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TATA27 Partiella differentialekvationer
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No aids allowed (except drawing tools, such as rulers, of course). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade n ∈ {3,4,5}
you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Solve the heat equation ut = uxx for 0 < x < π and t > 0, with the initial
condition u(x,0) = x(π−x) and the Dirichlet boundary conditions u(0, t ) =
u(π, t ) = 0. (Hint: The solution takes the form of a Fourier-type series.)

2. Determine all functions f (r ), r > 0, such that u(x, y) = f
(√

x2 + y2
)

is
harmonic on R2 \

{
(0,0)

}
.

3. Consider the wave equation ut t = 1
4 uxx for x ∈ R and t > 0, with initial

conditions

u(x,0) =
{

sin x, for 0 < x <π,

0, otherwise,
ut (x,0) = 0 for x ∈ R.

Let u(x, t ) be the (weak) solution given by d’Alembert’s formula. Draw the
graph of the function x 7→ u(x,1). (In other words, draw the shape of the
wave after one unit of time.)

4. Use the method of characteristics to find u(x, y) such that x2ux +uy = u
and u(x,0) = sin x. In what region of the plane is the problem’s solution u
determined?

5. Poisson’s integral formula for the unit ball in Rn says that if u is harmonic
on the open ball B(0,1) and continuous on the closed ball B(0,1), then

u(a) =−
∫

S(0,1)

1−|a|2
|x−a|n u(x)dS(x) for a = B(0,1),

where S(0,1) is the unit sphere, and the symbol −
∫

denotes the mean value
integral. Use this to derive Poisson’s integral formula for a ball B(0,r ) in Rn

of arbitrary radius r > 0.

6. Formulate the weak maximum principle for the heat equation ut = ∆u,
where t ∈ (0,T ) and x ∈Ω (a bounded domain in Rn). Use this to show
uniqueness of solutions to the initial-boundary value problem where the
initial temperature u(x,0) and the boundary values u(x, t), x ∈ ∂Ω, are
prescribed.



Solutions for TATA27 2023-08-14

1. The basic separated solutions satisfying the PDE and the boundary condi-
tions are un(x, t ) = sin(nx)e−n2t for integers n ≥ 1, and the sought solution
takes the form u(x, t ) =∑∞

n=1 cnun(x, t ). In order to satisfy the initial con-
dition, we need x(π− x) = u(x,0) = ∑∞

n=1 cnun(x,0) = ∑∞
n=1 cn sin(nx) for

0 < x <π. We multiply this by sin(kx) and integrate from 0 to π, using that∫ π
0 sin(nx)sin(kx)d x = 0 for k ̸= n, to obtain

ck

∫ π

0
sin2(kx)d x︸ ︷︷ ︸

=π/2

=
∫ π

0
x(π−x)sin(kx)d x,

so that

ck = 2

π

∫ π

0
x(π−x)sin(kx)d x

= 2

π

[
(πx −x2)

−cos(kx)

k
− (π−2x)

−sin(kx)

k2
+ (−2)

cos(kx)

k3

]π
0

= 4
(
1− (−1)k

)
πk3

.

Answer.

u(x, t ) =
∞∑

n=1

4
(
1− (−1)n

)
πn3

sin(nx)e−n2t ,

or equivalently, since only odd-numbered cn = c2m+1 are nonzero,

u(x, t ) =
∞∑

m=0

8

π(2m +1)3
sin

(
(2m +1)x

)
e−(2m+1)2t .

2. If you remember the formula for the Laplacian in polar coordinates, ∆u =
ur r + 1

r 2 uϕϕ+ 1
r ur , you can use that to obtain f ′′(r )+ 1

r f ′(r ) = 0. Otherwise,

just compute ux (x, y) = f ′(√x2 + y2
)·x/

√
x2 + y2, and so on, to derive that

same ODE. Multiplication by the integrating factor r gives (r f ′(r ))′ = 0,
and after two integrations we find f (r ) = A lnr +B with arbitrary constants
A and B .

Answer. f (r ) = A lnr +B , r > 0.



3. Since c =p
1/4 = 1/2, d’Alembert’s formula says that

u(x, t ) = ϕ(x − 1
2 t )+ϕ(x + 1

2 t )

2
,

where ϕ(x) = u(x,0), and in particular

u(x,1) = ϕ(x − 1
2 )+ϕ(x + 1

2 )

2
.

