Exercises on Quaternions, 3D and Polyhedra

Exercise 1 Consider an animation for change of orientation of an object, i.e. rotations. Start orientation R_{0} gives of the unit quaternion $q_{0}=(2 / 7,3 / 7,0,6 / 7)$ and last orientation R_{1} has quaternion $q_{1}=(1 / 2,1 / 2,-1 / 2,1 / 2)$. Give a general quaternion $R(t), 0 \leq t \leq 1$, in the animation using SLERP. Use MATLAB to calculate the quaternions for $t=j / 100,0 \leq j \leq 100$.

Exercise 2 Determine the matrix and the quaternion of the reflection on the plane $6 x_{1}-3 x_{2}-2 x_{3}=0$.

Exercise 3 Consider the quaternions $q_{1}=(0,1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})$ and $q_{2}=$ $(0,5 / 12,7 / 12,0)$. Let $S_{q_{i}}(p)=-q_{i} p \bar{q}_{i}$ be reflections. Determine the axes and angles of the rotations $S_{2} S_{1}$ and $S_{1} S_{2}$. Numerical approximation for there angles.

Exercise 4 Consider rotations with axis through origin given by the quaternions $q_{1}=(3 / 7,0,6 / 7,2 / 7)$ and $q_{2}=(4 / 9,1 / 9,8 / 9,0)$. Determine the rotations with quaternions $q_{1} q_{2}$ och $q_{2} q_{1}$.

Exercise 5 Consider the regular polygons P_{n} and $P_{2 n}$ with n and $2 n$ sides respectively. Show that the symmetry group of P_{n} is a subgroup of the symmetry group of $P_{2 n}$. Which transformations are in the second symmetry group and not in the first one?

Exercise 6 Show that the affine transformation of \mathbb{E}^{3} with matrix

$$
\left(\begin{array}{cccc}
\frac{2 \sqrt{2}+3}{6} & \frac{2 \sqrt{2}-3}{6} & \frac{1}{3 \sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{2 \sqrt{2}-3}{6} & \frac{2 \sqrt{2}+3}{6} & \frac{1}{3 \sqrt{2}} & 0 \\
\frac{1}{3 \sqrt{2}} & \frac{1}{3 \sqrt{2}} & \frac{-4}{3 \sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 1
\end{array}\right) \text { is an isometry of } \mathbb{E}^{3} \text {. Decompose it in a }
$$

product of reflections. How many reflections?
Exercise 7 Identify the isometry with matrix:

$$
\left(\begin{array}{cccc}
-1 / 3 & (1-\sqrt{3}) / 3 & (-1-\sqrt{3}) / 3 & -1 / 3 \\
(1+\sqrt{3}) / 3 & -1 / 3 & (1-\sqrt{3}) / 3 & -2 / 3 \\
(-1+\sqrt{3}) / 3 & (1+\sqrt{3}) / 3 & -1 / 3 & 2 / 3 \\
0 & 0 & 0 & 1
\end{array}\right) \text {. Does the isometry fix }
$$

some plane? Which?
Exercise 8 Determine if the affine transformation of \mathbb{E}^{3} with matrix
$\left(\begin{array}{cccc}6 / 7 & 2 / 7 & 3 / 7 & 1 / 14 \\ 2 / 7 & 3 / 7 & -6 / 7 & -1 / 7 \\ -3 / 7 & 6 / 7 & 2 / 7 & 1 / 7 \\ 0 & 0 & 0 & 1\end{array}\right)$ is a screw-motion or a rotation of \mathbb{E}^{3}. De-
compose it in a product of reflections. Determine the axis, and the angle of the motion.

Exercise 9 Determine the matrix of the affine transformation of \mathbb{E}^{3} that takes $P(0,0,1)$ to $P^{\prime}(1,0,0), Q(-1,0,-1)$ to $Q^{\prime}(1,1,0), R(1,2,3)$ to $R^{\prime}(1,1,1)$, and $S(1,0,0)$ to $S^{\prime}(0,1,0)$.

Exercise 10 Consider the unit quaternion $q=(\cos \theta, \sin \theta \mathbf{v})$, with $|\mathbf{v}|=1$. Given a puer quaternion $p=(0, \mathbf{p})$ we define $C_{q}(\mathbf{p})=q p q^{-1}$.

Show that $C_{q}(\mathbf{p})=\left(0, \cos 2 \theta \mathbf{p}+2(\sin \theta)^{2}(\mathbf{p} \cdot \mathbf{v}) \mathbf{v}-\sin 2 \theta(\mathbf{p} \times \mathbf{v})\right)$.
Exercise 11 Let $p=(0, \mathbf{p})$ and $q=(0, \mathbf{q})$ be puer quaternions such that \mathbf{p} orthogonal to q. Show that $-q p q^{-1}=p$

Exercise 12 Show that the tetrahedron with vertices $A(2,2,2,1), B(2,-2,-2,1)$, $C(-2,-2,2,1), D(-2,2,-2,1)$ is regular.

Give the matrix of the antipodal transformation \dashv, also called reflection across the origin $O\left(0,0,0,1\right.$, defined by $\dashv(P(x, y, z))=P^{\prime}(-x,-y,-z)$.

Show that \dashv is a symmetry of the tetrahedron above.

