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Rules, short version.

• Aids are permitted, but no collaboration with other persons is allowed.

Rules, long version.

• This is an individual examination, so you are required to answer the ques-
tions on your own.

• You may ask the teacher for clarifications (email hans.lundmark@liu.se).
Except for that, it is not allowed to communicate in any way with other
persons regarding the solutions of the problems during the exam. So you
may not get help from others, and it is also not allowed to give help to
other students who are taking this exam, for example by letting them look
at your solutions.

• You can use any aids (books, computers, etc.), but you are expected to
present your solutions with as much detail as if calculating by hand (like on
a usual exam without aids). It is fine to consult old information from online
forums, but you may not post any new questions during the exam, nor
make use of questions or answers posted by others during the exam. Cite
your sources in an appropriate way, especially if you are using “outside”
sources (i.e., not the course materials). Avoid quoting text verbatim; it is
much preferred if you use your own formulations.

• The solutions should be handwritten (unless you have a special permit
from LiU’s disability coordinator to write on a computer). Writing by hand
on a tablet is fine, but please use dark text on a white background.

• You may write your answers in English or in Swedish (or some mixture
thereof).

You will find the problems on the next page.

Each problem will be marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!



TATA27 2021-05-28, 8.00–12.00

1. Let α> 0 and β> 0. Determine the function u(x, t) which is continuous
on [0,π]× [0,∞) and solves the initial-boundary value problem

ut +αu =βuxx , 0 < x <π, t > 0,

ux(0, t ) = ux(π, t ) = 0, t > 0,

u(x,0) = 2sin2 x, 0 < x <π.

2. Choose any non-constant continuous function ϕ(x) that you like. Then,
with your choice ofϕ, let u(x, t ) be the weak solution (given by d’Alembert’s
formula) to the wave equation ut t = uxx with initial conditions

u(x,0) =ϕ(x), x ∈ R,

ut (x,0) =
{

1, −1 ≤ x ≤ 1,

0, otherwise.

Draw the graphs of u(x,0), u(x,1) and u(x,2). In other words, draw the
shape of the wave at times t = 0, t = 1 and t = 2.

3. Consider the heat equation ut = uxx on the interval 0 < x < 1, with bound-
ary conditions u(0, t) = u(1, t) = 0 for t > 0 and initial data u(x,0) =
27x(1− x)2. What numerical approximation of u( 2

3 ,1) would you obtain
from the Crank–Nicolson finite difference scheme with h = 1

3 and τ= 1?
(Here h = δx and τ = δt are the distances between grid points.) Is this
value a reasonable approximation?

4. Use the method of characteristics to solve the PDE (1+x2)ux +x y uy = u
with the condition u(0, y) = y2, y ∈ R. What would happen if the condition
instead were u(x,0) = x2, x ∈ R?

5. LetΩ⊂ Rn be open and bounded, and suppose u ∈C (Ω)∩C 2(Ω) satisfies

∆u ≥ u3 onΩ, u ≤ 0 on ∂Ω.

Show that u ≤ 0 onΩ.

Hint: Assume that the set V = {x ∈Ω : u(x) > 0} is nonempty, and apply the weak
maximum principle for subharmonic functions on V to derive a contradiction.

6. Determine the function u(x, y) which is harmonic in the unit disk and
takes the boundary values

u(x, y) = x4 + y4, when x2 + y2 = 1.

(For partial credit, if you are unable to find the whole function u(x, y), at
least determine the value u(0,0) at the center of the disk.)

Hint: You can make use of Poisson’s formula in its “unsummed” form, i.e., the
Fourier-type series obtained by separation of variables in polar coordinates. But
give your answer in the Cartesian coordinates (x, y).



Solutions for TATA27 2021-05-28

1. One can seek separated solutions u(x, t ) = X (x)T (t ) directly, which leads
to Xn(x) = cos(nx) and Tn(t) = e−(α+βn2)t with integers n ≥ 0, but it is
perhaps faster to let v(x, t) = eαt u(x, t) to obtain the heat equation vt =
βvxx with boundary conditions vx (0, t ) = vx (π, t ) = 0 and initial condition
v(x,0) = e0 ·2sin2 x = 1−cos(2x), which immediately leads to the solution
v(x, t ) = 1−cos(2x)e−4βt .

Answer. u(x, t ) = e−at
(
1−cos(2x)e−4βt

)
.

2. According to d’Alembert, the solution is

u(x, t ) = ϕ(x − t )+ϕ(x + t )

2
+ 1

2

∫ x+t

x−t
ut (y,0)d y,

where the integral – with our specific initial condition for ut – equals the
length of the intersection between the intervals [x − t , x + t ] and [−1,1].
The appearance of the graphs will course depend on your choice of the
function ϕ. If you want to make your life simple, a good choice is a rather
narrow “blob” with compact support, located a fair distance away from
the interval [−1,1], so that the two contributions 1

2ϕ(x − t ) and 1
2ϕ(x + t )

from u(x,0) will have separated completely already by the time t = 1, and
the contributions from u(x,0) and ut (x,0) don’t interfere with each other
until after t = 2. For example like this (which is of course also the shape of
the wave at time t = 0):

x−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3

1ϕ(x) = u(x,0)

The wave at time t = 1 looks as follows, since the interval [x−1, x+1] starts
overlapping [−1,1] when x = −2, with the length of the intersection in-
creasing at a constant rate as x increases from −2 to 0, and then decreasing
in a symmetric way for 0 < x < 2:

x−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3

1
1/2

u(x,1)

