Hand-in Exercises 2, TATA49 Geometry with Applications

Maple or Matlab may be used in the calculations.

The exercises are customised by your birthdays as in the previous sheet of exercises.

Exercise 1 Do your computer aided portrait with instances of a quadrangle with vertices O(0,0), $R_1(q_1+r_1+5r_2,0)$, $R_3(q_1+r_1,5r_2)$, $R_2(2q_1+2r_1+5r_2,5r_2)$. First of all transform the quadrangle such that the side has length 50. Now, the mouth, centered on width has ratios 1:15 (width) and 1:50 (height) to the face, the height of the mouth divides the height of the face in ratio 1:9 from the bottom. The two eyes lie (also symmetric in width) on a height 3:4 to the face height; they have ratio 1:20 to the face (in both measures). Which affine transformations do you have to do? Give their matrices.

Exercise 2 Determine the images under the stereographic projection $\varphi : \widehat{\mathbb{C}} \to \mathbb{S}^2$ of all the circles in \mathbb{C} with equations $x^2 + y^2 - 2ay + a^2 - 1 = 0$, with $a \in \mathbb{R}$ a parameter.

Exercise 3 Use spherical coordinates $\mathbf{x}(\lambda, \varphi) = (\cos(\lambda)\cos(\varphi), \sin(\lambda)\cos(\varphi), \sin(\varphi))$, where λ is the longitude and φ is the latitude to provide a parametrization of the circles obtained in the previous exercise using as parameter the latitude φ .

Exercise 4 Determine the images under the inverse of the stereographic projection $\phi : \mathbb{S}^2 \to \widehat{\mathbb{C}}$ of all the great circles in \mathbb{S}^2 determined by the planes $cx_2 - \sqrt{1 - c^2}x_3 = 0$, with $-\pi/2 < c < \pi/2$ a parameter.

Exercise 5 Calculate the distances of the great circles in the family in Exercise 4 to the North Pole N.

Exercise 6 a) Calculate the angles in the spherical triangle with vertices A (longitude $(r_2+3)(p_1+p_2)$ deg, latitude 0 deg), B (longitude 0 deg, latitude q_2q_1+45 deg) and C (longitude $(r_1-2)p_2$ deg, latitude 30 deg). Observation $(r_2+3)(p_1+p_2)$ is a number with two or three digits: p_1+p_2 in the units and r_2+3 in the tens, and possible hundreds. In the same way q_2q_1 is a number with two digits: q_1 in the units and q_2 in the tens, and $(r_1-2)p_2$ is a number with two digits: p_2 in the units and r_1-2 in the tens.

b) Calculate the area of the triangle if we consider that the triangle is on Earth (Radius of Earth is 6371 km).

Exercise 7 a) Determine the great circles that support the sides of the spherical triangle in exercise 6 and their images under the inverse of the stereographic projection.

b) Determine the sizes of the edges of the spherical triangle (on Earth) in exercise 6 (Radius of Earth is 6371 km).

Exercise 8 Consider \mathbb{R}^4 with coordinates $\mathbf{v} = (v_1, v_2, v_3, v_0)$ (Observe that the real part of the quaternion is the fourth coordinate). Given the quaternion $q_0 = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k} + a_0 = ((a_1, a_2, a_3), a_0)$, show that the multiplication with q_0 to the left is a linear transformation in \mathbb{R}^4 with matrix

(a_0	$-a_3$	a_2	a_1	
	a_3	a_0	$-a_1$	a_2	
	$-a_2$	a_1	a_0	a_3	
/	$-a_1$	$-a_2$	$-a_3$	a_0 /	
ĺ	-	-	-	-	

Calculate the matrix for the multiplication with q_0 on the right.

- **Exercise 9** 1. Use Exercise 8 to determine the matrix of the rotation in \mathbb{A}^3 with quaternion $q_0 = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} + a_0, |q_0| = 1$.
 - 2. Use Exercise 8 to determine the matrix of the reflection in \mathbb{A}^3 on the plane with equation $8x_1 + 4x_2 8x_3 = 0$. Observe that the last row and column of the matrix equal (0,0,0,1).

Exercise 10 Consider an animation of an object with start orientation (time t = 0) given by the quaternion $q_s = (r_1+p_1, (r_2+p_2, p_1+q_2, q_1+p_2))/l$ where $l = \sqrt{(q_1+p_2)^2 + (p_1+q_2)^2 + (r_2+p_2)^2 + (r_1+p_1)^2}$ and final orientation (time t = 1) given by the quaternion $q_f = (1/2, (-1/2, 1/2, -1/2))$. Give the orientations at times t = (2j - 1)/20, j = 0, 1, 2, ..., 10. Use Exercise 9.1 to give the matrices of the rotations corresponding to the orientations for times $t_1 = (p_1 + q_2 + r_2)/20$ and $t_1 = (3p_1 + 3p_2)/20$

Exercise 11 Identify the isometry with matrix:

 $\begin{pmatrix} -1/3 & (1-\sqrt{3})/3 & (-1-\sqrt{3})/3 & -1/3 \\ (1+\sqrt{3})/3 & -1/3 & (1-\sqrt{3})/3 & -2/3 \\ (-1+\sqrt{3})/3 & (1+\sqrt{3})/3 & -1/3 & 2/3 \\ 0 & 0 & 0 & 1 \end{pmatrix} . Does the isometry fix some plane? Which? Does if fix any point or line?$

Exercise 12 Consider the 3D-rotation given by the quaternion $(\cos(r_2\pi/20), \sin(r_2\pi/20)(0, 0, 1))$. Show that this rotation is a rotation f of \mathbb{S}^2 . Show that the transformation $F = \varphi^{-1} \cdot f \cdot \varphi$ is a rotation of the (extended) plane. Determine its centre and angle.

Exercise 13 Consider a computer animation consisting only of translations. First translation T_0 has vector \mathbf{v}_0 and last translation T_1 has vector \mathbf{v}_1 . Show that any intermediate translation T(t), $0 \le t \le 1$, in the animation can be written $T(t) = (1-t)T_0 + tT_1$. Give the matrix of any intermediate translation.

Exercise 14 Describe the symmetries of the friezes below:

