Some examples and commands useful in Linear Geometry

The first thing to be done in Maple is to loaded the packages with routines: LinearAlgbra, plots, stats. There is a package Geometry, but it should not be used.

The routines from linear algebra used by us are CharacteristicMatrix, CrossProduct, Determinant, DotProduct, Eigenvalues, Eigenvectors, GaussianElimination, JordanBlockMatrix, JordanForm, LinearSolve, MatrixInverse, MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial, Minor, Modular, Multiply, NullSpace, Transpose,
with(plots);
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]
with(LinearAlgebra); with(SolveTools);
[\&x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix, CharacteristicPolynomial, Column, ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix, CompressedSparseForm, ConditionNumber, ConstantMatrix, ConstantVector, Copy, CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions, DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm, FromCompressedSparseForm, FromSplitForm, GaussianElimination, GenerateEquations, GenerateMatrix, Generic, GetResultDataType, GetResultShape, GïvensRotationMatrix, GramSchmidt, HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct, LA_Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map, Map2, MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse,

MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize, NullSpace, OuterProductMatrix, Permanent, Pivot, PopovForm, ProjectionMatrix, QRDecomposition, RandomMatrix, RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm, Row, RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector, SchurForm, SingularValues, SmithForm, SplitForm, StronglyConnectedBlocks, SubMatrix, SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix, Trace, Transpose,
TridiagonalForm, UnitVector, VandermondeMatrix, VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip]
[AbstractRootOfSolution, Basis, CancelInverses, Combine, Complexity, Engine, GreaterComplexity, Identity, Inequality, Linear, Parametric, Polynomial, PolynomialSystem, RationalCoefficients, SemiAlgebraic, SortByComplexity]

1) In this example we multiply the matrices A of isometries (parametrised by the angle of rotation and the translation vector) with the points in a segment (parametrised by a parametre x). The result is an annulus, that we plot.

$$
\begin{align*}
& A:=\operatorname{Matrix}\left(\left[\left[\cos \left(\frac{2 \cdot \operatorname{Pi} \cdot t}{10}\right),-\sin \left(\frac{2 \cdot \pi \cdot t}{10}\right), 5-s\right],\left[\sin \left(\frac{2 \cdot \pi \cdot t}{10}\right), \cos \left(\frac{2 \cdot \pi \cdot t}{10}\right), 3+s\right]\right.\right. \\
& \quad[0,0,1]]) ; \\
& A:=\left[\begin{array}{ccc}
\cos \left(\frac{\pi t}{5}\right) & -\sin \left(\frac{\pi t}{5}\right) & 5-s \\
\sin \left(\frac{\pi t}{5}\right) & \cos \left(\frac{\pi t}{5}\right) & 3+s \\
0 & 0
\end{array}\right] \tag{3}\\
& \mathrm{v}:=\operatorname{Vector}([[3-\mathrm{x}],[5-x],[1]]) ; \\
& v:=\left[\begin{array}{c}
3-x \\
5-x \\
1
\end{array}\right] \\
& \mathrm{w}:=\operatorname{Vector}(3,1,[3,5,1]) ;
\end{align*}
$$

$$
w:=\left[\begin{array}{l}
3 \tag{5}\\
5 \\
1
\end{array}\right]
$$

$R:=$ MatrixVectorMultiply (A, w);

$$
R:=\left[\begin{array}{c}
3 \cos \left(\frac{\pi t}{5}\right)-5 \sin \left(\frac{\pi t}{5}\right)+5-s \tag{6}\\
3 \sin \left(\frac{\pi t}{5}\right)+5 \cos \left(\frac{\pi t}{5}\right)+3+s \\
1
\end{array}\right]
$$

$S:=$ MatrixVectorMultiply (A, v);

$$
S:=\left[\begin{array}{c}
\cos \left(\frac{\pi t}{5}\right)(3-x)-\sin \left(\frac{\pi t}{5}\right)(5-x)+5-s \tag{7}\\
\sin \left(\frac{\pi t}{5}\right)(3-x)+\cos \left(\frac{\pi t}{5}\right)(5-x)+3+s \\
1
\end{array}\right]
$$

$$
\begin{gathered}
\operatorname{plot} 3 d\left(\left\{\left[3 \cos \left(\frac{1}{5} \pi t\right)-5 \sin \left(\frac{1}{5} \pi t\right)+5-s, 3 \sin \left(\frac{1}{5} \pi t\right)+5 \cos \left(\frac{1}{5} \pi t\right)+3\right.\right.\right. \\
+s, 1],[3-t, 5-t, 1],[s, s, 1]\}, t=0 . .10, s=3.00 . .5 .00, \text { axes }=\text { boxed })
\end{gathered}
$$

