TATA27 Partiella differentialekvationer

Tentamen 2023-08-14 kl. 14.00-18.00

No aids allowed (except drawing tools, such as rulers, of course). You may write your answers in English or in Swedish, or some mixture thereof.
Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. Solve the heat equation $u_{t}=u_{x x}$ for $0<x<\pi$ and $t>0$, with the initial condition $u(x, 0)=x(\pi-x)$ and the Dirichlet boundary conditions $u(0, t)=$ $u(\pi, t)=0$. (Hint: The solution takes the form of a Fourier-type series.)
2. Determine all functions $f(r), r>0$, such that $u(x, y)=f\left(\sqrt{x^{2}+y^{2}}\right)$ is harmonic on $\mathbf{R}^{2} \backslash\{(0,0)\}$.
3. Consider the wave equation $u_{t t}=\frac{1}{4} u_{x x}$ for $x \in \mathbf{R}$ and $t>0$, with initial conditions

$$
u(x, 0)=\left\{\begin{array}{ll}
\sin x, & \text { for } 0<x<\pi, \\
0, & \text { otherwise },
\end{array} \quad u_{t}(x, 0)=0 \quad \text { for } x \in \mathbf{R} .\right.
$$

Let $u(x, t)$ be the (weak) solution given by d'Alembert's formula. Draw the graph of the function $x \mapsto u(x, 1)$. (In other words, draw the shape of the wave after one unit of time.)
4. Use the method of characteristics to find $u(x, y)$ such that $x^{2} u_{x}+u_{y}=u$ and $u(x, 0)=\sin x$. In what region of the plane is the problem's solution u determined?
5. Poisson's integral formula for the unit ball in \mathbf{R}^{n} says that if u is harmonic on the open ball $B(\mathbf{0}, 1)$ and continuous on the closed ball $\overline{B(\mathbf{0}, 1)}$, then

$$
u(\mathbf{a})=f_{S(0,1)} \frac{1-|\mathbf{a}|^{2}}{|\mathbf{x}-\mathbf{a}|^{n}} u(\mathbf{x}) d S(\mathbf{x}) \quad \text { for } \mathbf{a}=B(\mathbf{0}, 1)
$$

where $S(\mathbf{0}, 1)$ is the unit sphere, and the symbol f denotes the mean value integral. Use this to derive Poisson's integral formula for a ball $B(\mathbf{0}, r)$ in \mathbf{R}^{n} of arbitrary radius $r>0$.
6. Formulate the weak maximum principle for the heat equation $u_{t}=\Delta u$, where $t \in(0, T)$ and $\mathbf{x} \in \Omega$ (a bounded domain in \mathbf{R}^{n}). Use this to show uniqueness of solutions to the initial-boundary value problem where the initial temperature $u(\mathbf{x}, 0)$ and the boundary values $u(\mathbf{x}, t), \mathbf{x} \in \partial \Omega$, are prescribed.

Solutions for TATA27 2023-08-14

1. The basic separated solutions satisfying the PDE and the boundary conditions are $u_{n}(x, t)=\sin (n x) e^{-n^{2} t}$ for integers $n \geq 1$, and the sought solution takes the form $u(x, t)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, t)$. In order to satisfy the initial condition, we need $x(\pi-x)=u(x, 0)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n x)$ for $0<x<\pi$. We multiply this by $\sin (k x)$ and integrate from 0 to π, using that $\int_{0}^{\pi} \sin (n x) \sin (k x) d x=0$ for $k \neq n$, to obtain

$$
c_{k} \underbrace{\int_{0}^{\pi} \sin ^{2}(k x) d x}_{=\pi / 2}=\int_{0}^{\pi} x(\pi-x) \sin (k x) d x
$$

so that

$$
\begin{aligned}
c_{k} & =\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \sin (k x) d x \\
& =\frac{2}{\pi}\left[\left(\pi x-x^{2}\right) \frac{-\cos (k x)}{k}-(\pi-2 x) \frac{-\sin (k x)}{k^{2}}+(-2) \frac{\cos (k x)}{k^{3}}\right]_{0}^{\pi} \\
& =\frac{4\left(1-(-1)^{k}\right)}{\pi k^{3}}
\end{aligned}
$$

Answer.

