TATA27 Partiella differentialekvationer

Tentamen 2023-05-30 kl. 8.00-12.00

No aids allowed (except drawing tools, such as rulers, of course). You may write your answers in English or in Swedish, or some mixture thereof.
Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. Solve the wave equation $u_{t t}=c^{2} u_{x x}$ for $0<x<\pi / 2$ and $t>0$, with the boundary conditions $u_{x}(0, t)=0$ and $u(\pi / 2, t)=0$ and the initial conditions $u(x, 0)=2 \cos (3 x)$ and $u_{t}(x, 0)=7 \cos (5 x)$.
2. Formulate the weak and strong maximum principles for harmonic functions on a nonempty open set Ω in \mathbf{R}^{n}.
3. Use the method of characteristics to solve the PDE $x u_{x}+\left(1+y^{2}\right) u_{y}=u$ with the condition $u(x, 0)=f(x)$, where $f \in C^{1}(\mathbf{R})$ is some given function.
4. Suppose $u(x, y, z)$ is harmonic on the open ball $x^{2}+y^{2}+z^{2}<4$ and continuous out to the boundary, with the boundary values given by $u(x, y, z)=$ $\exp (z)$ for $x^{2}+y^{2}+z^{2}=4$. Determine the value $u(0,0,0)$.
5. Consider the PDE $u_{t}+c u_{x}=\alpha u_{x x}$ where α and c are positive constants.
(a) Suggest (with motivation) some physical situation which may be modelled by this equation.
(b) Find a change of variables of the form $(\tau, \xi)=(t, f(x, t))$ which reduces the PDE to the heat equation $u_{\tau}=\alpha u_{\xi \xi}$.
6. Consider the following finite element approach to the heat equation $u_{t}=u_{x x}$ on the interval $0<x<1$, with Dirichlet boundary conditions $u=0$ at the endpoints: introduce N nodes x_{k} such that $0<x_{1}<x_{2}<\cdots<x_{N}<1$, and seek an approximate solution of the form $u(x, t)=\sum_{k=1}^{N} c_{k}(t) \varphi_{k}(x)$, where $\varphi_{k}(x)$ is the standard "tent-shaped" basis function which is piecewise linear, equals 1 at the node x_{k}, and equals 0 at all other nodes.
(a) Derive a semi-weak formulation suitable for the FEM approach above. (Multiply by a test function $\varphi(x)$ and integrate by parts to move a derivative from $u_{x x}$ to φ.)
(b) Show that this gives an ODE system of the form $A \frac{d \mathbf{c}}{d t}+B \mathbf{c}=\mathbf{0}$ for the vector $\mathbf{c}(t)=\left(c_{1}(t), \ldots, c_{N}(t)\right)^{T}$, where A and B are symmetric tridiagonal $N \times N$ matrices with positive entries on the main diagonal.

Solutions for TATA27 2023-05-30

1. The basic separated solutions that satisfy the PDE and the boundary conditions are $u(x, t)=\cos (\omega x) \cos (\omega c t)$ and $u(x, t)=\cos (\omega x) \sin (\omega c t)$ with ω an odd positive integer, and the general solution is a Fourier-type series, a linear combination of these infinitely many basic solutions. However, the particular initial conditions given here are satisfied by a very simple linear combination, where only two terms (with $\omega=3$ and $\omega=5$) are nonzero.
Answer. $u(x, t)=2 \cos (3 x) \cos (3 c t)+\frac{7}{5 c} \cos (5 x) \sin (5 c t)$.
2. The weak maximum principle says that if u is harmonic on a bounded nonempty open set Ω and $u \in C(\bar{\Omega})$, then the maximum and mimimum of u on $\bar{\Omega}$ (which exist by the extreme value theorem) are attained on the boundary $\partial \Omega$. The strong maximum principle says that if Ω moreover is connected, then the maximum and mimimum are attained only on the boundary, not in the interior, unless u is constant on $\bar{\Omega}$.
[A related statement which is also sometimes called the strong maximum principle is that if u is harmonic on a connected (but not necessarily bounded) open set Ω and has a local maximum or minimum at some point in Ω, then u is constant on Ω.]
3. For a fixed $s \in \mathbf{R}$, the characteristic curve $(x(t), y(t))$ through the point $(s, 0)$ is given by $\dot{x}=x, x(0)=s$ and $\dot{y}=1+y^{2}, y(0)=0$, hence $x(t)=s e^{t}$ and $y(t)=\tan t,|t|<\pi / 2$. Along that curve, $z(t)=u(x(t), y(t))$ satisfies $\dot{z}=z$ with $z(0)=f(s)$, so that $z(t)=f(s) e^{t}$. With $t=\arctan y$ and $s=$ $x / e^{t}=x e^{-\arctan y}$, this gives the solution $u=f(s) e^{t}=f\left(x e^{-\arctan y}\right) e^{\arctan y}$ (defined in the whole plane).
Answer. $u(x, t)=f\left(x e^{-\arctan y}\right) e^{\arctan y},(x, y) \in \mathbf{R}^{2}$.
4. The mean value property for harmonic functions says that $u(0,0,0)$ equals the average of the values on the boundary sphere $x^{2}+y^{2}+z^{2}=4$. To compute this average, we parametrize the sphere with spherical coordinates