2) The following example is like the previous but with movements by rotations

$$
\begin{align*}
& A A:=\operatorname{matrix}\left(\left[\left[\cos \left(\pi \cdot \frac{s}{100}\right),-\sin \left(\frac{\pi \cdot s}{100}\right), 0\right],\left[\sin \left(\pi \cdot \frac{s}{100}\right), \cos \left(\pi \cdot \frac{s}{100}\right), 0\right],[0,0,\right.\right. \\
& 1]]) ; \\
& A A:=\left[\begin{array}{ccc}
\cos \left(\frac{\pi s}{100}\right) & -\sin \left(\frac{\pi s}{100}\right) & 0 \\
\sin \left(\frac{\pi s}{100}\right) & \cos \left(\frac{\pi s}{100}\right) & 0 \\
0 & 0 & 1
\end{array}\right] \tag{8}
\end{align*}
$$

$P 1:=\operatorname{vector}([1,1,1]): P 2:=\operatorname{vector}([3,2,1]):$
for m from 1 to 100 do

$$
P:=\operatorname{vector}\left(\left[\left(1-\frac{m}{100}\right) \cdot 1+\frac{m}{100} \cdot 3,\left(1-\frac{m}{100}\right) \cdot 1+\frac{m}{100} \cdot 2,1\right]\right):
$$

od
plot3d $\left(\left[1+\frac{2}{100} \cdot t+s, 1+\frac{t}{100}+s, 1\right], t=0 . .100, s=0 . .0\right.$, axes $=$ boxed $)$;

plot3d $([\cos (s) \cdot(3-t)-\sin (s) \cdot(5-t), \sin (s) \cdot(3-t)+\cos (s) \cdot(5-t), 1], s=0$

$$
\left.. \frac{\pi}{2}, t=0 . .1, \text { axes }=\text { boxed }\right) ;
$$

3) This example produces three differents fractals by randomly choosing which similarity we apply to the first point P (the origin)
with (stats[random]), with(plots) :
Mat1 := linalg[matrix]([[0.5, 0.0], [0.0, 0.5]]);
Mat2 $:=\operatorname{linalg}[$ matrix $]([[0.5,0.0],[0.0,0.5]]) ;$
Mat3 := linalg[matrix]([[0.5, 0.0], [0.0, 0.5]]);
Vector $1:=\operatorname{linalg}[$ vector $]([0,0])$;
Vector $2:=\operatorname{linalg}[$ vector $]([0,1])$:
Vector $3:=\operatorname{linalg}[$ vector $]([1,1])$:
Prob1 $:=1 / 3$:
Prob2 $:=1 / 3$:
Prob3:= $1 / 3$:
$P:=\operatorname{linalg}[$ vector $]([0,0])$:
for m from 1 to 1000 do
prob: $=$ uniform():
if prob $<$ Prob1 then $P:=\operatorname{evalm}$ (Mat1\&* $P+$ Vector 1)
elif prob $<$ Prob1 + Prob2 then $P:=\operatorname{evalm}\left(\right.$ Mat $2 \&^{*} P+$ Vector2) else $P:=\operatorname{evalm}(M a t 3$ $\&^{*} P+$ Vector 3);
fi:
$A[m, 1]:=P[1]: A[m, 2]:=P[2]:$
od:
$C:=$ matrix $(1000,2,(i, j) \rightarrow A[i, j]):$
pointplot $(C$, scaling $=$ constrained, axes $=$ none, color $=$ green $) ;$

$$
\begin{aligned}
& \text { Mat1 }:=\left[\begin{array}{cc}
0.5 & 0 . \\
0 . & 0.5
\end{array}\right] \\
& \text { Mat } 2:=\left[\begin{array}{cc}
0.5 & 0 . \\
0 . & 0.5
\end{array}\right] \\
& \text { Mat } 3:=\left[\begin{array}{cc}
0.5 & 0 . \\
0 . & 0.5
\end{array}\right] \\
& \text { Vector } 1:=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
\end{aligned}
$$