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{\pi n^{3}} \sin (n x) e^{-n^{2} t}
$$

or equivalently, since only odd-numbered $c_{n}=c_{2 m+1}$ are nonzero,

$$
u(x, t)=\sum_{m=0}^{\infty} \frac{8}{\pi(2 m+1)^{3}} \sin ((2 m+1) x) e^{-(2 m+1)^{2} t}
$$

2. If you remember the formula for the Laplacian in polar coordinates, $\Delta u=$ $u_{r r}+\frac{1}{r^{2}} u_{\varphi \varphi}+\frac{1}{r} u_{r}$, you can use that to obtain $f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)=0$. Otherwise, just compute $u_{x}(x, y)=f^{\prime}\left(\sqrt{x^{2}+y^{2}}\right) \cdot x / \sqrt{x^{2}+y^{2}}$, and so on, to derive that same ODE. Multiplication by the integrating factor r gives $\left(r f^{\prime}(r)\right)^{\prime}=0$, and after two integrations we find $f(r)=A \ln r+B$ with arbitrary constants A and B.

Answer. $f(r)=A \ln r+B, r>0$.
3. Since $c=\sqrt{1 / 4}=1 / 2$, d'Alembert's formula says that

$$
u(x, t)=\frac{\varphi\left(x-\frac{1}{2} t\right)+\varphi\left(x+\frac{1}{2} t\right)}{2}
$$

where $\varphi(x)=u(x, 0)$, and in particular

$$
u(x, 1)=\frac{\varphi\left(x-\frac{1}{2}\right)+\varphi\left(x+\frac{1}{2}\right)}{2} .
$$

To draw the graph, we can first plot the two terms $\frac{1}{2} \varphi\left(x \pm \frac{1}{2}\right)$ separately:

Then adding them up (graphically) gives the answer:

4. For a fixed $s \in \mathbf{R}$, the characteristic curve $(x(t), y(t))$ through the point $(s, 0)$ is given by $\dot{x}=x^{2}$ and $\dot{y}=1$, with initial conditions $x(0)=s$ and $y(0)=0$. Hence, $x(t)=s /(1-s t)$ and $y(t)=t$. (The solution for $x(t)$ is valid for all $t \in \mathbf{R}$ if $s=0$, but only for $t<1 / s$ if $s>0$ and for $t>1 / s$ if $s<0$.) Along such a curve, $z(t)=u(x(t), y(t))$ satisfies $\dot{z}=z$ with $z(0)=\sin (s)$, so that $z(t)=\sin (s) e^{t}$. With $t=y$ and $s=x /(1+x t)=x /(1+x y)$, this gives $u=\sin (s) e^{t}=\sin (x /(1+x y)) e^{y}$. The characteristics computed above, emanating from points on the x-axis, fill out the region $x y>-1$ (between the two dotted curves in the figure below), so this is the region where the solution u is determined by the given conditions. If we approach either of the dotted curves from inside this region, for example along a line $x=$ const., the solution is seen to oscillate wildly, so it cannot be continued up to (or across) the boundary in a nice way.
Answer. $u(x, y)=\sin \left(\frac{x}{1+x y}\right) e^{y}$, for $x y>-1$.

