Linköpings universitet Matematiska institutionen Hans Lundmark

TATA27 Partiella differentialekvationer

Tentamen 2024-01-05 kl. 8.00-12.00

No aids allowed (except drawing tools, such as rulers, of course). You may write your answers in English or in Swedish, or some mixture thereof.

Each problem is marked *pass* (3 or 2 points) or *fail* (1 or 0 points). For grade $n \in \{3, 4, 5\}$ you need at least *n* passed problems and at least 3n - 1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

- 1. Use the method of characteristics to find a function u(x, y) which satisfies $u_x 2xyu_y = 0$ and u(0, y) = f(y), where $f: \mathbf{R} \to \mathbf{R}$ is some given differentiable function.
- 2. Find a solution u(x, t) to the heat equation $u_t = u_{xx}$ for $x \in \mathbf{R}$ and t > 0, with initial condition $u(x, 0) = e^{-x^2}$.

(Hint: Remember the fundamental solution $S(x, t) = \frac{1}{\sqrt{4\pi t}} \exp\left(-\frac{x^2}{4t}\right)$. Or use that the Fourier transform of $e^{-\alpha x^2}$ is $\int_{\mathbf{R}} e^{-\alpha x^2} e^{-i\xi x} dx = \sqrt{\frac{\pi}{\alpha}} \exp\left(-\frac{\xi^2}{4\alpha}\right)$ for $\alpha > 0$.)

- 3. (a) Formulate the weak maximum principle for harmonic functions.
 - (b) Let $B = \{\mathbf{x} \in \mathbf{R}^n : |\mathbf{x}| < 1\}$ be the open unit ball in \mathbf{R}^n . Assume that the functions $u(\mathbf{x})$ and $|\mathbf{x}|^2 u(\mathbf{x})$ are harmonic on B and continuous on \overline{B} . Show that u is identically zero on \overline{B} .
- 4. Determine the solution u(x, t) (in the form of a Fourier-type series) to the wave equation $u_{tt} = u_{xx}$ for 0 < x < 1 and t > 0 with the boundary conditions $\frac{\partial u}{\partial x}(0, t) = 0 = u(1, t)$ for t > 0 and the initial conditions u(x, 0) = 0 and $\frac{\partial u}{\partial t}(x, 0) = 1 x$ for 0 < x < 1.
- 5. Formulate what it means for u(x, t) to be a weak solution (on the whole space \mathbf{R}^2) to the advection equation $u_t + cu_x = 0$, and prove that u(x, t) = f(x ct) is a weak solution for any locally integrable function $f: \mathbf{R} \to \mathbf{R}$.
- 6. Show that the PDE $u_{xx} = e^{2x} u_{yy}$ is hyperbolic in the whole plane \mathbb{R}^2 . Find characteristic coordinates (r, s) = (r(x, y), s(x, y)) and express the PDE in terms of them.

Solutions for TATA27 2024-01-05

1. For a fixed $s \in \mathbf{R}$, the characteristic curve (x(t), y(t)) through the point (0, s) is given by $\dot{x} = 1$ and $\dot{y} = -2xy$ with initial conditions x(0) = 0 and y(0) = s. We immediately get x(t) = t. This gives $\dot{y} + 2ty = 0$, and using the integrating factor e^{t^2} we find that $y(t) = se^{-t^2}$. The PDE implies that u is constant along each such curve, and the additional condition says that this constant value is f(s). And from $(x, y) = (t, se^{-t^2}) \iff (t, s) = (x, ye^{x^2})$ we see that $s = ye^{x^2}$ is the value of the parameter s which picks out the characteristic curve which passes through a given point (x, y).

Answer. $u(x, y) = f(ye^{x^2})$, for $(x, y) \in \mathbb{R}^2$.

2. The function S(x, t) satisfies the heat equation in the region t > 0, and since the coefficients of the heat equation don't depend on t, a translation of a solution in the t direction is still a solution. Also, since the heat equation is linear, a constant times a solution is still a solution. Thus, the function

$$u(x,t) = \sqrt{\pi}S(x,t+\frac{1}{4}) = \frac{1}{\sqrt{4(t+\frac{1}{4})}} \exp\left(-\frac{x^2}{4(t+\frac{1}{4})}\right)$$

satisfies the heat equation $u_t = u_{xx}$ in the region $t > -\frac{1}{4}$, and it clearly also satisfies the initial condition $u(x, 0) = e^{-x^2}$.

Alternatively, the same solution can be found as follows. If $U(\xi, t)$ is the Fourier transform of u(x, t) with respect to x, then for each fixed ξ it satisfies the ODE $U_t = -\xi^2 U$ (the Fourier transform of the heat equation $u_t = u_{xx}$) with the initial value $U(\xi, 0) = \mathscr{F}[e^{-x^2}] = \sqrt{\pi}e^{-\xi^2/4}$ (where we used the given Fourier transform formula with $\alpha = 1$). Solving this ODE gives

$$U(\xi,t) = U(\xi,0) e^{-\xi^2 t} = \sqrt{\pi} e^{-\xi^2/4} e^{-\xi^2 t} = \sqrt{\pi} e^{-\xi^2(4t+1)/4}.$$

Taking the inverse Fourier transform of this (using the same formula but in reverse and with $\alpha = 1/(4t+1)$ instead) gives

$$u(x,t) = \frac{1}{\sqrt{4t+1}} \exp\left(-\frac{x^2}{4t+1}\right),$$

which agrees with what we obtained above.

Answer. $u(x, t) = \frac{1}{\sqrt{4t+1}} \exp\left(-\frac{x^2}{4t+1}\right).$

- 3. (a) Suppose that Ω is a **bounded** nonempty open set in \mathbb{R}^n , and that *u* is harmonic on Ω and continuous on the closure $\overline{\Omega}$. Then the maximum and minimum of *u* on $\overline{\Omega}$ are assumed on the boundary $\partial\Omega$.
 - (b) Let $v(\mathbf{x}) = u(\mathbf{x}) |\mathbf{x}|^2 u(\mathbf{x}) = (1 |\mathbf{x}|^2)u(\mathbf{x})$. According to the assumptions, v is harmonic on B and continuous on \overline{B} , and moreover it is zero on the boundary sphere $S = \partial B$, since $|\mathbf{x}| = 1$ there. Since B is a bounded domain, the maximum and minimum values of the harmonic function v on the closed ball \overline{B} are attained on the boundary S, so these values are both zero, which forces v to be identically zero on \overline{B} . This means that u is identically zero on B, since the factor $1 |\mathbf{x}|^2$ is nonzero there and hence can be cancelled from the equality $0 = v(\mathbf{x}) = (1 |\mathbf{x}|^2)u(\mathbf{x})$. Since u is continuous out to the boundary (by assumption), it must also be zero on \overline{B} , as was to be shown.
- 4. The separated solutions u(x, t) = X(x)T(t) matching the given boundary conditions are

$$\cos((n+\frac{1}{2})\pi x)\cos((n+\frac{1}{2})\pi t)$$
 and $\cos((n+\frac{1}{2})\pi x)\sin((n+\frac{1}{2})\pi t)$,

where $n \ge 0$ is an integer. Since u(x, 0) = 0, only terms of the second kind appear in the solution, and thus we need to determine $(c_n)_{n=0}^{\infty}$ such that

$$u(x,t) = \sum_{n=0}^{\infty} c_n \cos\left((n+\frac{1}{2})\pi x\right) \sin\left((n+\frac{1}{2})\pi t\right)$$

satisfies the other initial condition $u_t(x, 0) = 1 - x$, i.e.,

$$\sum_{n=0}^{\infty} c_n (n + \frac{1}{2}) \pi \cos\left((n + \frac{1}{2}) \pi x\right) = 1 - x, \qquad 0 < x < 1.$$

We multiply this by $\cos((k + \frac{1}{2})\pi x)$ and integrate from x = 0 to x = 1. Due to the orthogonality of the functions $\cos((n + \frac{1}{2})\pi x)$ only the term with n = k survives on the left-hand side, so we get (after some calculation)

$$c_k(k+\frac{1}{2})\pi \underbrace{\int_0^1 \cos^2((k+\frac{1}{2})\pi x) dx}_{=\dots=\frac{1}{2}} = \underbrace{\int_0^1 (1-x) \cos((k+\frac{1}{2})\pi x) dx}_{=\dots=\frac{1}{(k+\frac{1}{2})^2 \pi^2}}$$

i.e., $c_k = 2(k + \frac{1}{2})^{-3}\pi^{-3}$ for $k \in \mathbb{N}$.