Error, Matrix index out of range
Error, (in unknown) Matrix index out of range

with(stats[random]), with(plots) :
Mat1 $:=\operatorname{linalg}[$ matrix $]([[0.5,0.0],[0.0,0.5]])$:
Mat2 $:=\operatorname{linalg}[$ matrix $]([[0.5,0.0],[0.0,0.5]])$:
Mat3 $:=\operatorname{linalg}[$ matrix] $]([0.5,0.0],[0.0,0.5]])$:
Vector $1:=\operatorname{linalg}[v e c t o r]([0,0])$:
Vector $2:=\operatorname{linalg}[$ vector $]([0,1])$:
Vector $3:=\operatorname{linalg}[$ vector $]([0.5,0.5]):$
Prob1 := 1/3:
Prob2:= 1/3:
Prob3:=1/3:
$P:=\operatorname{linalg}[$ vector $]([0,0]):$
for m from 1 to 1000 do
prob:= uniform():
if prob $<$ Prob1 then $P:=\operatorname{evalm}($ Mat1\&* $P+$ Vector 1$)$
elif prob $<$ Prob1 + Prob2 then $P:=\operatorname{evalm}\left(M a t 2 \&^{*} P+\right.$ Vector 2) else $P:=\operatorname{evalm}($ Mat 3 \&*P+Vector3);
fi:
$B[m, 1]:=P[1]: B[m, 2]:=P[2]:$
od:
$F:=$ matrix $(1000,2,(i, j) \rightarrow B[i, j]):$
pointplot $(F$, scaling $=$ constrained, axes $=$ none, color $=$ green $) ;$

with(stats[random]), with(plots) :
Mat1 $:=\operatorname{linalg}[$ matrix $]([[0.25,-0.43],[0.43,0.25]])$:
Mat2 $:=\operatorname{linalg}[$ matrix $]([[0.5,0.0],[0.0,0.5]])$:
Mat3 $:=\operatorname{linalg}[$ matrix $]([[0.5,0.0],[0.0,0.5]]):$
Vector $1:=\operatorname{linalg}[$ vector $]([0,0])$:
Vector $2:=\operatorname{linalg}[$ vector $]([0,1])$:
Vector3 $:=\operatorname{linalg}[$ vector $]([1,1])$:
Prob1 := 1/3:
Prob2:= $1 / 3$:
Prob3:= 1/3:
$P:=\operatorname{linalg}[$ vector $]([0,0]):$
for m from 1 to 1000 do
prob:= uniform():
if prob $<$ Prob1 then $P:=$ evalm(Mat1 $\&^{*} P+$ Vector1)
elif $p r o b<\operatorname{Prob1}+\operatorname{Prob} 2$ then $P:=\operatorname{evalm}(\operatorname{Mat} 2 \& * P+\operatorname{Vector} 2)$ else $P:=\operatorname{evalm}($ Mat3 \&*P+Vector3);
fi:
$A 2[m, 1]:=P[1]: A 2[m, 2]:=P[2]:$
od:
$C 2:=$ matrix $(1000,2,(i, j) \rightarrow A 2[i, j]):$
pointplot $(C 2$, scaling $=$ constrained, axes $=$ none, color $=$ green $) ;$

4) Doing the same for a Moebius transformation,

Mat2 $:=$ Matrix $\left(\left[\left[\frac{(3 \cdot m-5)}{5 \cdot m},-\frac{(4 \cdot m-5)}{5 m}, 0\right],\left[\frac{(4 \cdot m-5)}{5 m}, \frac{(3 \cdot m-5)}{5 \cdot m}, 0\right],[0.0,0.0\right.\right.$, 1.0]]):
$P:=\operatorname{vector}([1,0,1]): Q:=\operatorname{vector}([1,1,1]):$
for m from 1 to 100 do
$P:=\operatorname{evalm}\left(\operatorname{Mat} 2 \&^{*} P\right): Q:=\operatorname{evalm}(\operatorname{Mat2\& *} Q)$:
$A[m, 1]:=P[1]: A[m, 2]:=P[2]: B[m, 1]:=Q[1]: B[m, 2]:=Q[2]:$
od:
$C:=\operatorname{Matrix}(100,2,(i, j) \rightarrow A[i, j]): E:=\operatorname{Matrix}(100,2,(i, j) \rightarrow B[i, j]):$
pointplot (C, scaling $=$ constrained, axes $=$ none, color $=$ green $) ;$ pointplot $(E$, scaling $=$ constrained, axes $=$ none, color $=$ green $) ;$

