with(LinearAlgebra) :
$A:=\operatorname{Matrix}([[1 ., 0 ., 1],.[0 ., 2 ., 0],.[-3 ., 0 ., 5]]$.

$$
A:=\left[\begin{array}{ccc}
1 . & 0 . & 1 . \\
0 . & 2 . & 0 . \\
-3 . & 0 . & 5 .
\end{array}\right]
$$

$B:=A^{(-1)}:$
Eigenvalues (A);

$$
\left[\begin{array}{l}
2 .+0 . \mathrm{I} \\
4 .+0 . \mathrm{I} \\
2 .+0 . \mathrm{I}
\end{array}\right]
$$

(2)

Eigenvectors (A);

$$
\left[\begin{array}{c}
2 .+0 . \mathrm{I} \\
4 .+0 . \mathrm{I} \\
2 .+0 . \mathrm{I}
\end{array}\right],\left[\begin{array}{ccc}
-0.707106781186547+0 . \mathrm{I} & -0.316227766016838+0 . \mathrm{I} & 0 . \mathrm{I} \\
0 . \mathrm{I} & 0 . \mathrm{I} & 1 .+0 . \mathrm{I} \\
-0.707106781186547+0 . \mathrm{I} & -0.948683298050514+0 . \mathrm{I} & 0 . \mathrm{I}
\end{array}\right]
$$

(3)
$\operatorname{Tr}:=\operatorname{Transpose}(B)$;
Eigenvalues (Tr);
Eigenvectors (Tr);

$$
\begin{gathered}
\operatorname{Tr}:=\left[\begin{array}{ccc}
0.625000000000000 & -0 . & 0.3750000000000000 \\
0 . & 0.500000000000000 & 0 . \\
-0.125000000000000 & 0 . & 0.125000000000000
\end{array}\right] \\
\qquad\left[\begin{array}{c}
0.500000000000000+0 . \mathrm{I} \\
0.250000000000000+0 . \mathrm{I} \\
0.500000000000000+0 . \mathrm{I}
\end{array}\right]
\end{gathered}
$$

$$
\left[\begin{array}{l}
0.500000000000000+0 . \mathrm{I} \\
0.250000000000000+0 . \mathrm{I} \\
0.500000000000000+0 . \mathrm{I}
\end{array}\right]
$$

(4)

$$
\left[\begin{array}{ccc}
0.948683298050514+0 . \mathrm{I} & -0.707106781186547+0 . \mathrm{I} & 0 . \mathrm{I} \\
0 . \mathrm{I} & 0 . \mathrm{I} & 1 .+0 . \mathrm{I} \\
-0.316227766016838+0 . \mathrm{I} & 0.707106781186547+0 . \mathrm{I} & 0 . \mathrm{I}
\end{array}\right]
$$

1. Observe that the eigenvalue with multiplicity 2 for A is 2 that appears as first and third eigenvalue. The eigenvalue 4 is simple
2. The eigenvectors associated to the eigenvalue 2 for A are the points $\mathrm{P}(-1: 0:-1)$ and $\mathrm{Y}(0: 1: 0)$ that generated the line $m[1: 0:-1]$: a line of fixed points, m is the axis.
3. The point $C(1: 0: 3)$ (second eigenvector to A), is the eigenvector to $4 . \mathbf{C}$ is the centre.
4. Observe that \mathbf{m} appears as the egenvector to the eigenvalue $\mathbf{1 / 4}$ to $\mathbf{~ T r}$ (of course if a line is inveriant pointwise it is invariant as a set).
5. The lines l[3: 0:-1] (eigenvector no. 1 to Tr) and $\mathbf{n}[\mathbf{0 , 1 , 0}]$ (eigenvector no. 3 to Tr) are the eigenvector to the eigenvalue $1 / 2$ to $\mathbf{T r}$. They pass the centre $\mathbf{C (1 : 0 : 3) , ~}$
