TATA27 Partiella differentialekvationer

Tentamen 2024-01-05 kl. 8.00-12.00

No aids allowed (except drawing tools, such as rulers, of course). You may write your answers in English or in Swedish, or some mixture thereof.
Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Use the method of characteristics to find a function $u(x, y)$ which satisfies $u_{x}-2 x y u_{y}=0$ and $u(0, y)=f(y)$, where $f: \mathbf{R} \rightarrow \mathbf{R}$ is some given differentiable function.
2. Find a solution $u(x, t)$ to the heat equation $u_{t}=u_{x x}$ for $x \in \mathbf{R}$ and $t>0$, with initial condition $u(x, 0)=e^{-x^{2}}$.
(Hint: Remember the fundamental solution $S(x, t)=\frac{1}{\sqrt{4 \pi t}} \exp \left(-\frac{x^{2}}{4 t}\right)$. Or use that the Fourier transform of $e^{-\alpha x^{2}}$ is $\int_{\mathbf{R}} e^{-\alpha x^{2}} e^{-i \xi x} d x=\sqrt{\frac{\pi}{\alpha}} \exp \left(-\frac{\xi^{2}}{4 \alpha}\right)$ for $\alpha>0$.)
3. (a) Formulate the weak maximum principle for harmonic functions.
(b) Let $B=\left\{\mathbf{x} \in \mathbf{R}^{n}:|\mathbf{x}|<1\right\}$ be the open unit ball in \mathbf{R}^{n}. Assume that the functions $u(\mathbf{x})$ and $|\mathbf{x}|^{2} u(\mathbf{x})$ are harmonic on B and continuous on \bar{B}. Show that u is identically zero on \bar{B}.
4. Determine the solution $u(x, t)$ (in the form of a Fourier-type series) to the wave equation $u_{t t}=u_{x x}$ for $0<x<1$ and $t>0$ with the boundary conditions $\frac{\partial u}{\partial x}(0, t)=0=u(1, t)$ for $t>0$ and the initial conditions $u(x, 0)=0$ and $\frac{\partial u}{\partial t}(x, 0)=1-x$ for $0<x<1$.
5. Formulate what it means for $u(x, t)$ to be a weak solution (on the whole space \mathbf{R}^{2}) to the advection equation $u_{t}+c u_{x}=0$, and prove that $u(x, t)=$ $f(x-c t)$ is a weak solution for any locally integrable function $f: \mathbf{R} \rightarrow \mathbf{R}$.
6. Show that the PDE $u_{x x}=e^{2 x} u_{y y}$ is hyperbolic in the whole plane \mathbf{R}^{2}. Find characteristic coordinates $(r, s)=(r(x, y), s(x, y))$ and express the PDE in terms of them.

Solutions for TATA27 2024-01-05

1. For a fixed $s \in \mathbf{R}$, the characteristic curve $(x(t), y(t))$ through the point $(0, s)$ is given by $\dot{x}=1$ and $\dot{y}=-2 x y$ with initial conditions $x(0)=0$ and $y(0)=s$. We immediately get $x(t)=t$. This gives $\dot{y}+2 t y=0$, and using the integrating factor $e^{t^{2}}$ we find that $y(t)=s e^{-t^{2}}$. The PDE implies that u is constant along each such curve, and the additional condition says that this constant value is $f(s)$. And from $(x, y)=\left(t, s e^{-t^{2}}\right) \Longleftrightarrow(t, s)=\left(x, y e^{x^{2}}\right)$ we see that $s=y e^{x^{2}}$ is the value of the parameter s which picks out the characteristic curve which passes through a given point (x, y).
Answer. $u(x, y)=f\left(y e^{x^{2}}\right)$, for $(x, y) \in \mathbf{R}^{2}$.
2. The function $S(x, t)$ satisfies the heat equation in the region $t>0$, and since the coefficients of the heat equation don't depend on t, a translation of a solution in the t direction is still a solution. Also, since the heat equation is linear, a constant times a solution is still a solution. Thus, the function

$$
u(x, t)=\sqrt{\pi} S\left(x, t+\frac{1}{4}\right)=\frac{1}{\sqrt{4\left(t+\frac{1}{4}\right)}} \exp \left(-\frac{x^{2}}{4\left(t+\frac{1}{4}\right)}\right)
$$

satisfies the heat equation $u_{t}=u_{x x}$ in the region $t>-\frac{1}{4}$, and it clearly also satisfies the initial condition $u(x, 0)=e^{-x^{2}}$.
Alternatively, the same solution can be found as follows. If $U(\xi, t)$ is the Fourier transform of $u(x, t)$ with respect to x, then for each fixed ξ it satisfies the ODE $U_{t}=-\xi^{2} U$ (the Fourier transform of the heat equation $u_{t}=u_{x x}$) with the initial value $U(\xi, 0)=\mathscr{F}\left[e^{-x^{2}}\right]=\sqrt{\pi} e^{-\xi^{2} / 4}$ (where we used the given Fourier transform formula with $\alpha=1$). Solving this ODE gives

$$
U(\xi, t)=U(\xi, 0) e^{-\xi^{2} t}=\sqrt{\pi} e^{-\xi^{2} / 4} e^{-\xi^{2} t}=\sqrt{\pi} e^{-\xi^{2}(4 t+1) / 4} .
$$

Taking the inverse Fourier transform of this (using the same formula but in reverse and with $\alpha=1 /(4 t+1)$ instead) gives

$$
u(x, t)=\frac{1}{\sqrt{4 t+1}} \exp \left(-\frac{x^{2}}{4 t+1}\right)
$$

which agrees with what we obtained above.
Answer. $u(x, t)=\frac{1}{\sqrt{4 t+1}} \exp \left(-\frac{x^{2}}{4 t+1}\right)$.
3. (a) Suppose that Ω is a bounded nonempty open set in \mathbf{R}^{n}, and that u is harmonic on Ω and continuous on the closure $\bar{\Omega}$. Then the maximum and minimum of u on $\bar{\Omega}$ are assumed on the boundary $\partial \Omega$.
(b) Let $v(\mathbf{x})=u(\mathbf{x})-|\mathbf{x}|^{2} u(\mathbf{x})=\left(1-|\mathbf{x}|^{2}\right) u(\mathbf{x})$. According to the assumptions, v is harmonic on B and continuous on \bar{B}, and moreover it is zero on the boundary sphere $S=\partial B$, since $|\mathbf{x}|=1$ there. Since B is a bounded domain, the maximum and minimum values of the harmonic function v on the closed ball \bar{B} are attained on the boundary S, so these values are both zero, which forces v to be identically zero on \bar{B}. This means that u is identically zero on B, since the factor $1-|\mathbf{x}|^{2}$ is nonzero there and hence can be cancelled from the equality $0=v(\mathbf{x})=\left(1-|\mathbf{x}|^{2}\right) u(\mathbf{x})$. Since u is continuous out to the boundary (by assumption), it must also be zero on \bar{B}, as was to be shown.
4. The separated solutions $u(x, t)=X(x) T(t)$ matching the given boundary conditions are

$$
\cos \left(\left(n+\frac{1}{2}\right) \pi x\right) \cos \left(\left(n+\frac{1}{2}\right) \pi t\right) \quad \text { and } \quad \cos \left(\left(n+\frac{1}{2}\right) \pi x\right) \sin \left(\left(n+\frac{1}{2}\right) \pi t\right)
$$

where $n \geq 0$ is an integer. Since $u(x, 0)=0$, only terms of the second kind appear in the solution, and thus we need to determine $\left(c_{n}\right)_{n=0}^{\infty}$ such that

$$
u(x, t)=\sum_{n=0}^{\infty} c_{n} \cos \left(\left(n+\frac{1}{2}\right) \pi x\right) \sin \left(\left(n+\frac{1}{2}\right) \pi t\right)
$$

satisfies the other initial condition $u_{t}(x, 0)=1-x$, i.e.,

$$
\sum_{n=0}^{\infty} c_{n}\left(n+\frac{1}{2}\right) \pi \cos \left(\left(n+\frac{1}{2}\right) \pi x\right)=1-x, \quad 0<x<1
$$

We multiply this by $\cos \left(\left(k+\frac{1}{2}\right) \pi x\right)$ and integrate from $x=0$ to $x=1$. Due to the orthogonality of the functions $\cos \left(\left(n+\frac{1}{2}\right) \pi x\right)$ only the term with $n=k$ survives on the left-hand side, so we get (after some calculation)

$$
c_{k}\left(k+\frac{1}{2}\right) \pi \underbrace{\int_{0}^{1} \cos ^{2}\left(\left(k+\frac{1}{2}\right) \pi x\right) d x}_{=\cdots=\frac{1}{2}}=\underbrace{\int_{0}^{1}(1-x) \cos \left(\left(k+\frac{1}{2}\right) \pi x\right) d x}_{=\cdots=\frac{1}{\left(k+\frac{1}{2}\right)^{2} \pi^{2}}},
$$

i.e., $c_{k}=2\left(k+\frac{1}{2}\right)^{-3} \pi^{-3}$ for $k \in \mathbf{N}$.