Answer. $u(x, t) = \sum_{n=0}^{\infty} \frac{2}{(n+\frac{1}{2})^3 \pi^3} \cos\left((n+\frac{1}{2})\pi x\right) \sin\left((n+\frac{1}{2})\pi t\right).$

5. By definition, *u* is a weak solution iff $\iint_{\mathbf{R}^2} u(\varphi_t + c\varphi_x) dx dt = 0$ for all test functions $\varphi(x, t)$ (i.e., C^{∞} -functions with compact support).

To show that this holds when u(x, t) = f(x - ct), let φ be an arbitrary test function and consider the integral

$$\iint_{\mathbf{R}^2} f(x-ct) \big(\varphi_t(x,t) + c \varphi_x(x,t) \big) dx dt$$

The change of variables (y, s) = (x - ct, t), with Jacobian determinant equal to 1 so that dyds = dxdt, turns this integral into

$$\iint_{\mathbf{R}^2} f(y) \big(\varphi_t(y+cs,s) + c\varphi_x(y+cs,s) \big) dy ds.$$

Here the expression in brackets equals $\frac{\partial}{\partial s} (\varphi(y + cs, s))$ by the chain rule, so we can integrate with respect to *s* first, to obtain

$$\int_{y=-\infty}^{\infty} f(y) \underbrace{\left[\varphi(y+cs,s)\right]_{s=-\infty}^{\infty}}_{=0 \text{ since } \varphi \text{ has cpt supp.}} dy = 0,$$

as desired.

6. The PDE is of the form $A(x, y)u_{xx} + 2B(x, y)u_{xy} + C(x, y)u_{yy} = 0$, with A = 1, B = 0 and $C = -e^{2x}$, so that $AC - B^2 = -e^{2x}$ is negative in the whole plane \mathbb{R}^2 ; this shows that the PDE is hyperbolic everywhere.

At each point (x, y), the quadratic form $Q(v_1, v_2) = A(x, y)v_1^2 + 2B(x, y)v_1v_2 + C(x, y)v_2^2 = v_1^2 - e^{2x}v_2^2 = (v_1 - e^x v_2)(v_1 + e^x v_2)$ is indefinite, with Q = 0 when the vector (v_1, v_2) is parallel to $(e^x, 1) = \nabla(e^x + y)$ or to $(e^x, -1) = \nabla(e^x - y)$. This shows that $(r, s) = (e^x + y, e^x - y)$ are characteristic coordinates. (Since $e^x = \frac{1}{2}(r + s)$ and $y = \frac{1}{2}(r - s)$ we see that they are defined in the region r + s > 0 in the *rs*-plane.)

The chain rule gives $u_x = e^x(u_r + u_s)$, $u_{xx} = e^x(u_r + u_s) + e^{2x}(u_{rr} + 2u_{rs} + u_{ss})$, $u_y = u_r - u_s$ and $u_{yy} = u_{rr} - 2u_{rs} + u_{ss}$, so the PDE becomes $0 = u_{xx} - e^{2x}u_{yy} = e^x(u_r + u_s) + e^{2x}(u_{rr} + 2u_{rs} + u_{ss}) - e^{2x}(u_{rr} - 2u_{rs} + u_{ss}) = e^x(u_r + u_s) + 4e^{2x}u_{rs}$, or equivalently $0 = u_{rs} + \frac{1}{4e^x}(u_r + u_s) = u_{rs} + \frac{1}{4(r+s)}(u_r + u_s)$. **Answer.** $(r, s) = (e^x + y, e^x - y)$ are characteristic coordinates, in terms of which the PDE becomes $u_{rs} + \frac{u_r + u_s}{4(r+s)} = 0$ (for r + s > 0).