Exercises on Quaternions, 3D and Polyhedra

Exercise 1 Consider an animation for change of orientation of an object, i.e. rotations. Start orientation R_0 gives of the unit quaternion $q_0 = (2/7, 3/7, 0, 6/7)$ and last orientation R_1 has quaternion $q_1 = (1/2, 1/2, -1/2, 1/2)$. Give a general quaternion R(t), $0 \le t \le 1$, in the animation using SLERP. Use MATLAB to calculate the quaternions for $t = j/100, 0 \le j \le 100$.

Exercise 2 Determine the matrix and the quaternion of the reflection on the plane $6x_1 - 3x_2 - 2x_3 = 0$.

Exercise 3 Consider the quaternions $q_1 = (0, 1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$ and $q_2 = (0, 5/12, 7/12, 0)$. Let $S_{q_i}(p) = -q_i p \overline{q_i}$ be reflections. Determine the axes and angles of the rotations S_2S_1 and S_1S_2 . Numerical approximation for there angles.

Exercise 4 Consider rotations with axis through origin given by the quaternions $q_1 = (3/7, 0, 6/7, 2/7)$ and $q_2 = (4/9, 1/9, 8/9, 0)$. Determine the rotations with quaternions q_1q_2 och q_2q_1 .

Exercise 5 Consider the regular polygons P_n and P_{2n} with n and 2n sides respectively. Show that the symmetry group of P_n is a subgroup of the symmetry group of P_{2n} . Which transformations are in the second symmetry group and not in the first one?

Exercise 6 Show that the affine transformation of \mathbb{E}^3 with matrix

 $\begin{pmatrix} \frac{2\sqrt{2}+3}{6} & \frac{2\sqrt{2}-3}{6} & \frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{2\sqrt{2}-3}{6} & \frac{2\sqrt{2}+3}{6} & \frac{1}{3\sqrt{2}} & 0 \\ \frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{-4}{3\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & 0 & 1 \end{pmatrix} is an isometry of <math>\mathbb{E}^3$. Decompose it in a

product of reflections. How many reflections?

Exercise 7 Identify the isometry with matrix:

$$\begin{pmatrix} -1/3 & (1-\sqrt{3})/3 & (-1-\sqrt{3})/3 & -1/3\\ (1+\sqrt{3})/3 & -1/3 & (1-\sqrt{3})/3 & -2/3\\ (-1+\sqrt{3})/3 & (1+\sqrt{3})/3 & -1/3 & 2/3\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
 Does the isometry fix

some plane? Which?

Exercise 8 Determine if the affine transformation of \mathbb{E}^3 with matrix

 $\begin{pmatrix} 6/7 & 2/7 & 3/7 & 1/14 \\ 2/7 & 3/7 & -6/7 & -1/7 \\ -3/7 & 6/7 & 2/7 & 1/7 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is a screw-motion or a rotation of \mathbb{E}^3 . De-

compose it in a product of reflections. Determine the axis, and the angle of the motion.

Exercise 9 Determine the matrix of the affine transformation of \mathbb{E}^3 that takes P(0,0,1) to P'(1,0,0), Q(-1,0,-1) to Q'(1,1,0), R(1,2,3) to R'(1,1,1), and S(1,0,0) to S'(0,1,0).

Exercise 10 Consider the unit quaternion $q = (\cos \theta, \sin \theta \mathbf{v})$, with $|\mathbf{v}| = 1$. Given a puer quaternion $p = (0, \mathbf{p})$ we define $C_q(\mathbf{p}) = qpq^{-1}$. Show that $C_q(\mathbf{p}) = (0, \cos 2\theta \mathbf{p} + 2(\sin \theta)^2 (\mathbf{p} \cdot \mathbf{v}) \mathbf{v} - \sin 2\theta (\mathbf{p} \times \mathbf{v}))$.

Exercise 11 Let $p = (0, \mathbf{p})$ and $q = (0, \mathbf{q})$ be puer quaternions such that \mathbf{p} orthogonal to \mathbf{q} . Show that $-qpq^{-1} = p$

Exercise 12 Show that the tetrahedron with vertices A(2, 2, 2, 1), B(2, -2, -2, 1), C(-2, -2, 2, 1), D(-2, 2, -2, 1) is regular.

Give the matrix of the antipodal transformation \dashv , also called reflection across the origin O(0,0,0,1), defined by $\dashv(P(x,y,z)) = P'(-x,-y,-z)$. Show that \dashv is a symmetry of the tetrahedron above.