Answer. $u(x, t)=\sum_{n=0}^{\infty} \frac{2}{\left(n+\frac{1}{2}\right)^{3} \pi^{3}} \cos \left(\left(n+\frac{1}{2}\right) \pi x\right) \sin \left(\left(n+\frac{1}{2}\right) \pi t\right)$.
5. By definition, u is a weak solution iff $\iint_{\mathbf{R}^{2}} u\left(\varphi_{t}+c \varphi_{x}\right) d x d t=0$ for all test functions $\varphi(x, t)$ (i.e., C^{∞}-functions with compact support).

To show that this holds when $u(x, t)=f(x-c t)$, let φ be an arbitrary test function and consider the integral

$$
\iint_{\mathbf{R}^{2}} f(x-c t)\left(\varphi_{t}(x, t)+c \varphi_{x}(x, t)\right) d x d t .
$$

The change of variables $(y, s)=(x-c t, t)$, with Jacobian determinant equal to 1 so that $d y d s=d x d t$, turns this integral into

$$
\iint_{\mathbf{R}^{2}} f(y)\left(\varphi_{t}(y+c s, s)+c \varphi_{x}(y+c s, s)\right) d y d s
$$

Here the expression in brackets equals $\frac{\partial}{\partial s}(\varphi(y+c s, s))$ by the chain rule, so we can integrate with respect to s first, to obtain

$$
\int_{y=-\infty}^{\infty} f(y) \underbrace{[\varphi(y+c s, s)]_{s=-\infty}^{\infty}}_{=0 \text { since } \varphi \text { has cpt supp. }} d y=0,
$$

as desired.
6. The PDE is of the form $A(x, y) u_{x x}+2 B(x, y) u_{x y}+C(x, y) u_{y y}=0$, with $A=1, B=0$ and $C=-e^{2 x}$, so that $A C-B^{2}=-e^{2 x}$ is negative in the whole plane \mathbf{R}^{2}; this shows that the PDE is hyperbolic everywhere.
At each point (x, y), the quadratic form $Q\left(\nu_{1}, v_{2}\right)=A(x, y) v_{1}^{2}+2 B(x, y) \nu_{1} v_{2}+$ $C(x, y) v_{2}^{2}=v_{1}^{2}-e^{2 x} v_{2}^{2}=\left(v_{1}-e^{x} v_{2}\right)\left(v_{1}+e^{x} v_{2}\right)$ is indefinite, with $Q=0$ when the vector $\left(\nu_{1}, v_{2}\right)$ is parallel to $\left(e^{x}, 1\right)=\nabla\left(e^{x}+y\right)$ or to $\left(e^{x},-1\right)=\nabla\left(e^{x}-y\right)$. This shows that $(r, s)=\left(e^{x}+y, e^{x}-y\right)$ are characteristic coordinates. (Since $e^{x}=\frac{1}{2}(r+s)$ and $y=\frac{1}{2}(r-s)$ we see that they are defined in the region $r+s>0$ in the $r s$-plane.)
The chain rule gives $u_{x}=e^{x}\left(u_{r}+u_{s}\right), u_{x x}=e^{x}\left(u_{r}+u_{s}\right)+e^{2 x}\left(u_{r r}+2 u_{r s}+\right.$ $\left.u_{s s}\right), u_{y}=u_{r}-u_{s}$ and $u_{y y}=u_{r r}-2 u_{r s}+u_{s s}$, so the PDE becomes $0=u_{x x}-$ $e^{2 x} u_{y y}=e^{x}\left(u_{r}+u_{s}\right)+e^{2 x}\left(u_{r r}+2 u_{r s}+u_{s s}\right)-e^{2 x}\left(u_{r r}-2 u_{r s}+u_{s s}\right)=e^{x}\left(u_{r}+\right.$ $\left.u_{s}\right)+4 e^{2 x} u_{r s}$, or equivalently $0=u_{r s}+\frac{1}{4 e^{x}}\left(u_{r}+u_{s}\right)=u_{r s}+\frac{1}{4(r+s)}\left(u_{r}+u_{s}\right)$.
Answer. $(r, s)=\left(e^{x}+y, e^{x}-y\right)$ are characteristic coordinates, in terms of which the PDE becomes $u_{r s}+\frac{u_{r}+u_{s}}{4(r+s)}=0$ (for $r+s>0$).