And at time t = 2 it’s like this, with similar reasoning about the interval
[x −2, x +2]:

x−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3

1
1/2

u(x,2)



3. If A and B are the apprimations to u( 1
3 ,1) and u( 2

3 ,1), respectively, then
the first step of the Crank–Nicolson scheme with initial data u( 1

3 ,0) =
27 · 1

3 · ( 2
3 )2 = 4 and u( 2

3 ,0) = 27 · 2
3 · ( 1

3 )2 = 2 is

A−4

1
= 1

2

(
0−2 ·4+2

(1/3)2
+ 0−2A+B

(1/3)2

)
,

B −2

1
= 1

2

(
4−2 ·2+0

(1/3)2
+ A−2B +0

(1/3)2

)
,

which simplifies to (
20 −9
−9 20

)(
A
B

)
=

(−46
4

)
,

with the solution(
A
B

)
=

(
20 −9
−9 20

)−1 (−46
4

)
= 1

202 −92

(
20 9
9 20

)(−46
4

)
= 1

319

(−884
−334

)
.

Answer. The approximate value obtained for u( 2
3 ,1) is −334/319, which is

completely unreasonable. The true solution u(x, t ) can never be negative,
since it attains its minimum (and maximum) on the boundary of the
domain [−1,1]× [0,∞), where its prescribed values are nonnegative. (The
problem here is of course that the time step τ is too large.)

4. The ODEs for the characteristic curve starting at the point (x, y) = (0, s) are
ẋ = 1+x2 and ẏ = x y with x(0) = 0 and y(0) = s. Thus x(t ) = tan t (for |t | <
π/2), and then either y(t) ≡ 0 or d

d t ln
∣∣y(t )

∣∣ = x(t) = tan t = − d
d t ln |cos t |,

the latter case giving ln
∣∣y(t )

∣∣=− ln |cos t |+C and hence y(t ) =±eC /cos t .
With the initial condition y(0) = s, the result is y(t ) = s/cos t (both for s = 0
and for s 6= 0).

Inverting the equations (x, y) = (tan t , s/cos t ) (where |t | <π/2) gives (t , s) =
(arctan x, y/

p
1+x2), so the characteristic curve through any particular

point (x, y) passes through the point (0, y/
p

1+x2) on the y-axis (where
the values for u are given).

The evolution of z(t) = u(x(t), y(t)) such a characteristic curve is ż = z,
with z(0) = s2, leading to z(t ) = s2e t .

Answer. With u(0, y) = y2, the solution is

u(x, y) = y2

1+x2
earctan x .

With u(x,0) = x2, there is no solution, since the x-axis is a characteristic
curve. More precisely, the given data contradict the relation that must hold
along that curve according to the PDE, namely (1+x2)ux(x,0) = u(x,0).



5. As suggested in the hint, assume that V is nonempty. For x ∈V , we have
u(x) > 0 (by the definition of V ), and hence ∆u(x) ≥ u(x)3 > 0, so that u is
subharmonic on V (which is a bounded set, of course, since it’s a subset
of the bounded setΩ, and open, since u is continuous). According to the
weak maximum principle for subharmonic functions, the maximum of u
on V is attained on the boundary:

max
x∈V

u(x) = max
y∈∂V

u(y).

There are two possibilities if y ∈ ∂V : either y ∈ ∂Ω, in which case u(y) ≤ 0
by assumption, or else y ∈ Ω, in which case u(y) = 0 since y lies on the
boundary separating the regions in Ω where u > 0 and u ≤ 0. So the
right-hand side in the equality above is non-positive:

max
y∈∂V

u(y) ≤ 0.

But on the other hand, the left-hand side is obviously positive (by the
definition of V ):

max
x∈V

u(x) > 0.

This contradiction implies that V must be empty, as was to be shown.

6. The given boundary values on the unit circle can be written as

u(cosϕ, sinϕ) = cos4ϕ+ sin4ϕ= (cos2ϕ+ sin2ϕ)2 −2cos2ϕ sin2ϕ

= 1− 1
2 sin2 2ϕ= 1− 1

2 · 1
2 (1−cos4ϕ) = 3

4 + 1
4 cos4ϕ,

so the average of u over the boundary is 3/4, and according to the mean
value property of harmonic functions, that’s also the value at the center:
u(0,0) = 3/4.

From the separation of variables leading to Poisson’s formula for the disk,
we know that the radial factor which goes together with the angular factor
cosnϕ is r n , so we immediately get the formula for u in polar coordinates:

u(r cosϕ,r sinϕ) = 3
4 r 0 + 1

4 r 4 cos4ϕ.

To convert this to Cartesian coordinates, we can use parts of the above
calculation in reverse:

u = 3
4 + r 4 · 1

4 cos4ϕ

= 3
4 + r 4(1−2cos2ϕ sin2ϕ− 3

4

)
= 3

4 + 1
4 (r 2)2 −2(r cosϕ)2 (r sinϕ)2

= 3
4 + 1

4 (x2 + y2)2 −2x2 y2

= 3
4 + 1

4 (x4 −6x2 y2 + y4).

Answer. u(x, y) = 1
4 (3+ x4 −6x2 y2 + y4). Or, equivalently, u(x, y) = x4 +

y4 + 3
4

(
1− (x2 + y2)2

)
, making it more obvious that u really satisfies the

given boundary condition.