5. Let A_{n} be the ($n-1$)-dimensional surface area of the unit sphere $S(\mathbf{0}, 1)$ in R^{n}. Suppose u is harmonic on $B(\mathbf{0}, r)$ and continuous out to the boundary. Then $v(\mathbf{x})=u(r \mathbf{x})$ is harmonic on the unit ball $B(\mathbf{0}, 1)$ and continuous out to the boundary. (Rescaling a harmonic function like this doesn't destroy harmonicity; this can be shown by calculation using the chain rule, or argued more abstractly, for example by noticing that the rescaled function still has the mean value property.) Thus, for $\mathbf{a} \in B(\mathbf{0}, r)$, we can apply the formula in the problem to the rescaled function v, with $\mathbf{b}=\frac{1}{r} \mathbf{a} \in B(\mathbf{0}, 1)$ playing the role of \mathbf{a}, and writing \mathbf{y} instead of \mathbf{x}, to obtain the value

$$
\begin{aligned}
u(\mathbf{a}) & =v\left(\frac{1}{r} \mathbf{a}\right)=v(\mathbf{b})=f_{S(0,1)} \frac{1-|\mathbf{b}|^{2}}{|\mathbf{y}-\mathbf{b}|^{n}} v(\mathbf{y}) d S(\mathbf{y}) \\
& =f_{S(\mathbf{0}, 1)} \frac{1-\left|\frac{1}{r} \mathbf{a}\right|^{2}}{\left|\mathbf{y}-\frac{1}{r} \mathbf{a}\right|^{n}} v(\mathbf{y}) d S(\mathbf{y})=\frac{1}{A_{n}} \int_{S(\mathbf{0}, 1)} \frac{\frac{1}{r^{2}}}{\frac{1}{r^{n}}} \frac{r^{2}-|\mathbf{a}|^{2}}{|r \mathbf{y}-\mathbf{a}|^{n}} u(r \mathbf{y}) d S(\mathbf{y}) .
\end{aligned}
$$

Under the change of variables $\mathbf{x}=r \mathbf{y}$, the surface area element scales as $d S(\mathbf{x})=r^{n-1} d S(\mathbf{y})$, and the new region of integration is the sphere $S(\mathbf{0}, r)$, whose surface area is $A_{n} r^{n-1}$, so we get

$$
\begin{aligned}
u(\mathbf{a}) & =\frac{1}{A_{n}} \int_{S(\mathbf{0}, r)} \frac{r^{n}}{r^{2}} \frac{r^{2}-|\mathbf{a}|^{2}}{|\mathbf{x}-\mathbf{a}|^{n}} u(\mathbf{x}) \frac{d S(\mathbf{x})}{r^{n-1}} \\
& =\frac{1}{A_{n} r^{n-1}} \int_{S(\mathbf{0}, r)} \frac{r^{n-2}\left(r^{2}-|\mathbf{a}|^{2}\right)}{|\mathbf{x}-\mathbf{a}|^{n}} u(\mathbf{x}) d S(\mathbf{x}) \\
& =f_{S(\mathbf{0}, r)} \frac{r^{n-2}\left(r^{2}-|\mathbf{a}|^{2}\right)}{|\mathbf{x}-\mathbf{a}|^{n}} u(\mathbf{x}) d S(\mathbf{x}),
\end{aligned}
$$

which is the sought formula.
6. Suppose $u(\mathbf{x}, t)$ solves the heat equation on the set $\Omega \times(0, T)$ and is continuous out to the boundary. Then the weak maximum principle says that the maximum value of u on the compact set $\bar{\Omega} \times[0, T]$ is attained at a point on the parabolic boundary of $\bar{\Omega} \times[0, T]$, i.e., at a point in that set such that either $t=0$ or $\mathbf{x} \in \partial \Omega$. (And applying this to the function $-u$ shows that the minimum of u is likewise attained on the parabolic boundary.)
Now if u_{1} and u_{2} are two solutions to the same initial-boundary value problem, then their difference $u=u_{1}-u_{2}$ is a solution to the heat equation which is zero on the parabolic boundary, and hence by the weak maximum (and minimum) principle, it must be zero throughout $\bar{\Omega} \times[0, T]$. So $u_{1}=u_{2}$, which means that the initial-boundary value problem can have at most one solution.

