Hand-in Exercises 2, TATA49 Geometry with Applications

Maple or Matlab may be used in the calculations.
The exercises are customized by your birthdays as in the previous sheet of exercises.
Exercise 1 Do your computer aided portrait with instances of a rhomb with vertices $O(0,0), R_{1}\left(q_{1}+\right.$ $\left.r_{1}, 5+r_{2}\right), R_{2}\left(q_{1}+r_{1},-5-r_{2}\right), R_{3}\left(2 q_{1}+2 r_{1}, 0\right)$. First of all transform the rhomb such that the side has length 50. The mouth has ratios 1:15 and 1:100 to the face and lies centered at the diagonal of the rhomb (the height of the face) dividing the height in ratio 1:9 from the bottom. The two eyes lie (also symmetric) on a hight 3:4 to the rhomb's hight; they have ratio 1:20 to the face. Which affine transformations do you have to do? Give their matrices.

Exercise 2 Determine the images under the stereographic projection $\varphi: \widehat{\mathbb{C}} \rightarrow \mathbb{S}^{2}$ of all the circles in \mathbb{C} with equations $x^{2}+y^{2}-2 a x-2 a y=0$, with $a \neq 0$ a parameter.

Exercise 3 Use spherical coordinates $\mathbf{x}(\lambda, \varphi)=(\cos (\lambda) \cos (\varphi), \sin (\lambda) \cos (\varphi), \sin (\varphi))$, where λ is the longitude and φ is the latitude to provide a parametrization of the circles obtained in the previous exercise using as parameter the longitude λ.

Exercise 4 Determine the images under the inverse of stereographic projection $\phi: \mathbb{S}^{2} \rightarrow \widehat{\mathbb{C}}$ of all the circles in \mathbb{S}^{2} determined by the planes $x_{2}-x_{3}=c$, with $-\sqrt{2}<c<\sqrt{2}$ a parameter.

Exercise 5 Consider the circles on \mathbb{S}^{2} in the previous exercise. What can you say on the circle corresponding to the parameter $c=-1$? And on its image by ϕ ? Determine the circles (s) in the family that are great circles and calculate its(their) distance to the North Pole N.

Exercise 6 a) Calculate the angles in the spherical triangle with vertices A (longitude $\left(r_{1}+3\right)\left(p_{1}+p_{2}\right)$ deg, latitude 0 deg), B (longitude 0 deg , latitude $q_{2} q_{1}+30 \mathrm{deg}$) and C (longitude $\left(r_{1}-2\right) p_{2}$ deg, latitude $60 \mathrm{deg})$. Observation $\left(r_{1}+3\right)\left(p_{1}+p_{2}\right)$ is a number with three digits: $p_{1}+p_{2}$ in the units and $r_{1}+3$ in the tens and hundreds. In the same way $q_{2} q_{1}$ is a number with two digits: q_{1} in the units and q_{2} in the tens.
b) Calculate the area of the triangle if we consider that the triangle is on Earth (Radius of Earth is 6371 km).

Exercise 7 a) Determine the great circles that support the sides of the spherical triangle in exercise 5 and their images under the inverse of the stereographic projection.
b) Determine the sizes of the edges of the spherical triangle (on Earth) in exercise 4 (Radius of Earth is 6371 km).

Exercise 8 Consider \mathbb{R}^{4} with coordinates $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}, v_{0}\right)$ (Observe that the real part of the quaternion is the fourth coordinate). Given the quaternion $q_{0}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}+a_{0}=\left(\left(a_{1}, a_{2}, a_{3}\right), a_{0}\right)$, show that the multiplication with q_{0} to the left is a linear transformation in \mathbb{R}^{4} with matrix
$\left(\begin{array}{cccc}a_{0} & -a_{3} & a_{2} & a_{1} \\ a_{3} & a_{0} & -a_{1} & a_{2} \\ -a_{2} & a_{1} & a_{0} & a_{3} \\ -a_{1} & -a_{2} & -a_{3} & a_{0}\end{array}\right)$.
Calculate the matrix for the multiplication with q_{0} on the right.
Exercise 9 1. Use Exercise 8 to determine the matrix of the rotation in \mathbb{A}^{3} with quaternion $q_{0}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}+a_{0},\left|q_{0}\right|=1$.
2. Use Exercise 8 to determine the matrix of the reflection in \mathbb{A}^{3} on the plane with equation $6 x_{1}-2 x_{2}-3 x_{3}=0$. Observe that the last row and column of the matrix equal $(0,0,0,1)$.

Exercise 10 Consider an animation of an object with start orientation (time $t=0$) given by the quaternion $q_{s}=\left(r_{1}, r_{2}, p_{1}+p_{2}, q_{1}+q_{2}\right) / l$ where $l=\sqrt{\left(q_{1}+q_{2}\right)^{2}+\left(p_{1}+p_{2}\right)^{2}+\left(r_{2}\right)^{2}+\left(r_{1}\right)^{2}}$ and final orientation (time $t=1$) given by the quaternion $q_{f}=(4 / 7,(4 / 7,1 / 7,4 / 7))$. Give the orientations at times $t=j / 10, j=0,1,2, \ldots, 10$.
Use Exercise 9.1 to give the matrices of the rotations corresponding to the orientations for times $t_{1}=\left(p_{1}+p_{2}+q_{1}\right) / 10$ and $t_{1}=\left(2 p_{1}+2 p_{2}\right) / 10$

Exercise 11 Identify and describe completely the isometry of \mathbb{A}^{3} with matrix:
$\left(\begin{array}{cccc}7 / 9 & 4 / 9 & 4 / 9 & -1 \\ 4 / 9 & 1 / 9 & -8 / 9 & 1 \\ 4 / 9 & -8 / 9 & 1 / 9 & 2 \\ 0 & 0 & 0 & 1\end{array}\right)$.

Start by determining its fixed points, if existing.
Exercise 12 Let q be a quaternion. Show that q is a pure quaternion iff q^{2} is a non-positive real number.
Given two quaternions p, q. Show that $p q=q p$ iff their vectorial parts are parallel. Is the statement true?

Exercise 13 Consider a computer animation consisting only of translations. First translation T_{0} has vector \mathbf{v}_{0} and last translation T_{1} has vector \mathbf{v}_{1}. Show that any intermediate translation $T(t)$, $0 \leq t \leq 1$, in the animation can be written $T(t)=(1-t) T_{0}+t T_{1}$. Give the matrix of any intermediate translation.

Exercise 14 Describe the symmetries of the friezes below:

