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This text will be updated with lecture notes throughout the course. It should be regarded as a comple-
ment to the course literature. These notes also contain a number of problems intended for the exercise
sessions of the course, a list of suggested problems can be found in the syllabus. The problems are
designed to prepare you for the assignments. Most problems have a hint in a separate section at the end
of this text, these are intended to get you started if you get stuck, but you are encouraged to try and
attack the problem without looking at the hints first. There is also a section of answers to the problems.
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Notation

For this course you will need to absorb material from various sources, and authors prefer different no-
tations, something one has to get used to in more advanced math courses. Here is a list of common
notations that appear in this and other texts on linear algebra.

R,C,Q The field of real, complex, and rational numbers respectively.
Zp or Z/pZ or Z/(p) The field of integers modulo some prime p.
F,K, k Common notation for an arbitrary field (like the ones above).
u,v, w, x⃗ Common notations for vectors.
Pn or Pn Polynomials of degree ≤ n, with coefficients in some field.
C[a, b] Set of continuous functions [a, b] → R
Cn[a, b] Set of n times continuously differentiable functions [a, b] → R
A,B,C,D,E,M,N,X, Y Capital letters commonly used for matrices.
λ, µ, α, β, a, b, c, s, t, r, z Lower-case and Greek letters commonly used for scalars.
(1, 2, 3) or (1, 2, 3)T Vectors in R3, some authors always prefer writing them as columnsa.
Matm×n(C),Mm×n(C) The set of m× n matrices with complex coefficients.
Matn(C),Mn(C) Shorthand for the above when m = n (the matrix is square)
Matm×n,Mm×n,Matn,Mn Same as above, the field is supposed to be understood by the context.
diag(d1, d2, d3) The diagonal matrix with d1, d2, d3 on the diagonal.
(aij)i,j , (aij) The matrix with the number aij in position (i, j)
Aij The element of the matrix A at position (i, j)
Ai The i’th column of the matrix A
δij The Kronecker delta function, 1 if i = j, otherwise 0.
eij , ei,j , Ei,j , Eij The unit-matrix with a single 1 in position (i, j) and zeroes elsewhere.
ei Standard basis vector in Cn (or Fn) with a single 1 in position i.
span(v1, v2, v3), [v1, v2, v3] The span of v1, v2, v3 (the set of all linear combinations of the vectors).
ker(F ), N(F ) The kernel, or nullspace of the linear map (or matrix) F .
Im(F ),Ran(F ), V (F ) The image or range of a linear map (or matrix) F .
AT , At The transpose of a matrix A.

A∗, A
T
, AH , A† The conjugate transpose of a matrix A.(

2
3

)
e

or e

(
2
3

)
2e1 + 3e2, the vector with coordinates (2, 3) in basis e = (e1, e2)

ve The coordinate vector of v with respect to the basis e
Fe or [F ]e The matrix of F : V → V with respect to a basis e for V .
[F ]f or f [F ]e The matrix of F : V → W with respect to a bases e for V , and f for W .
[F ] the matrix of F with respect to some basis understood by the context.
σ(F ) or Spec(F ) The spectrum of F , the set of eigenvalues.
pA(λ) or just pA det(A− λI), the characteristic polynomialb of A.
mA(λ) or just mA The minimal polynomial of A
rnk(F ), rank(F ) The rank of a matrix (or a linear map) F .
u • v, u · v, vTu The dot product of u, and v, the standard inner product on Rn or Cn

(u, v), (u|v), ⟨u, v⟩ common notations for various inner products of u and v
∥v∥ or |v| The norm of v or the lengthc of the vector v.
∥A∥F The Frobenius norm of a matrix A (root of sum of squared absolute values of entries)
U⊥ The orthogonal complement to a subspace U (with respect to some inner product)
PU (v), projU (v), v||U , vU The projection of v onto the subspace U
A > 0 The matrix A is positive (all entries are positived)
deg p(t), deg p The degree of a polynomial p
mλ, gλ The algebraic and the geometric multiplicity of an eigenvalue λ.

aThe reason has to do with matrix-vector multiplication, when evaluating a linear map, the matrix of the map should
always be multiplied by the vertical coordinate-matrix of the vector. Also, when forming matrices of vectors, writing them
as columns is almost always best.

bAlso called the secular polynomial. Sometimes λ is replaced by another variable. It can also be defined for a linear
map. Some books define it as det(λI −A) instead, this may differ only by a minus sign and has the same set of zeros.

cNote that typically the length of the vector is not well defined, but depends on what inner product is used.
dNote that this is different from ”positive definite” which means that x∗Ax > 0 for all x ̸= 0.

