Linköpings universitet
Matematiska institutionen
Hans Lundmark

TATA27 Partiella differentialekvationer

Tentamen 2021-08-16 kl. 14.00-18.00

No aids allowed. You may write your answers in English or in Swedish.
Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. Solve the following initial-boundary value problem for the heat equation:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad 0<x<\pi / 2, \quad t>0, \\
& u(0, t)=1 \quad \text { and } \quad u_{x}(\pi / 2, t)=0, \quad t>0, \\
& u(x, 0)=1-\sin ^{3} x, \quad 0<x<\pi / 2 .
\end{aligned}
$$

2. Solve the wave equation $u_{t t}=u_{x x}$ on the half-line $x>0$ with boundary condition $u(0, t)=0$ for $t>0$ and initial conditions $u(x, 0)=x e^{-x}$ and $u_{t}(x, 0)=0$ for $x>0$.
3. Use the method of characteristics to find $u(x, y)$ such that $x u_{x}+u_{y}=u$ and $u(x, 0)=h(x)$, where $h: \mathbf{R} \rightarrow \mathbf{R}$ is a given (differentiable) function.
4. Prove the weak maximum principle for harmonic functions: If Ω is a bounded open set in \mathbf{R}^{n}, and if u is continuous on $\bar{\Omega}$ and harmonic on Ω, then the maximum of u on $\bar{\Omega}$ is attained on the boundary $\partial \Omega$.
(Hint: Recall that it's useful to consider the function $v(\mathbf{x})=u(\mathbf{x})+\varepsilon|\mathbf{x}|^{2}$.)
5. There is also a weak maximum principle for the heat equation, say $u_{t}=u_{x x}$ on the domain $(x, t) \in[0,1] \times[0, T]$. What does it say? If the solution is approximated using the explicit finite difference scheme which is based on the discretizations
$u_{t}(x, t) \approx \frac{u(x, t+\tau)-u(x, t)}{\tau}, u_{x x}(x, t) \approx \frac{u(x+h, t)-2 u(x, t)+u(x-h, t)}{h^{2}}$, then does the numerical solution satisfy a corresponding (discrete) maximum principle?
6. Determine a weak solution (for $t \geq 0$) of the inviscid Burgers equation $u_{t}+u u_{x}=0$, with the initial condition

$$
u(x, 0)= \begin{cases}1, & x<0 \\ x, & x>0\end{cases}
$$

Make sure that the Rankine-Hugoniot condition is satisfied: the velocity of the shock equals the average of the left and right limits of u there.
(Here it is understood that the weak formulation is "the usual one", based upon interpreting the PDE as the conservation law $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0$.)

Solutions for TATA27 2021-08-16

1. The function $v(x, t)=u(x, t)-1$ satisfies $v_{t}=v_{x x}$ with homogeneous boundary conditions $v(0, t)=v_{x}(\pi / 2, t)=0$. The basic separated solutions in this situation are $v_{n}(x, t)=e^{-n^{2} t} \sin n x$ for $n=1,3,5, \ldots$, and since the initial condition for v is

$$
v(x, 0)=-\sin ^{3} x=-\frac{3}{4} \sin x+\frac{1}{4} \sin 3 x=-\frac{3}{4} v_{1}(x, 0)+\frac{1}{4} v_{3}(x, 0)
$$

we immediately obtain the solution as $u=1+v$, where

$$
v(x, t)=-\frac{3}{4} v_{1}(x, t)+\frac{1}{4} v_{3}(x, t)=-\frac{3}{4} e^{-t} \sin x+\frac{1}{4} e^{-9 t} \sin 3 x .
$$

Answer. $u(x, t)=1-\frac{3}{4} e^{-t} \sin x+\frac{1}{4} e^{-9 t} \sin 3 x$.
2. The solution on the half-line is given by the usual d'Alembert formula, if we extend the initial data to odd functions on the whole real line: $u(x, 0)=$ $x e^{-|x|}$ and $u_{t}(x, 0)=0$ for $x \in \mathbf{R}$.
Answer. $u(x, t)=\frac{1}{2}(x+t) e^{-|x+t|}+\frac{1}{2}(x-t) e^{-|x-t|}$.
3. For a fixed $s \in \mathbf{R}$, the characteristic curve $(x(t), y(t))$ through the point $(s, 0)$ is given by $\dot{x}=x, x(0)=s$ and $\dot{y}=1, y(0)=0$, hence $x(t)=s e^{t}$ and $y(t)=t$. Along that curve, $z(t)=u(x(t), y(t))$ satisfies $\dot{z}=z$ with $z(0)=h(s)$, so that $z(t)=h(s) e^{t}$. With $t=y$ and $s=x e^{-t}=x e^{-y}$, this gives $u=h(s) e^{t}=$ $h\left(x e^{-y}\right) e^{y}$.
Answer. $u(x, y)=h\left(x e^{-y}\right) e^{y}$.
4. See the course materials.
5. The maximum of u on the rectangle $[0,1] \times[0, T]$ in the (x, t)-plane is attained on the parabolic boundary, i.e., the union of the lower edge (where $t=0$) and the vertical edges (where $x=0$ or $x=1$). (This is physically plausible, as we don't expect heat conduction to give rise to "hot spots" in the interior of the domain.) The numerical solution satisfies a discrete maximum principle, provided that the parameter $s=\tau / h^{2}$ equals at most $1 / 2$; see the course materials.
6. If the shock curve is $x=\xi(t)$, then for $t \geq 0$ the solution has the form

$$
u(x, t)= \begin{cases}u_{L}(x, t), & x<\xi(t) \\ u_{R}(x, t), & x>\xi(t)\end{cases}
$$

where $u_{L}=1$ and $u_{R}=x /(1+t)$ are found by the method of characteristics. The shock curve is then determined by the Rankine-Hugoniot condition

$$
\xi^{\prime}(t)=\left.\frac{u_{L}+u_{R}}{2}\right|_{x=\xi(t)}=\frac{1}{2}\left(1+\frac{\xi(t)}{1+t}\right)
$$

together with the initial condition $\xi(0)=0$. This is a linear ODE for $\xi(t)$, which can be solved via multiplication by the integrating factor $1 / \sqrt{1+t}$:

$$
\frac{d}{d t}\left(\frac{\xi(t)}{\sqrt{1+t}}\right)=\frac{1}{2 \sqrt{1+t}}, \quad \text { etc. }
$$

Answer. The solution is

$$
u(x, t)= \begin{cases}1, & x<\xi(t) \\ x /(1+t), & x>\xi(t)\end{cases}
$$

where $\quad \xi(t)=1+t-\sqrt{1+t}$.

