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TATA27 Partiella differentialekvationer
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No aids allowed (except drawing tools, such as rulers, of course). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade n ∈ {3,4,5}
you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Use the method of characteristics to find a function u(x, y) which sat-
isfies ux −2x yuy = 0 and u(0, y) = f (y), where f : R → R is some given
differentiable function.

2. Find a solution u(x, t) to the heat equation ut = uxx for x ∈ R and t > 0,
with initial condition u(x,0) = e−x2

.

(Hint: Remember the fundamental solution S(x, t) = 1p
4πt

exp
(− x2

4t

)
. Or

use that the Fourier transform of e−αx2
is

∫
R e−αx2

e−iξxd x =
√

π
α

exp
(− ξ2

4α

)
for α> 0.)

3. (a) Formulate the weak maximum principle for harmonic functions.

(b) Let B = {
x ∈ Rn : |x| < 1

}
be the open unit ball in Rn . Assume that the

functions u(x) and |x|2 u(x) are harmonic on B and continuous on B .
Show that u is identically zero on B .

4. Determine the solution u(x, t ) (in the form of a Fourier-type series) to the
wave equation ut t = uxx for 0 < x < 1 and t > 0 with the boundary con-
ditions ∂u

∂x (0, t) = 0 = u(1, t) for t > 0 and the initial conditions u(x,0) = 0

and ∂u
∂t (x,0) = 1−x for 0 < x < 1.

5. Formulate what it means for u(x, t) to be a weak solution (on the whole
space R2) to the advection equation ut + cux = 0, and prove that u(x, t ) =
f (x − ct ) is a weak solution for any locally integrable function f : R → R.

6. Show that the PDE uxx = e2xuy y is hyperbolic in the whole plane R2. Find
characteristic coordinates (r, s) = (r (x, y), s(x, y)) and express the PDE in
terms of them.



Solutions for TATA27 2024-01-05

1. For a fixed s ∈ R, the characteristic curve (x(t), y(t)) through the point
(0, s) is given by ẋ = 1 and ẏ = −2x y with initial conditions x(0) = 0 and
y(0) = s. We immediately get x(t ) = t . This gives ẏ +2t y = 0, and using the
integrating factor e t 2

we find that y(t ) = se−t 2
. The PDE implies that u is

constant along each such curve, and the additional condition says that
this constant value is f (s). And from (x, y) = (t , se−t 2

) ⇐⇒ (t , s) = (x, yex2
)

we see that s = yex2
is the value of the parameter s which picks out the

characteristic curve which passes through a given point (x, y).

Answer. u(x, y) = f
(
yex2)

, for (x, y) ∈ R2.

2. The function S(x, t) satisfies the heat equation in the region t > 0, and
since the coefficients of the heat equation don’t depend on t , a translation
of a solution in the t direction is still a solution. Also, since the heat
equation is linear, a constant times a solution is still a solution. Thus, the
function

u(x, t ) =p
πS(x, t + 1

4 ) = 1√
4(t + 1

4 )
exp

(
− x2

4(t + 1
4 )

)

satisfies the heat equation ut = uxx in the region t >−1
4 , and it clearly also

satisfies the initial condition u(x,0) = e−x2
.

Alternatively, the same solution can be found as follows. If U (ξ, t) is the
Fourier transform of u(x, t) with respect to x, then for each fixed ξ it
satisfies the ODE Ut =−ξ2U (the Fourier transform of the heat equation
ut = uxx) with the initial value U (ξ,0) = F [e−x2

] = p
πe−ξ2/4 (where we

used the given Fourier transform formula with α= 1). Solving this ODE
gives

U (ξ, t ) =U (ξ,0)e−ξ2t =p
πe−ξ2/4e−ξ2t =p

πe−ξ2(4t+1)/4.

Taking the inverse Fourier transform of this (using the same formula but
in reverse and with α= 1/(4t +1) instead) gives

u(x, t ) = 1p
4t +1

exp

(
− x2

4t +1

)
,

which agrees with what we obtained above.

Answer. u(x, t ) = 1p
4t +1

exp

(
− x2

4t +1

)
.



3. (a) Suppose thatΩ is a bounded nonempty open set in Rn , and that u is
harmonic onΩ and continuous on the closureΩ. Then the maximum
and minimum of u onΩ are assumed on the boundary ∂Ω.

(b) Let v(x) = u(x)−|x|2 u(x) = (1−|x|2)u(x). According to the assump-
tions, v is harmonic on B and continuous on B , and moreover it is
zero on the boundary sphere S = ∂B , since |x| = 1 there. Since B is
a bounded domain, the maximum and minimum values of the har-
monic function v on the closed ball B are attained on the boundary S,
so these values are both zero, which forces v to be identically zero
on B . This means that u is identically zero on B , since the factor
1−|x|2 is nonzero there and hence can be cancelled from the equality
0 = v(x) = (1−|x|2)u(x). Since u is continuous out to the boundary
(by assumption), it must also be zero on B , as was to be shown.