Page 3



Lecture Notes TATA53

1 Vector spaces

1.1 Motivation

In a first linear algebra course, we typically think of a vector as something that looks like v = (1, 2,−3),
a triple of real numbers. However, it turns out that the concepts, tools, and techniques of linear algebra
(such as linear systems, linear maps, matrices, eigenvalues, etc) are useful in a much broader context,
and they can be used to solve problems seemingly unrelated to the space Rn. In fact, it turns out that
all we need is any type of objects that we can add and multiply by scalars in a coherent way.

1.2 Definition of vector spaces

Definition 1.1. A vector space over a fielda F is a set V together with an ”addition” operation
V × V → V and a ”scalar multiplication” F × V → V that satisfy the following axioms for all
u, v, w ∈ V and all λ, µ ∈ F:

1. u+ v = v + u

2. (u+ v) + w = u+ (v + w)

3. There is an element 0 ∈ V satisfying 0 + v = v for all v ∈ V

4. For every v ∈ V there is an element −v ∈ V such that v + (−v) = 0

5. λ · (µ · v) = (λµ) · v

6. λ · (u+ v) = (λ · u) + (λ · v)

7. (λ+ µ) · v = (λ · v) + (µ · v)
aIn this course the field F will typically be R or C. In general a field is any system of numbers that you can add

and multiply, with these operations satisfying the same kind of axioms that the real numbers satisfy.

A vector space over F is also called an F-vector space. The elements of F are called scalars, while the
elements of the vector space V are called vectors. We typically write λv instead of λ · v. A prototypical
example of a real vector space is R2, the set of all pairs (x, y) of real numbers, where addition is defined
as (x1, y1) + (x2, y2) := (x1 + x2, y1 + y2) and λ · (x, y) = (λx, λy). The same construction works if we
replace R by C or any other field. There are however many other examples:

� Cn, the set of complex n-tuples with coordinate-wise sum and scalar multiplication is a complex
vector space.

� The set Pn of polynomials with complex coefficients and degree ≤ n is a complex vector space.

� The set Matm×n(R) of real m×n-matrices (with the usual ways of adding matrices and multiplying
matrices by real numbers) is a real vector space.

� The set of continuous functions f : R → R is a real vector space.

� The set of infinite sequences of complex numbers (a1, a2, . . .) is a complex vector space (like Cn

where n = ∞)

� The set of solutions to the differential equation y′′(x) + y′(x)− 6y(x) = 0 is a real vector space.

� The field Z2 of two element is the set {0, 1} where addition and multiplication is defined like on
the real numbers except that 1 + 1 := 0. The set of triples of 0’s and 1’s form a vector space over
Z2.

1.3 Basis and dimension

For reference we recap some of the important concepts familiar from a first linear algebra course. A
linear combination of vectors v1, . . . , vn ∈ V is a vector of form λ1v1 + · · ·λnvn, where the coefficients
λi are scalars. The set of all such linear combination is called their span and is denoted span(v1, . . . , vn).
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If V = span(v1, . . . , vn) we say that the vectors span or generate V , in this case it means that every
vector of V can be expressed as a linear combination of v1, . . . , vn.

On the other hand, the vectors v1 . . . , vn are called linearly independent if

λ1v1 + · · ·+ λnvn = 0 =⇒ λi = 0 ∀i.

In other words, the only linear combination of the vectors that is zero is the trivial combination.
An ordered set of vectors (v1, . . . , vn) that both spans V and is linearly independent is called a basis

for V , and we define the dimension dimV = n, the number of basis vectors. The basis-conditions
guarantee (and are equivalent to) the fact that every vector in V has a unique expression as a linear
combination of the basis vectors. If v = λ1v1 + · · · + λnvn we say that (λ1, . . . , λn) is the coordinate
vector of v with respect to the basis (v1, . . . , vn). Then summing and rescaling vectors in V corresponds
to making the same operations on the respective coordinate-vectors, so with the basis in hand we can
forget V and instead do all computations in Cn (or Fn if V is an F-vector space).