$$
(x, y, z)=(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta)
$$

with $r=2$, which gives $d S=r \cdot r \sin \theta \cdot d \theta d \varphi=4 \sin \theta d \theta d \varphi$ (using the scale factors r and $r \sin \theta$ for the θ and φ directions). This gives the mean value integral

$$
\begin{aligned}
u(0,0,0) & =f_{S} u d S=\frac{\int_{S} u d S}{\int_{S} d S}=\frac{\int_{\theta=0}^{\pi}\left(\int_{\varphi=0}^{2 \pi} \exp (2 \cos \theta) 4 \sin \theta d \varphi\right) d \theta}{\int_{\theta=0}^{\pi}\left(\int_{\varphi=0}^{2 \pi} 4 \sin \theta d \varphi\right) d \theta} \\
& =\frac{8 \pi \int_{\theta=0}^{\pi} \exp (2 \cos \theta) \sin \theta d \theta}{8 \pi \int_{\theta=0}^{\pi} \sin \theta d \theta}=\frac{\left[-\frac{1}{2} \exp (2 \cos \theta)\right]_{\theta=0}^{\pi}}{[-\cos \theta)]_{\theta=0}^{\pi}} \\
& =\frac{-\frac{1}{2}(\exp (-2)-\exp (2))}{2}=\frac{1}{2} \sinh (2) .
\end{aligned}
$$

5. (a) This is a diffusion-advection equation, describing for example diffusion of some chemical (of concentration u) in a fluid flowing with constant speed c in a long tube along the x-axis. It's a conservation law $u_{t}+J_{x}=0$, where the flux term $J=-\alpha u_{x}+c u$ combines Fick's law of diffusion $J_{1}=-\alpha u_{x}$ with an advection term $J_{2}=c u$.
(b) Inspired by part (a), we "go with the flow" and let $\xi=x-c t$ (together with $\tau=t$). A short computation with the chain rule verifies that we do get the heat (or diffusion) equation in these new variables.
6. (a) With a test function $\varphi(x)$ which is zero at the endpoints $x=0$ and $x=1$, we get

$$
\begin{aligned}
0 & =\int_{0}^{1}\left(u_{t}-u_{x x}\right) \varphi d x=\int_{0}^{1} u_{t} \varphi d x-\int_{0}^{1} u_{x x} \varphi d x \\
& =\int_{0}^{1} u_{t} \varphi d x-(\underbrace{\left[u_{x} \varphi\right]_{0}^{1}}_{=0}-\int_{0}^{1} u_{x} \varphi_{x} d x) \\
& =\int_{0}^{1}\left(u_{t} \varphi+u_{x} \varphi_{x}\right) d x,
\end{aligned}
$$

so a suitable semi-weak formulation is to require this last integral to be zero for all test functions $\varphi(x)$ such that $\varphi(0)=\varphi(1)=0$.
(b) The FEM approximation to the solution is obtained by taking $u(x, t)=$ $\sum_{k=1}^{N} c_{k}(t) \varphi_{k}(x)$ and requiring the integral above to be zero when $\varphi=\varphi_{m}$ (for $1 \leq m \leq N$). Writing dot for $\frac{d}{d t}$ and prime for $\frac{d}{d x}$ we get

$$
\begin{aligned}
0 & =\int_{0}^{1}\left(\left(\sum_{k=1}^{N} \dot{c}_{k}(t) \varphi_{k}(x)\right) \varphi_{m}(x)+\left(\sum_{k=1}^{N} c_{k}(t) \varphi_{k}^{\prime}(x)\right) \varphi_{m}^{\prime}(x)\right) d x \\
& =\sum_{k=1}^{N}(\underbrace{\left(\int_{0}^{1} \varphi_{k}(x) \varphi_{m}(x) d x\right)}_{=A_{m k}} \dot{c}_{k}(t)+\underbrace{\left(\int_{0}^{1} \varphi_{k}^{\prime}(x) \varphi_{m}^{\prime}(x) d x\right)}_{=B_{m k}} c_{k}(t)) \\
& =\sum_{k=1}^{N}\left(A_{m k} \dot{c}_{k}(t)+B_{m k} c_{k}(t)\right) .
\end{aligned}
$$

This sum is entry number m in the column vector $A \frac{d \mathbf{c}}{d t}+B \mathbf{c}$, so the whole vector must be equal to the zero vector, as was to be shown. It's obvious from the definitions that the matrices A and B satisfy $A_{m k}=A_{k m}$ and $B_{m k}=B_{k m}$, and they are tridiagonal since if the indices k and m are more than one step apart, then φ_{k} and φ_{m} have disjoint supports, so that $\varphi_{k}(x) \varphi_{m}(x)=0$ and $\varphi_{k}^{\prime}(x) \varphi_{m}^{\prime}(x)=0$ for all $x \in[0,1]$. Also, it's clear that $A_{k k}=\int_{0}^{1} \varphi_{k}(x)^{2} d x>0$ and $B_{k k}=\int_{0}^{1} \varphi_{k}^{\prime}(x)^{2} d x>0$ for $1 \leq k \leq N$.