To draw the graph, we can first plot the two terms 1
2ϕ(x ± 1

2 ) separately:

x−1
2 π− 1

2
1
2 π+ 1

2

1
2

1
2ϕ(x + 1

2 ) 1
2ϕ(x − 1

2 )

Then adding them up (graphically) gives the answer:

x−1
2 π− 1

2
1
2 π+ 1

2

1
2

1
u(x,1) = 1

2ϕ(x − 1
2 )+ 1

2ϕ(x + 1
2 )

4. For a fixed s ∈ R, the characteristic curve (x(t), y(t)) through the point
(s,0) is given by ẋ = x2 and ẏ = 1, with initial conditions x(0) = s and
y(0) = 0. Hence, x(t) = s/(1− st) and y(t) = t . (The solution for x(t) is
valid for all t ∈ R if s = 0, but only for t < 1/s if s > 0 and for t > 1/s if s < 0.)
Along such a curve, z(t ) = u(x(t ), y(t )) satisfies ż = z with z(0) = sin(s), so
that z(t) = sin(s)e t . With t = y and s = x/(1+ xt) = x/(1+ x y), this gives
u = sin(s)e t = sin(x/(1+ x y))e y . The characteristics computed above,
emanating from points on the x-axis, fill out the region x y >−1 (between
the two dotted curves in the figure below), so this is the region where
the solution u is determined by the given conditions. If we approach
either of the dotted curves from inside this region, for example along a line
x = const., the solution is seen to oscillate wildly, so it cannot be continued
up to (or across) the boundary in a nice way.

Answer. u(x, y) = sin

(
x

1+x y

)
e y , for x y >−1.

x

y



5. Let An be the (n −1)-dimensional surface area of the unit sphere S(0,1)
in Rn . Suppose u is harmonic on B(0,r ) and continuous out to the bound-
ary. Then v(x) = u(r x) is harmonic on the unit ball B(0,1) and continuous
out to the boundary. (Rescaling a harmonic function like this doesn’t de-
stroy harmonicity; this can be shown by calculation using the chain rule, or
argued more abstractly, for example by noticing that the rescaled function
still has the mean value property.) Thus, for a ∈ B(0,r ), we can apply the
formula in the problem to the rescaled function v , with b = 1

r a ∈ B(0,1)
playing the role of a, and writing y instead of x, to obtain the value

u(a) = v( 1
r a) = v(b) =−

∫
S(0,1)

1−|b|2∣∣y−b
∣∣n v(y)dS(y)

=−
∫

S(0,1)

1− ∣∣1
r a

∣∣2∣∣y− 1
r a

∣∣n v(y)dS(y) = 1

An

∫
S(0,1)

1
r 2

1
r n

r 2 −|a|2∣∣r y−a
∣∣n u(r y)dS(y).

Under the change of variables x = r y, the surface area element scales as
dS(x) = r n−1dS(y), and the new region of integration is the sphere S(0,r ),
whose surface area is Anr n−1, so we get

u(a) = 1

An

∫
S(0,r )

r n

r 2

r 2 −|a|2
|x−a|n u(x)

dS(x)

r n−1

= 1

Anr n−1

∫
S(0,r )

r n−2
(
r 2 −|a|2)

|x−a|n u(x)dS(x)

=−
∫

S(0,r )

r n−2
(
r 2 −|a|2)

|x−a|n u(x)dS(x),

which is the sought formula.

6. Suppose u(x, t ) solves the heat equation on the setΩ× (0,T ) and is contin-
uous out to the boundary. Then the weak maximum principle says that
the maximum value of u on the compact setΩ×[0,T ] is attained at a point
on the parabolic boundary ofΩ× [0,T ], i.e., at a point in that set such that
either t = 0 or x ∈ ∂Ω. (And applying this to the function −u shows that
the minimum of u is likewise attained on the parabolic boundary.)

Now if u1 and u2 are two solutions to the same initial-boundary value
problem, then their difference u = u1−u2 is a solution to the heat equation
which is zero on the parabolic boundary, and hence by the weak maximum
(and minimum) principle, it must be zero throughoutΩ×[0,T ]. So u1 = u2,
which means that the initial-boundary value problem can have at most
one solution.