©
5) This example provides the matirx of the configuration of a planar robot with two junctions (angles t1, t2), a rigid link of length 1 and periscopic hand of length s, with $s \in[0, s 1]$. The matrix is the product, in this order, $\mathrm{A}_{\mathrm{h} 2}$ the translation matrix with vector ($\mathrm{s}, 0$), A_{21} is the matrix of the rotation taking the system from link 1 to the hand, junction 2 , followed by the translation with length the length of link 1 , finally the matrix A_{10} is the matrix of the rotation with angle the angle at junction 1 . The parameters are the angles $\mathrm{t} 1, \mathrm{t} 2$, the length l of the link and the parameter s of the distance between the hand and the junction 2.

```
Ah2 := Matrix([[1, 0, s], [0, 1, 0], [0, 0, 1]]):
A21:= Matrix([[cos(t2),-\operatorname{sin}(t2),l],[\operatorname{sin}(t2),\operatorname{cos}(t2),0],[0,0,1]]):
A10:= Matrix([[cos(t1),-\operatorname{sin}(t1),0],[\operatorname{sin}(t1),\operatorname{cos}(t1),0],[0,0,1]]):
Conf := MatrixMatrixMultiply(A10, MatrixMatrixMultiply(A21, Ah2));
Conf:= [[ cos(t1) cos(t2) - sin (t1) \operatorname{sin}(t2),-\operatorname{cos}(t1)\operatorname{sin}(t2)
    - sin(t1) cos(t2), cos(t1) (cos(t2)s+l) - \operatorname{sin}(t1)\operatorname{sin}(t2)s],
    [ sin(t1) cos(t2) + cos(t1) \operatorname{sin}(t2),\operatorname{cos}(t1)\operatorname{cos}(t2)-\operatorname{sin}(t1)\operatorname{sin}(t2),
    sin}(t1)(\operatorname{cos}(t2)s+l)+\operatorname{cos}(t1)\operatorname{sin}(t2)s]
    [0, 0, 1]]
```

Observe that the configuration gives the total angle $t 1+\mathrm{t} 2$ and the vector providing the coordinates of the hand. It gives the relation between the coordinates of a point as seen by the hand, Xh , and the coordinates of the same point as seen by the controller, X0: ConfXh = X0

Using the command solve we can calculate (here algebraically) the parameters t1, t2 and s (l is a constant of the system) for given Xh and X 0 . This is what the controller does to move the hand properly, giving the angles and the lenght of the periscope. This problem is much more complicated. Observe that in the system is missing an equation: $\mathrm{t} 1+\mathrm{t} 2=$ total angle. I have not writen the equation because I pick coordinates $\mathrm{Xh}(1 / 2,1 / 2,1)$ and $\mathrm{X} 0(3,3,1)$ randomly and I write the three equations the probability the system to be inconsistent is high.

$$
\begin{align*}
& \text { solve }\left(\left\{\frac{\cos (t 1+t 2) \cdot 1}{2}-\frac{\sin (t 1+t 2) \cdot 1}{2}+\cos (t 1) \cdot(\cos (t 2) \cdot s+2)-\sin (t 1) \cdot \sin (t 2)\right.\right. \\
& \quad \cdot s=3, \frac{\sin (t 1+t 2) \cdot 1}{2}+\frac{\cos (t 1+t 2) \cdot 1}{2}+\sin (t 1) \cdot(\cos (t 2) \cdot s+l)+\cos (t 1) \\
& \quad \cdot \sin (t 2) \cdot s=3\},[t 1, t 2, s]) ; \\
& {\left[\left[t 1=t 1, t 2=\arctan \left(\text { RootOf } \left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}\right.\right.\right.\right.\right.} \tag{10}\\
& \quad-48 \cos (t 1)+88) _Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)\right. \\
& \quad+12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2} \\
& \quad-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2} \\
& \quad+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l \\
& \left.\quad-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right),\left(\left(2 \sin (t 1)^{2} l-4 \sin (t 1)^{2}-6 \sin (t 1)\right.\right. \\
& \quad-6 \cos (t 1)+4) \text { RootOf }\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}\right.\right. \\
& \quad-48 \cos (t 1)+88) _Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)\right. \\
& \quad+12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2} \\
& \quad-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}
\end{align*}
$$

$+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l$
$\left.\left.-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right)\right) /(2 \sin (t 1) \cos (t 1) l-4 \cos (t 1) \sin (t 1)$
$+6 \sin (t 1)-6 \cos (t 1))$
$\left.-\frac{1}{2 \sin (t 1) \cos (t 1) l-4 \cos (t 1) \sin (t 1)+6 \sin (t 1)-6 \cos (t 1)}\right), s=$
$-\left(2 \operatorname{RootOf}\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \cos (t 1)+88\right) \quad Z^{2}\right.\right.$
$+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)+12 \sin (t 1)-8\right) _Z$
$+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2}$
$-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l$
$+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1)$
$-35) \sin (t 1)^{3} l+2 \operatorname{RootOf}\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}\right.\right.$
$-48 \cos (t 1)+88) \quad Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)\right.$
$+12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}$
$-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}$
$+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l$
$\left.-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right) \sin (t 1) \cos (t 1)^{2} l+4 \sin (t 1)^{2} \cos (t 1) l^{2}$
-4 RootOf $\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \cos (t 1)\right.\right.$
+88) $Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)+12 \sin (t 1)-8\right) _Z$
$+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2}$
$-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l$
$+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1)$
$-35) \sin (t 1)^{3}-4 \operatorname{RootOf}\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}\right.\right.$
$-48 \cos (t 1)+88) _Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)\right.$
$+12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}$
$-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}$
$+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l$
$\left.-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right) \sin (t 1) \cos (t 1)^{2}-8 \cos (t 1) l \sin (t 1)^{2}$
$-12 \operatorname{RootOf}\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \cos (t 1)\right.\right.$
$+88) _Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)+12 \sin (t 1)-8\right) _Z$
$+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2}$
$-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l$
$+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1)$
$-35) \sin (t 1)^{2}-12$ RootOf $\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}\right.\right.$
$-48 \cos (t 1)+88) \quad Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)\right.$
$+12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}$
$-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}$
$+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l$
$\left.-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right) \cos (t 1)^{2}+12 \sin (t 1)^{2} l$
$-24 \sin (t 1) \cos (t 1) l+4$ RootOf $\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}\right.\right.$
$-48 \cos (t 1)+88) \quad Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)\right.$
$+12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}$
$-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}$
$+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l$
$\left.-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right) \sin (t 1)+4$ RootOf $\left(\left(4 \sin (t 1)^{2} l^{2}\right.\right.$
$\left.-24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \cos (t 1)+88\right) _Z^{2}+\left(-4 \sin (t 1)^{2} l\right.$
$\left.+8 \sin (t 1)^{2}+12 \cos (t 1)+12 \sin (t 1)-8\right) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l$
$-24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}$
$+48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)$
$\left.+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right) \cos (t 1)+24 \cos (t 1) \sin (t 1)$
$-37 \sin (t 1)+35 \cos (t 1)) /\left(2\left(2 \operatorname{RootOf}\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l\right.\right.\right.\right.$
$\left.-16 \sin (t 1)^{2}-48 \cos (t 1)+88\right) _Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}\right.$
$+12 \cos (t 1)+12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l$
$-24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}$
$+48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)$
$\left.+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right) \sin (t 1)^{3} l$
$+2 \operatorname{RootOf}\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \cos (t 1)\right.\right.$
$+88) Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)+12 \sin (t 1)-8\right) _Z$
$+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2}$
$-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l$
$+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1)$

- 35) $\sin (t 1) \cos (t 1)^{2} l-4$ RootOf $\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l\right.\right.$
$\left.-16 \sin (t 1)^{2}-48 \cos (t 1)+88\right) _Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}\right.$
$+12 \cos (t 1)+12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l$
$-24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}$
$+48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)$

$$
\begin{aligned}
& \left.+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right) \sin (t 1)^{3} \\
& -4 \operatorname{RootOf}\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \cos (t 1)\right.\right. \\
& +88) Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)+12 \sin (t 1)-8\right) _Z \\
& +4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2} \\
& -24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l \\
& +48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1) \\
& -35) \sin (t 1) \cos (t 1)^{2}-6 \text { RootOf }\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l\right.\right. \\
& \left.-16 \sin (t 1)^{2}-48 \cos (t 1)+88\right) _Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}\right. \\
& +12 \cos (t 1)+12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l \\
& -24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4} \\
& +48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1) \\
& \left.+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right) \sin (t 1)^{2} \\
& -6 \operatorname{RootOf}\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \cos (t 1)\right.\right. \\
& +88)-Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)+12 \sin (t 1)-8\right)-Z \\
& +4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2}-4 \sin (t 1)^{2} l^{2} \\
& -24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2}+16 \sin (t 1)^{2} l \\
& +48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l-16 \sin (t 1)^{2}-48 \sin (t 1) \\
& -35) \cos (t 1)^{2}+4 \operatorname{RootOf}\left(\left(4 \sin (t 1)^{2} l^{2}-24 \sin (t 1) l-16 \sin (t 1)^{2}\right.\right. \\
& -48 \cos (t 1)+88) _Z^{2}+\left(-4 \sin (t 1)^{2} l+8 \sin (t 1)^{2}+12 \cos (t 1)\right. \\
& +12 \sin (t 1)-8) _Z+4 \sin (t 1)^{4} l^{2}-16 \sin (t 1)^{4} l-24 \cos (t 1) l \sin (t 1)^{2} \\
& -4 \sin (t 1)^{2} l^{2}-24 \sin (t 1)^{3} l+16 \sin (t 1)^{4}+48 \cos (t 1) \sin (t 1)^{2} \\
& +16 \sin (t 1)^{2} l+48 \sin (t 1)^{3}+72 \cos (t 1) \sin (t 1)+24 \sin (t 1) l \\
& \left.\left.\left.\left.\left.-16 \sin (t 1)^{2}-48 \sin (t 1)-35\right) \sin (t 1)-\sin (t 1)\right)\right)\right]\right]
\end{aligned}
$$

6) This example calculates invariant elements by a collineation using eigenvalues and eigenvectors. So we can determine the type of collineation and the

C := Matrix([[1., 0., 1.], [0., 2., 0.], [-3., 0., 5.]]);

$$
C:=\left[\begin{array}{ccc}
1 . & 0 . & 1 . \\
0 . & 2 . & 0 . \\
-3 . & 0 . & 5 .
\end{array}\right]
$$

$B:=$ MatrixInverse(C);

$$
B:=\left[\begin{array}{ccc}
0.625000000000000 & 0 . & -0.125000000000000 \\
-0 . & 0.500000000000000 & 0 . \\
0.375000000000000 & 0 . & 0.125000000000000
\end{array}\right]
$$

Tr := Transpose (B);
$\operatorname{Tr}:=\left[\begin{array}{ccc}0.625000000000000 & -0 . & 0.375000000000000 \\ 0 . & 0.500000000000000 & 0 . \\ -0.125000000000000 & 0 . & 0.125000000000000\end{array}\right]$

Eigenvalues(C);

Eigenvalues(B);

$$
\begin{gathered}
{\left[\begin{array}{l}
2 .+0 . \mathrm{I} \\
4 .+0 . \mathrm{I} \\
2 .+0 . \mathrm{I}
\end{array}\right]} \\
{\left[\begin{array}{l}
0.500000000000000+0 . \mathrm{I} \\
0.250000000000000+0 . \mathrm{I} \\
0.500000000000000+0 . \mathrm{I}
\end{array}\right]}
\end{gathered}
$$

Eigenvalues(Tr);

$$
\left[\begin{array}{l}
0.500000000000000+0 . I \\
0.250000000000000+0 . I \\
0.500000000000000+0 . I
\end{array}\right]
$$

(15)

Eigenvectors(C);

 Eigenvectors(B);$\left[\begin{array}{l}2 .+0 . I \\ 4 .+0 . I \\ 2 .+0 . I\end{array}\right]$,
$\left[\begin{array}{ccc}-0.707106781186547+0 . I & -0.316227766016838+0 . I & 0 . I \\ 0 . I & 0 . I & 1 .+0 . I \\ -0.707106781186547+0 . I & -0.948683298050514+0 . I & 0 . I\end{array}\right]$
$\left[\begin{array}{l}0.500000000000000+0 . I \\ 0.250000000000000+0 . I \\ 0.500000000000000+0 . I\end{array}\right]$,
$\left[\begin{array}{ccc}0.707106781186547+0 . I & -0.316227766016838+0 . I & 0 . I \\ 0 . I & 0 . I & -1 .+0 . I \\ 0.707106781186547+0 . I & -0.948683298050514+0 . I & 0 . I\end{array}\right]$

Eigenvectors(Tr);
$\left[\begin{array}{c}0.500000000000000+0 . I \\ 0.250000000000000+0 . I \\ 0.500000000000000+0 . I\end{array}\right]$,
$\left[\begin{array}{ccc}0.948683298050514+0 . I & -0.707106781186547+0 . I & 0 . \mathrm{I} \\ 0 . \mathrm{I} & 0 . \mathrm{I} & 1 .+0 . \mathrm{I} \\ -0.316227766016838+0 . \mathrm{I} & 0.707106781186547+0 . \mathrm{I} & 0 . \mathrm{I}\end{array}\right]$

Observe that $\mathrm{Y}(0,1,0)$ and $\mathrm{P}(1,0,1)$ (eigenvectors to 2) belong to the line $\mathrm{l}[-3,0,1]$, eigenvector to $1 / 4$. l is the axis.
Observe again that the lines $m[-1,0,1]$ and $n[0,1,0]$ (eigenvectors to $1 / 2$) go through $C(1 / 3,0,1)$, eigenvector to $4, \mathbf{C}$ is the centre.
7) We study also an isometry in 3D
$\mathrm{C}:=\operatorname{Matrix}\left(\left[\left[\frac{1}{3}, \frac{2}{3}, \frac{2}{3},-\frac{2}{3}\right],\left[-\frac{2}{3}, \frac{2}{3},-\frac{1}{3}, \frac{4}{3}\right],\left[\frac{2}{3}, \frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right],[0,0,0,1]\right]\right) ;$
Eigenvalues(C);
Eigenvectors(C);

$$
C:=\left[\begin{array}{cccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} & -\frac{2}{3} \\
-\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{4}{3} \\
\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
1 \\
-1 \\
\frac{2}{3}-\frac{\mathrm{I} \sqrt{5}}{3} \\
\frac{2}{3}+\frac{\mathrm{I} \sqrt{5}}{3}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
1 \tag{18}\\
-1 \\
\frac{2}{3}+\frac{\mathrm{I} \sqrt{5}}{3} \\
\frac{2}{3}-\frac{\mathrm{I} \sqrt{5}}{3}
\end{array}\right]
$$

Observe that the point $C(1,1,1)$ is invariant and the vector $n=(-1 / 2,0,1)$ is the normal vector to an invariant planes, not pointwise invariant, with equation x $-2 z+1=0$.
Observe that the isometry is a composition of the reflection in the plane $x-2 z+1=0$ och the rotation with axis th enormal to the plane $\mathrm{x}-2 \mathrm{z}+1=0$ through C and rotation angle the angle with cosine $2 / 3$ and sine $\backslash \operatorname{sqrt}\{5\} / 3$
8) The following example is an elation
$C:=\operatorname{Matrix}([[1 ., 1 ., 0],.[0 ., 1 ., 0],.[0 ., 0 ., 1]]$.
Eigenvalues(C);

$$
\left[\begin{array}{ccc}
1 . & 1 . & 0 . \\
0 . & 1 . & 0 . \tag{19}\\
0 . & 0 . & 1 .
\end{array}\right.
$$

Eigenvectors(C);

$$
\left[\begin{array}{l}
1 .+0 . \mathrm{I} \\
1 .+0 . \mathrm{I} \\
1 .+0 . \mathrm{I}
\end{array}\right],\left[\begin{array}{ccc}
1 .+0 . \mathrm{I} & -1 .+0 . \mathrm{I} & 0 .+0 . \mathrm{I} \\
0 .+0 . \mathrm{I} & 2.2204460492503110^{-16}+0 . \mathrm{I} & 0 .+0 . \mathrm{I} \\
0 .+0 . \mathrm{I} & -0 .+0 . \mathrm{I} & 1 .+0 . \mathrm{I}
\end{array}\right]
$$

(20)
$F:=\operatorname{Matrix}([[1 ., ~ 0 ., ~ 0],.[-1 ., 1 ., ~ 0],.[0 ., ~ 0 ., ~ 1]]$.
Eigenvalues(F);

$$
\left[\begin{array}{ccc}
1 . & 0 . & 0 . \tag{21}\\
-1 . & 1 . & 0 . \\
0 . & 0 . & 1 .
\end{array}\right]
$$

Eigenvectors (F);

$$
\left[\begin{array}{l}
1 .+0 . \mathrm{I} \tag{22}\\
1 .+0 . \mathrm{I} \\
1 .+0 . \mathrm{I}
\end{array}\right],\left[\begin{array}{ccc}
0 .+0 . \mathrm{I} & -2.2204460492503110^{-16}+0 . \mathrm{I} & 0 .+0 . \mathrm{I} \\
1 .+0 . \mathrm{I} & -1 .+0 . \mathrm{I} & 0 .+0 . \mathrm{I} \\
0 .+0 . \mathrm{I} & -0 .+0 . \mathrm{I} & 1 .+0 . \mathrm{I}
\end{array}\right]
$$

The lines $\mathrm{r}[0,1,0](\mathrm{y}=0$) and $\mathrm{s}[0,0,1](\mathrm{z}=0)$ intersect at $\mathrm{P}[1,0,0]$. So P is the centre. The points $P[1,0,0]$ and $\mathrm{Q}[0,0,1]$ belong to the line $\mathrm{r}[0,1,0](\mathrm{y}=0)$ so r is the axis. As the centre belongs to the axis we have a elation
9) Finally the following example is a collineation and its invariant elements. It has three points and three lines invariants, and it is NOT a perspectivistic collineation.
$A:=\operatorname{Matrix}([[-1 .,-1 ., 2],.[-5 .,-1 ., 3],.[3 ., 0 .,-1]]$.

$$
A:=\left[\begin{array}{ccc}
-1 . & -1 . & 2 . \tag{23}\\
-5 . & -1 . & 3 . \\
3 . & 0 . & -1 .
\end{array}\right]
$$

$B:=$ Transpose(MatrixInverse(A));

$$
B:=\left[\begin{array}{ccc}
1.00000000000000 & 4.00000000000001 & 3.00000000000000 \tag{24}\\
-1.00000000000000 & -5.00000000000001 & -3.00000000000000 \\
-1.00000000000000 & -7.00000000000001 & -4.00000000000000
\end{array}\right]
$$

Eigenvectors(A);

Eigenvectors(B);

$$
\begin{aligned}
& {\left[\begin{array}{c}
-4.66792869559189+0 . \mathrm{I} \\
1.78775903903729+0 . \mathrm{I} \\
-0.119830343445404+0 . \mathrm{I}
\end{array}\right],[[-0.415280907253006+0 . \mathrm{I},} \\
& \quad-0.624766541251697+0 . \mathrm{I}, 0.144545798199293+0 . \mathrm{I}], \\
& {[-0.843903994776894+0 . \mathrm{I}, 0.397034562962171+0 . \mathrm{I},} \\
& 0.858124740559903+0 . \mathrm{I}], \\
& {[0.339658380833921+0 . \mathrm{I},-0.672332004850156+0 . \mathrm{I},} \\
& 0.492674783058692+0 . \mathrm{I}]] \\
& {\left[\begin{array}{c}
-8.34513171912598+0 . \mathrm{I} \\
0.559359498771433+0 . \mathrm{I} \\
-0.214227779645465+0 . \mathrm{I}
\end{array}\right],[[0.454010394091017+0 . \mathrm{I},} \\
& \quad-0.898570015650219+0 . \mathrm{I},-0.775090647914976+0 . \mathrm{I}], \\
& {[-0.515821456363572+0 . \mathrm{I}, 0.322327002824651+0 . \mathrm{I},} \\
& \quad-0.211315625858943+0 . \mathrm{I}], \\
& {[-0.726500369726185+0 . \mathrm{I},-0.297787223071176+0 . \mathrm{I},} \\
& 0.595466366625845+0 . \mathrm{I}]]
\end{aligned}
$$

Linear $(\{x+y+z-3,2 x-y+2 z-3, x+y-2 z\},\{x, y, z\})$;

$$
\begin{equation*}
\{x=1, y=1, z=1\} \tag{26}
\end{equation*}
$$

solve($\{x+y+z=3,2 x-y+2 z=3, x+y-2 z=0\},[x, y, z])$;

$$
\begin{equation*}
[[x=1, y=1, z=1]] \tag{27}
\end{equation*}
$$

$R:=\operatorname{Matrix}([[1,1,1],[2,-1,2],[1,1,-2]]) ;$ $v:=\operatorname{Vector}([3,2,0])$; LinearSolve (R, v);

$$
\begin{gathered}
R:=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 2 \\
1 & 1 & -2
\end{array}\right] \\
v:=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]
\end{gathered}
$$

$\left[\begin{array}{c}\frac{2}{3} \\ \frac{4}{3} \\ 1\end{array}\right]$
$K:=\langle\langle 1,2,1\rangle|\langle 1,-1,1\rangle|\langle 1,2,-2\rangle\rangle ;$
LinearSolve (K, v);

$$
\begin{gathered}
K:=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 2 \\
1 & 1 & -2
\end{array}\right] \\
{\left[\begin{array}{c}
\frac{2}{3} \\
\frac{4}{3} \\
1
\end{array}\right]}
\end{gathered}
$$

