Hand-in Exercises 2, TATA49 Geometry with Applications

Maple or Matlab may be used in the calculations.

The exercises are customized by your birthdays as in the previous sheet of exercises.

Exercise 1 Do your computer aided portrait with instances of a rhomb with vertices O(0,0), $R_1(q_1 + r_1, 5 + r_2)$, $R_2(q_1 + r_1, -5 - r_2)$, $R_3(2q_1 + 2r_1, 0)$. First of all transform the rhomb such that the side has length 50. The mouth has ratios 1:15 and 1:100 to the face and lies centered at the diagonal of the rhomb (the height of the face) dividing the height in ratio 1:9 from the bottom. The two eyes lie (also symmetric) on a hight 3:4 to the rhomb's hight; they have ratio 1:20 to the face. Which affine transformations do you have to do? Give their matrices.

Exercise 2 Determine the images under the stereographic projection $\varphi : \widehat{\mathbb{C}} \to \mathbb{S}^2$ of all the circles in \mathbb{C} with equations $x^2 + y^2 - 2ax - 2ay = 0$, with $a \neq 0$ a parameter.

Exercise 3 Use spherical coordinates $\mathbf{x}(\lambda, \varphi) = (\cos(\lambda)\cos(\varphi), \sin(\lambda)\cos(\varphi), \sin(\varphi))$, where λ is the longitude and φ is the latitude to provide a parametrization of the circles obtained in the previous exercise using as parameter the longitude λ .

Exercise 4 Determine the images under the inverse of stereographic projection $\phi : \mathbb{S}^2 \to \widehat{\mathbb{C}}$ of all the circles in \mathbb{S}^2 determined by the planes $x_2 - x_3 = c$, with $-\sqrt{2} < c < \sqrt{2}$ a parameter.

Exercise 5 Consider the circles on \mathbb{S}^2 in the previous exercise. What can you say on the circle corresponding to the parameter c = -1? And on its image by ϕ ? Determine the circles(s) in the family that are great circles and calculate its(their) distance to the North Pole N.

Exercise 6 a) Calculate the angles in the spherical triangle with vertices A (longitude $(r_1+3)(p_1+p_2)$ deg, latitude 0 deg), B (longitude 0 deg, latitude q_2q_1+30 deg) and C (longitude $(r_1-2)p_2$ deg, latitude 60 deg). Observation $(r_1+3)(p_1+p_2)$ is a number with three digits: $p_1 + p_2$ in the units and $r_1 + 3$ in the tens and hundreds. In the same way q_2q_1 is a number with two digits: q_1 in the units and q_2 in the tens.

b) Calculate the area of the triangle if we consider that the triangle is on Earth (Radius of Earth is 6371 km).

Exercise 7 a) Determine the great circles that support the sides of the spherical triangle in exercise 5 and their images under the inverse of the stereographic projection.

b) Determine the sizes of the edges of the spherical triangle (on Earth) in exercise 4 (Radius of Earth is 6371 km).

Exercise 8 Consider \mathbb{R}^4 with coordinates $\mathbf{v} = (v_1, v_2, v_3, v_0)$ (Observe that the real part of the quaternion is the fourth coordinate). Given the quaternion $q_0 = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} + a_0 = ((a_1, a_2, a_3), a_0)$, show that the multiplication with q_0 to the left is a linear transformation in \mathbb{R}^4 with matrix

$$\begin{pmatrix} a_0 & -a_3 & a_2 & a_1 \\ a_3 & a_0 & -a_1 & a_2 \\ -a_2 & a_1 & a_0 & a_3 \\ -a_1 & -a_2 & -a_3 & a_0 \end{pmatrix}$$

Calculate the matrix for the multiplication with q_0 on the right.

Exercise 9 1. Use Exercise 8 to determine the matrix of the rotation in \mathbb{A}^3 with quaternion $q_0 = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} + a_0, |q_0| = 1$.

2. Use Exercise 8 to determine the matrix of the reflection in \mathbb{A}^3 on the plane with equation $6x_1 - 2x_2 - 3x_3 = 0$. Observe that the last row and column of the matrix equal (0, 0, 0, 1).

Exercise 10 Consider an animation of an object with start orientation (time t = 0) given by the quaternion $q_s = (r_1, r_2, p_1 + p_2, q_1 + q_2)/l$ where $l = \sqrt{(q_1 + q_2)^2 + (p_1 + p_2)^2 + (r_2)^2 + (r_1)^2}$ and final orientation (time t = 1) given by the quaternion $q_f = (4/7, (4/7, 1/7, 4/7))$. Give the orientations at times t = j/10, j = 0, 1, 2, ..., 10.

Use Exercise 9.1 to give the matrices of the rotations corresponding to the orientations for times $t_1 = (p_1 + p_2 + q_1)/10$ and $t_1 = (2p_1 + 2p_2)/10$

Exercise 11 Identify and describe completely the isometry of \mathbb{A}^3 with matrix:

7/94/94/9-1 4/91/9-8/91 4/9-8/91/92 1 0 0 0

Start by determining its fixed points, if existing.

Exercise 12 Let q be a quaternion. Show that q is a pure quaternion iff q^2 is a non-positive real number.

Given two quaternions p,q. Show that pq = qp iff their vectorial parts are parallel. Is the statement true?

Exercise 13 Consider a computer animation consisting only of translations. First translation T_0 has vector \mathbf{v}_0 and last translation T_1 has vector \mathbf{v}_1 . Show that any intermediate translation T(t), $0 \le t \le 1$, in the animation can be written $T(t) = (1-t)T_0 + tT_1$. Give the matrix of any intermediate translation.

