Syllabus

- TATA53 - Linear Algebra Honours Course - 6 credits • Spring 2024

Examiner: Jonathan Nilsson jonathan.nilsson@liu.se
Web page: https://courses.mai.liu.se/GU/TATA53/
Literature: Treil: Linear algebra done wrong (2021), available free from the authors website https://sites.google.com/a/brown.edu/sergei-treil-homepage/linear-algebra-done-wrong Supplementary lecture notes and exercises will be posted on the course web page.

Contents

Vector spaces, direct sum, LU-factorizataion, Jordan normal form, inner products, norms, QR-factorization, spectral theorems, singular values, low rank approximation, pseudo-inverse, polar factorization, Perron-Frobenius theory, tensor products, multilinear algebra. Applications: Ranking models, neural networks, dynamical systems, least square problems, principal component analysis.

Teaching

There are typically one lecture and one exercise session per week. The lectures provide an overview of the theory, and is a complement to the course literature.

Examination

The examination consists of four sets of hand-in assignments. For each of the four assignments there is a corresponding seminar where you will present your solutions. For grade $3 / 4 / 5$ you will need a total score corresponding to $60 \% / 75 \% / 85 \%$ on the hand-in assignments, with at least 60% on each one. You also need to be ready to present your solutions at the seminars. For grade 5 you are also expected to present solutions to a few of the more challenging problems. To allow as many students as possible to make presentations there are two instances of each seminar scheduled - you are expected to attend one of each (so four in total). There may be insufficient time for everyone to present the harder problems, in that case we will arrange some supplementary opportunity to present solutions.

Set	Deadline	Main topics
1	$5 / 28.00 \mathrm{am}$	Vector spaces, direct sums, LU-factorization
2	$4 / 38.00 \mathrm{am}$	Jordan normal form, inner product spaces
3	$18 / 48.00 \mathrm{am}$	QR-factorization, spectral theory, Perron-Frobenius
4	$13 / 5$ 10.00am	Singular values, multilinear algebra

Hand in your assignments in the compartment labelled TATA53 in house B, entrance 21, one floor up just outside the A-corridor. Alternatively you can hand them in at the beginning of the first of the two seminars (meaning 15 minutes after the deadline listed above). The assignments will typically be marked and returned in about a week.

Schedule

Preliminary schedule for Lectures, Exercise sessions, and Seminars of the course. Always refer to TimeEdit for the current version and exact lecture times. The numbered exercises are recommended exercises from the supplementary lecture notes on the course website. These are intended to prepare you for the assignment problems.

Date		Topics/suggested exercises
16/1	Le1	Vector spaces, basis, dimension, subspaces, direct sum, quotients, linear maps
19/1	Ex1	1: 1-10, 13, (14, 15), 16, 17, (22)
23/1	Le2	Echelon forms, elementary matrices, rank, trace, LU- and Cholesky-factorization
26/1	Ex2	2: 1, 2, (3), 7, 11, 15, (16), 18, 20, 22, 24, 26, 27, 28, (35)
30/1	Le3	Complexification, eigenvectors, spectra, multiplicities, complex diagonalization
$2 / 2$	Ex3	2: 32, 33, (34); 3: 1, 2, 3, 4, 5, 6a(b), 7, (9) 10, (12), 13
5/2	Se1a	Seminar 1. Presentations of exercises. Attend 1a or 1b.
6/2	Le4	Cayley-Hamilton, minimal polynomial, Jordan Normal form, nilpotent structures
7/2	Se1b	Seminar 1. Presentations of exercises. Attend 1a or 1b.
9/2	Ex4	3: $15,16,18,(19) ; 4: 1,2,3,(4),(5),(8), 9,10,11,12,13$
12/2	Le5	Generalized eigenspaces, Jordan chains, Jordan theorem, Jordanization
16/2	Ex5	4: $14,15,16,17,18,(19), 20,21,(22-27)$
20/2	Le6	Matrix exponential, dynamical systems, inner product spaces
23/2	Ex6	4: 28, 29, 30, 32, (33, 34), 35, 37; 5: 1, 2, 3, 4, (5, 6), 7
27/2	Le7	Norms, Gram-Schmidt, QR-factorization
1/3	Ex7	5: 8, 11, 12, (16, 17, 18), 20, 23, (24), 25, 26, (27, 28), 29, 30, 31
4/3	Se2a	Seminar 2. Presentations of exercises. Attend 2a or 2 b .
5/3	Le8	Self-adjoint, unitary, normal, and positive-definite operators, spectral theorems
6/3	Se2b	Seminar 2. Presentations of exercises. Attend 2a or 2b.
8/3	Ex8	5: 33, 35, 36, (37, 38, 39), 40, 41, 42, (43, 44), 45, (46, 47), 48, (49), 50
26/3	Le9	Least squares, positive matrices, Perron's theorem
28/3	Ex9	
2/4	Le10	Frobenius's theorem, ranking models, Markov chains
$2 / 4$	Ex10	
8/4	Le11	Singular values and vectors, singular value decomposition
9/4	Ex11	
15/4	Le12	Schmidt-decomposition, low rank approximation, Eckart-Young, pseudo-inverse
16/4	Ex12	
18/4	Se3a	Seminar 3. Presentations of exercises. Attend 3a or 3b.
19/4	Se3b	Seminar 3. Presentations of exercises. Attend 3a or 3b.
22/4	Le13	Principal component analysis, polar factorization, total least squares
23/4	Ex13	
29/4	Le14	Multilinear algebra, duals, tensor product, Kronecker product
30/4	Ex14	
6/5	Le15	Tensors, neural networks, linear algebra over \mathbb{Z}_{p}, coding applications
7/5	Ex15	
13/5	Se4a	Seminar 4. Presentations of exercises. Attend 4a or 4b.
14/5	Se4b	Seminar 4. Presentations of exercises. Attend 4a or 4b.

