Linköpings universitet Matematiska institutionen Hans Lundmark

TATA27 Partiella differentialekvationer

Tentamen 2023-08-14 kl. 14.00-18.00

No aids allowed (except drawing tools, such as rulers, of course). You may write your answers in English or in Swedish, or some mixture thereof.

Each problem is marked *pass* (3 or 2 points) or *fail* (1 or 0 points). For grade $n \in \{3, 4, 5\}$ you need at least *n* passed problems and at least 3n - 1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

- 1. Solve the heat equation $u_t = u_{xx}$ for $0 < x < \pi$ and t > 0, with the initial condition $u(x,0) = x(\pi-x)$ and the Dirichlet boundary conditions $u(0, t) = u(\pi, t) = 0$. (Hint: The solution takes the form of a Fourier-type series.)
- 2. Determine all functions f(r), r > 0, such that $u(x, y) = f(\sqrt{x^2 + y^2})$ is harmonic on $\mathbb{R}^2 \setminus \{(0, 0)\}$.
- 3. Consider the wave equation $u_{tt} = \frac{1}{4}u_{xx}$ for $x \in \mathbf{R}$ and t > 0, with initial conditions

 $u(x,0) = \begin{cases} \sin x, & \text{for } 0 < x < \pi, \\ 0, & \text{otherwise,} \end{cases} \qquad u_t(x,0) = 0 \quad \text{for } x \in \mathbf{R}. \end{cases}$

Let u(x, t) be the (weak) solution given by d'Alembert's formula. Draw the graph of the function $x \mapsto u(x, 1)$. (In other words, draw the shape of the wave after one unit of time.)

- 4. Use the method of characteristics to find u(x, y) such that $x^2u_x + u_y = u$ and $u(x, 0) = \sin x$. In what region of the plane is the problem's solution u determined?
- 5. Poisson's integral formula for the unit ball in \mathbb{R}^n says that if *u* is harmonic on the open ball $B(\mathbf{0}, 1)$ and continuous on the closed ball $\overline{B(\mathbf{0}, 1)}$, then

$$u(\mathbf{a}) = \int_{S(\mathbf{0},1)} \frac{1 - |\mathbf{a}|^2}{|\mathbf{x} - \mathbf{a}|^n} u(\mathbf{x}) \, dS(\mathbf{x}) \qquad \text{for } \mathbf{a} = B(\mathbf{0},1),$$

where $S(\mathbf{0}, 1)$ is the unit sphere, and the symbol f denotes the mean value integral. Use this to derive Poisson's integral formula for a ball $B(\mathbf{0}, r)$ in \mathbf{R}^n of arbitrary radius r > 0.

6. Formulate the weak maximum principle for the heat equation $u_t = \Delta u$, where $t \in (0, T)$ and $\mathbf{x} \in \Omega$ (a bounded domain in \mathbf{R}^n). Use this to show uniqueness of solutions to the initial-boundary value problem where the initial temperature $u(\mathbf{x}, 0)$ and the boundary values $u(\mathbf{x}, t)$, $\mathbf{x} \in \partial \Omega$, are prescribed.

Solutions for TATA27 2023-08-14

1. The basic separated solutions satisfying the PDE and the boundary conditions are $u_n(x, t) = \sin(nx) e^{-n^2 t}$ for integers $n \ge 1$, and the sought solution takes the form $u(x, t) = \sum_{n=1}^{\infty} c_n u_n(x, t)$. In order to satisfy the initial condition, we need $x(\pi - x) = u(x, 0) = \sum_{n=1}^{\infty} c_n u_n(x, 0) = \sum_{n=1}^{\infty} c_n \sin(nx)$ for $0 < x < \pi$. We multiply this by $\sin(kx)$ and integrate from 0 to π , using that $\int_0^{\pi} \sin(nx) \sin(kx) dx = 0$ for $k \ne n$, to obtain

$$c_k \underbrace{\int_0^{\pi} \sin^2(kx) \, dx}_{=\pi/2} = \int_0^{\pi} x(\pi - x) \sin(kx) \, dx,$$

so that

$$c_{k} = \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \sin(kx) dx$$

= $\frac{2}{\pi} \Big[(\pi x - x^{2}) \frac{-\cos(kx)}{k} - (\pi - 2x) \frac{-\sin(kx)}{k^{2}} + (-2) \frac{\cos(kx)}{k^{3}} \Big]_{0}^{\pi}$
= $\frac{4(1 - (-1)^{k})}{\pi k^{3}}.$

