with(LinearAlgebra) :
$A:=\operatorname{Matrix}\left(\left[\left[2,0, \frac{8}{9}\right],\left[0,2, \frac{-16}{9}\right],[0,0,2]\right]\right)$;

$$
A:=\left[\begin{array}{ccc}
2 & 0 & \frac{8}{9} \\
0 & 2 & -\frac{16}{9} \\
0 & 0 & 2
\end{array}\right]
$$

(1)
$B:=A^{(-1)} ;$

$$
B:=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{2}{9} \tag{2}\\
0 & \frac{1}{2} & \frac{4}{9} \\
0 & 0 & \frac{1}{2}
\end{array}\right]
$$

Eigenvalues (A);

$$
\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]
$$

(3)

Eigenvectors (A);

$$
\left[\begin{array}{l}
2 \tag{4}\\
2 \\
2
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Observe that the dimension of the eigenroom is $2!!$ The axis is the line generated by $\mathrm{Y}(0: 1: 0)$ and $\mathrm{X}(1: 0$: $0)$, i.e the axis is the ideal line $\mathrm{z}[0: 0: 1]$.

Tr $:=$ Transpose (B);
Eigenvalues (Tr) :
Eigenvectors (Tr);

$$
\operatorname{Tr}:=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
-\frac{2}{9} & \frac{4}{9} & \frac{1}{2}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{lll}
0 & 2 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Again the dimension of the eigenroom tfor the eigenvalue $1 / 2$ to Tr is 2 . We have a pencil of lines generated by the lines $\mathrm{z}[0: 0: 1]$ (remember that the axis is invariant as a set) and $1[2: 1: 0]$. this lines generate the point $\mathrm{C}(1:-2: 0)$, the centre of the collination. As \mathbf{C} belongs to \mathbf{z}, the collineation is an elation. [>

