
values λ can take on. [4 marks]

(c) Show that the function T obtained via this method decays exponentially
in t provided the damping coefficient r satisfies r2/4 > λ. [4 marks]

(d) Without doing any further precise calculations, describe how the solution
will decay if r2/4 < λ. [4 marks]

Solution:

(a) Substituting the ansatz u(x, t) = X(x)T (t) into the equation, we obtain

X(x)T ′′(t)− c2X ′′(x)T (t) + rX(x)T ′(t) = 0

Dividing by X(x)T (t) we obtain

T ′′(t)

T (t)
− c2X ′′(x)

X(x)
+
rT ′(t)

T (t)
= 0

rewriting this as
T ′′(t)

T (t)
+
rT ′(t)

T (t)
=
c2X ′′(x)

X(x)

we can see that the left-hand side cannot depend on x and the right-hand
side cannot depend on t. Since the two sides are equal, we deduce that
they are both constant. Let’s denote this constant by −λ. Thus

T ′′(t)

T (t)
+
rT ′(t)

T (t)
= −λ =

c2X ′′(x)

X(x)
.

The two equations easily follow from here.

(b) The boundary conditions say that X(0)T (t) = X(`)T (t) = 0 for all t > 0.
Since T 6≡ 0 we must have X(0) = X(`) = 0.

We now solve the ODE involving X. The ODEs characteristic polynomial
is p(z) = c2z2 + λ. From this we can see that if λ ≤ 0 the solution X
will be either an exponential or a linear function. Such functions cannot
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satisfy X(0) = X(`) = 0 without being identically zero. Thus we require
λ > 0.

For λ > 0 the characteristic polynomial has the roots i
√
λ/c and −i

√
λ/c,

which leads to the general solution

X(s) = A cos(
√
λs/c) +B sin(

√
λs/c)

for constants A and B. To satisfy X(0) = 0 we require A = 0 and to
satisfy X(`) = 0 we can only take λ equal to λk = π2k2c2 where k is a
positive integer.

(c) We now wish to solve

T ′′(t) + rT (t) + λkT (t) = 0

with λk = π2k2c2 and r2/4 > λk. The characteristic polynomial for this
ODE is

q(z) = z2 + rz + λk =
(
z +

r

2

)2

+ λk −
r2

4

Thus, since r2/4− λk > 0, the roots of q are

z± = −r
2
±
√
r2

4
− λk.

Clearly z− is negative, but, since λk is positive,
√

r2

4 − λk <
r
2 , so even

z+ is negative. This means that T will decay exponentially.

(d) If r2/4 < λ the polynomial q’s discriminant becomes negative and we
obtain complex-valued roots. However the real part is always −r/2 < 0,
so T both decays exponentially and oscillates.

4.
Baby Elwin and his brother, Arthur, are playing on an old trampoline. The

frame is circular in shape, but, due to the unevenness of the ground beneath it,
it has bent so that its height varies around the edge of the trampoline. Arthur
produces a simple model for the stationary taut trampoline before they climb
on it: The height of the trampoline above a point x on the ground is given by
the solution u(x) of the boundary value problem{

∆u = 0 in Da, and
u = h on ∂Da,

where Da = {x ∈ R2 | |x| < a} is the disc of radius a above which the trampoline
lies.

Arthur even manages to derive the Poisson formula for the solution u:

u(x) =
(a2 − |x|2)

2πa

∫
|y|=a

h(y)

|x− y|2
dσ(y).

(a) For a harmonic function u : Ω → R, where Ω ⊂ R2 is an open set, state
the mean value property u satisfies. [4 marks]
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(b) Use the Poisson formula above to prove the mean value property you
stated in part (a). [6 marks]

(c) Suppose u : Da → R is harmonic in Da and such that u(a, θ) = sin(4θ)+2
on ∂Da (written in polar coordinates). Without calculating the solution
explicitly, compute the maximum value of u in Ba and the value of u at
the origin. [6 marks]

Solution:

(a) Theorem. Let Ω ⊂ R2 be an open set and u : Ω → R harmonic. Then
for any disc Da(x) = {y ∈ R2 | |y−x| < a} such that Da(x) ⊂ Ω we have
that

u(x) =
1

2πa

∫
∂Da(x)

u(y)dσ(y).

That is, the value of u at the centre of a disc is equal to the mean value
of u over the boundary of the disc.

(b) We apply the Poisson formula to the function u(·+ x), which is harmonic
in Da and has boundary values h(y) = u(y + x). Evaluating this formula
at the centre of the disc gives

u(0+x) =
a2

2πa

∫
|y|=a

h(y)

|0− y|2
dσ(y) =

a2

2πa

∫
|y|=a

u(y + x)

a2
dσ(y) =

1

2πa

∫
|y|=a

u(y+x)dσ(y).

This is exactly the mean value property.

(c) The maximum must be attained at the boundary, and the maximum
boundary value is 3, so this is also the maximum value of u in Ba. The
value u(0) is the mean of the values u(a, θ) over θ ∈ (0, 2π), which is 2.

5. Baby Elwin has trouble understanding derivatives, so prefers to use finite
differences instead, saying that he heard somewhere they are more or less the
same. The aim of this question is to convince his brother, Arthur, that, in some
sense, Baby Elwin is justified in conflating the two notions.

Fix δx > 0. For a function u : R → R which is three times continuously
differentiable, define xj = jδx and set uj = u(xj).

(a) Define the forward, backward and centred difference of u at xj .
[6 marks]

(b) Use Taylor’s theorem to estimate the error between the differences you
defined above and the first derivative u′(xj). State clearly any assumptions
you make on the function u. [10 marks]

Solution:

(a)

The backward difference:
uj − uj−1

δx
.

The forward difference:
uj+1 − uj

δx
.

The centred difference:
uj+1 − uj−1

2δx
.

6



(b) If u ∈ C3(R) then

u(x+ h) = u(x) + u′(x)h+
u′′(x)

2
h2 +O(h3). (1)

Taking x = xj and h = −δx we see that

u′(xj) =
uj − uj−1

δx
+O(δx),

taking x = xj and h = δx we see

u′(xj) =
uj+1 − uj

δx
+O(δx),

and finally taking the difference of (1) with first x = xj and h = −δx, and
then x = xj and h = δx, we obtain

u′(xj) =
uj+1 − uj−1

2δx
+O((δx)2).
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