Answer.

$$u(x,t) = \sum_{n=1}^{\infty} \frac{4\left(1 - (-1)^n\right)}{\pi n^3} \sin(nx) e^{-n^2 t}$$

or equivalently, since only odd-numbered $c_n = c_{2m+1}$ are nonzero,

$$u(x,t) = \sum_{m=0}^{\infty} \frac{8}{\pi (2m+1)^3} \sin((2m+1)x) e^{-(2m+1)^2 t}.$$

2. If you remember the formula for the Laplacian in polar coordinates, $\Delta u = u_{rr} + \frac{1}{r^2}u_{\varphi\varphi} + \frac{1}{r}u_r$, you can use that to obtain $f''(r) + \frac{1}{r}f'(r) = 0$. Otherwise, just compute $u_x(x, y) = f'(\sqrt{x^2 + y^2}) \cdot x/\sqrt{x^2 + y^2}$, and so on, to derive that same ODE. Multiplication by the integrating factor *r* gives (rf'(r))' = 0, and after two integrations we find $f(r) = A \ln r + B$ with arbitrary constants *A* and *B*.

Answer. $f(r) = A \ln r + B, r > 0.$

3. Since $c = \sqrt{1/4} = 1/2$, d'Alembert's formula says that

$$u(x,t) = \frac{\varphi(x - \frac{1}{2}t) + \varphi(x + \frac{1}{2}t)}{2},$$

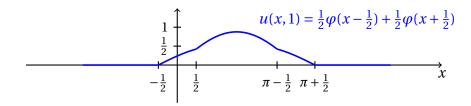
where $\varphi(x) = u(x, 0)$, and in particular

$$u(x,1) = \frac{\varphi(x - \frac{1}{2}) + \varphi(x + \frac{1}{2})}{2}$$

To draw the graph, we can first plot the two terms $\frac{1}{2}\varphi(x \pm \frac{1}{2})$ separately:

$$\frac{\frac{1}{2}\varphi(x+\frac{1}{2})}{-\frac{1}{2}} \xrightarrow{\frac{1}{2}} \frac{1}{2} \frac{1}{\pi - \frac{1}{2}} \frac{1}{\pi + \frac{1}{2}} \xrightarrow{\frac{1}{2}\varphi(x-\frac{1}{2})} \xrightarrow{\chi}$$

Then adding them up (graphically) gives the answer:



4. For a fixed $s \in \mathbf{R}$, the characteristic curve (x(t), y(t)) through the point (s, 0) is given by $\dot{x} = x^2$ and $\dot{y} = 1$, with initial conditions x(0) = s and y(0) = 0. Hence, x(t) = s/(1 - st) and y(t) = t. (The solution for x(t) is valid for all $t \in \mathbf{R}$ if s = 0, but only for t < 1/s if s > 0 and for t > 1/s if s < 0.) Along such a curve, z(t) = u(x(t), y(t)) satisfies $\dot{z} = z$ with $z(0) = \sin(s)$, so that $z(t) = \sin(s) e^t$. With t = y and s = x/(1 + xt) = x/(1 + xy), this gives $u = \sin(s) e^t = \sin(x/(1 + xy)) e^y$. The characteristics computed above, emanating from points on the *x*-axis, fill out the region xy > -1 (between the two dotted curves in the figure below), so this is the region where the solution u is determined by the given conditions. If we approach either of the dotted curves from inside this region, for example along a line x = const., the solution is seen to oscillate wildly, so it cannot be continued up to (or across) the boundary in a nice way.

Answer.
$$u(x, y) = \sin\left(\frac{x}{1+xy}\right)e^{y}$$
, for $xy > -1$.

5. Let A_n be the (n-1)-dimensional surface area of the unit sphere S(0, 1) in \mathbb{R}^n . Suppose u is harmonic on B(0, r) and continuous out to the boundary. Then $v(\mathbf{x}) = u(r\mathbf{x})$ is harmonic on the unit ball B(0, 1) and continuous out to the boundary. (Rescaling a harmonic function like this doesn't destroy harmonicity; this can be shown by calculation using the chain rule, or argued more abstractly, for example by noticing that the rescaled function still has the mean value property.) Thus, for $\mathbf{a} \in B(0, r)$, we can apply the formula in the problem to the rescaled function v, with $\mathbf{b} = \frac{1}{r} \mathbf{a} \in B(0, 1)$ playing the role of \mathbf{a} , and writing \mathbf{y} instead of \mathbf{x} , to obtain the value

$$u(\mathbf{a}) = v(\frac{1}{r}\mathbf{a}) = v(\mathbf{b}) = \int_{S(\mathbf{0},1)} \frac{1 - |\mathbf{b}|^2}{|\mathbf{y} - \mathbf{b}|^n} v(\mathbf{y}) \, dS(\mathbf{y})$$

= $\int_{S(\mathbf{0},1)} \frac{1 - \left|\frac{1}{r}\mathbf{a}\right|^2}{|\mathbf{y} - \frac{1}{r}\mathbf{a}|^n} v(\mathbf{y}) \, dS(\mathbf{y}) = \frac{1}{A_n} \int_{S(\mathbf{0},1)} \frac{\frac{1}{r^2}}{\frac{1}{r^n}} \frac{r^2 - |\mathbf{a}|^2}{|r\mathbf{y} - \mathbf{a}|^n} u(r\mathbf{y}) \, dS(\mathbf{y}).$

Under the change of variables $\mathbf{x} = r\mathbf{y}$, the surface area element scales as $dS(\mathbf{x}) = r^{n-1}dS(\mathbf{y})$, and the new region of integration is the sphere $S(\mathbf{0}, r)$, whose surface area is $A_n r^{n-1}$, so we get

$$\begin{split} u(\mathbf{a}) &= \frac{1}{A_n} \int_{S(\mathbf{0},r)} \frac{r^n}{r^2} \frac{r^2 - |\mathbf{a}|^2}{|\mathbf{x} - \mathbf{a}|^n} \, u(\mathbf{x}) \, \frac{dS(\mathbf{x})}{r^{n-1}} \\ &= \frac{1}{A_n r^{n-1}} \int_{S(\mathbf{0},r)} \frac{r^{n-2} (r^2 - |\mathbf{a}|^2)}{|\mathbf{x} - \mathbf{a}|^n} \, u(\mathbf{x}) \, dS(\mathbf{x}) \\ &= \int_{S(\mathbf{0},r)} \frac{r^{n-2} (r^2 - |\mathbf{a}|^2)}{|\mathbf{x} - \mathbf{a}|^n} \, u(\mathbf{x}) \, dS(\mathbf{x}), \end{split}$$

which is the sought formula.

6. Suppose $u(\mathbf{x}, t)$ solves the heat equation on the set $\Omega \times (0, T)$ and is continuous out to the boundary. Then the weak maximum principle says that the maximum value of u on the compact set $\overline{\Omega} \times [0, T]$ is attained at a point on the parabolic boundary of $\overline{\Omega} \times [0, T]$, i.e., at a point in that set such that either t = 0 or $\mathbf{x} \in \partial \Omega$. (And applying this to the function -u shows that the minimum of u is likewise attained on the parabolic boundary.)

Now if u_1 and u_2 are two solutions to the same initial-boundary value problem, then their difference $u = u_1 - u_2$ is a solution to the heat equation which is zero on the parabolic boundary, and hence by the weak maximum (and minimum) principle, it must be zero throughout $\overline{\Omega} \times [0, T]$. So $u_1 = u_2$, which means that the initial-boundary value problem can have at most one solution.