4. The separated solutions u(x, t ) = X (x)T (t ) matching the given boundary
conditions are

cos
(
(n + 1

2 )πx
)

cos
(
(n + 1

2 )πt
)

and cos
(
(n + 1

2 )πx
)

sin
(
(n + 1

2 )πt
)
,

where n ≥ 0 is an integer. Since u(x,0) = 0, only terms of the second kind
appear in the solution, and thus we need to determine (cn)∞n=0 such that

u(x, t ) =
∞∑

n=0
cn cos

(
(n + 1

2 )πx
)

sin
(
(n + 1

2 )πt
)

satisfies the other initial condition ut (x,0) = 1−x, i.e.,

∞∑
n=0

cn(n + 1
2 )πcos

(
(n + 1

2 )πx
)= 1−x, 0 < x < 1.

We multiply this by cos
(
(k + 1

2 )πx
)

and integrate from x = 0 to x = 1. Due
to the orthogonality of the functions cos

(
(n + 1

2 )πx
)

only the term with
n = k survives on the left-hand side, so we get (after some calculation)

ck (k + 1
2 )π

∫ 1

0
cos2((k + 1

2 )πx
)
d x︸ ︷︷ ︸

= ·· · = 1

2

=
∫ 1

0
(1−x)cos

(
(k + 1

2 )πx
)
d x︸ ︷︷ ︸

= ·· · = 1

(k + 1
2 )2π2

,

i.e., ck = 2(k + 1
2 )−3π−3 for k ∈ N.

Answer. u(x, t ) =
∞∑

n=0

2

(n + 1
2 )3π3

cos
(
(n + 1

2 )πx
)

sin
(
(n + 1

2 )πt
)
.



5. By definition, u is a weak solution iff
Î

R2 u(ϕt + cϕx)d xd t = 0 for all test
functions ϕ(x, t ) (i.e., C∞-functions with compact support).

To show that this holds when u(x, t ) = f (x − ct ), let ϕ be an arbitrary test
function and consider the integralÏ

R2
f (x − ct )

(
ϕt (x, t )+ cϕx(x, t )

)
d xd t .

The change of variables (y, s) = (x−ct , t ), with Jacobian determinant equal
to 1 so that d yd s = d xd t , turns this integral intoÏ

R2
f (y)

(
ϕt (y + cs, s)+ cϕx(y + cs, s)

)
d yd s.

Here the expression in brackets equals ∂
∂s

(
ϕ(y + cs, s)

)
by the chain rule,

so we can integrate with respect to s first, to obtain∫ ∞

y=−∞
f (y)

[
ϕ(y + cs, s)

]∞
s=−∞︸ ︷︷ ︸

= 0 since ϕ has cpt supp.

d y = 0,

as desired.

6. The PDE is of the form A(x, y)uxx + 2B(x, y)ux y +C (x, y)uy y = 0, with
A = 1, B = 0 and C =−e2x , so that AC −B 2 =−e2x is negative in the whole
plane R2; this shows that the PDE is hyperbolic everywhere.

At each point (x, y), the quadratic form Q(v1, v2) = A(x, y)v2
1+2B(x, y)v1v2+

C (x, y)v2
2 = v2

1−e2x v2
2 = (v1−ex v2)(v1+ex v2) is indefinite, with Q = 0 when

the vector (v1, v2) is parallel to (ex ,1) =∇(ex + y) or to (ex ,−1) =∇(ex − y).
This shows that (r, s) = (ex + y,ex − y) are characteristic coordinates. (Since
ex = 1

2 (r + s) and y = 1
2 (r − s) we see that they are defined in the region

r + s > 0 in the r s-plane.)

The chain rule gives ux = ex(ur +us), uxx = ex(ur +us)+e2x(ur r +2ur s +
uss), uy = ur −us and uy y = ur r −2ur s +uss , so the PDE becomes 0 = uxx −
e2xuy y = ex (ur +us)+e2x (ur r +2ur s +uss)−e2x (ur r −2ur s +uss) = ex (ur +
us)+4e2xur s , or equivalently 0 = ur s + 1

4ex (ur +us) = ur s + 1
4(r+s) (ur +us).

Answer. (r, s) = (ex + y,ex − y) are characteristic coordinates, in terms of

which the PDE becomes ur s + ur +us

4(r + s)
= 0 (for r + s > 0).