Example 1.2. Consider again some of the vector spaces discussed above.

� In C3, a basis is
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
. The dimension is 3.

� In P3, a basis is (1, x, x2, x3). The dimension is 4.

� A basis for Mat2×2(R) is
((

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

))
. The dimension is 4.

� The set of continuous functions is infinite-dimensional (and it’s hard to write down a basisa)

� The solution space to y′′(x) + y′(x)− 6y(x) = 0 is 2-dimensional with basis (e−3x, e2x).

aIn fact, the axiom of choice is required.

△

1.4 Subspaces

Definition 1.3. Let V be a vector space. A nonempty subset U ⊂ V is called subspace of V if it
is closed under taking sums and products by scalars:

� u1, u2 ∈ U =⇒ u1 + u2 ∈ U

� u ∈ U, λ ∈ F =⇒ λ · u ∈ U

The definition is equivalent to saying that U itself is a vector space with the addition and scalar action
inherited from V .

1.5 Direct sum

A basic way to understand an object is to break it down into smaller pieces and analyze them separatly.

Definition 1.4. Let U1 and U2 be two subspaces of a vector space V . If every vector v ∈ V has a
unique representation v = u1 + u2 where u1 ∈ U1 and u2 ∈ U2, we say V is the (internal) direct
sum of U1 and U2, and we write V = U1 ⊕ U2.

For example, let U1 = span(1, 0) and S′ = span(1, 1) be two lines in R2. Then U1 ⊕ U2 = R2; every
vector of v ∈ R2 has a unique representation as u1 + u2 with u1 ∈ U1 and u2 ∈ U2. For example,
(5, 2) = (3, 0) + (2, 2), or more generally, (x, y) = (x− y, 0) + (y, y).
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U1 = span(1, 0)

U2 = span(1, 1)

(5, 2)

(3, 0) ∈ U1

(2
, 2
) ∈

U 2

The subspaces need to be one-dimensional though. For example, if U1 is a plane in R3 and U2 is a
line (which is not parallel to the plane), then R3 = U1 ⊕ U2.

On the other hand, R3 can never be the direct sum of two planes. For example, with

U1 : z = 0 and U2 : x+ y + z = 0,

each vector in R3 can be expressed as a sum u1+u2 of vectors from the two subspaces, but the expression is
not unique, for example there are two ways (and infinitely many more ways) of writing the vector (1, 2, 3)
as a sum u1 + u2 of vectors from each respective subspace:

(1, 5, 0) + (0,−3, 3) = (2, 4, 0) + (−1,−2, 3).

Note that if V = U1 ⊕ U2 we have a natural way to project a vector onto each subspace:

PU1
v = u1 and PU1

v = u2 where v = u1 + u2.

Because of the uniqueness of the expression v = u1 + u2 these functions are well defined. Note that this
is different from orthogonal projection1, for example, in the graphical example above we have PU2

(5, 2) =
(2, 2).

Theorem 1.5. Let U1 and U2 be subspaces of a vector space V . Then V = U1 ⊕ U2 if and only if2

U1 + U2 = V and U1 ∩ U2 = {0}.

Proof. The first condition U1 + U2 = V is clearly equivalent to being able to express each v ∈ V as
v = u1 + u2. We show that the second condition is equivalent to uniqueness of the expression: assume
that U1∩U2 contains some nonzero vector u0. Then for any vector v with representation v = u1+u2, we
can also write v = (u1+u0)+(u2−u0), so no vector has a unique representation. Conversely, if a vector
v has two distinct representations u1 + u2 = v = u′

1 + u′
2, then subtracting we get (u1 − u′

1) = (u′
2 − u2).

This vector clearly lies in U1 since the left hand does, and it lies in U2 since the right side does. Moreover
the vector is nonzero since we assumed the representations were different. Thus we have a nonzero vector
that lies in both U1 and U2, so U ∩ U ′ ̸= {0}.

Note that if (u1, . . . , un) is a basis for U and if (u′
1, . . . , u

′
m) is a basis for U ′, then (u1, . . . , un, u

′
1, . . . , u

′
m)

is a basis for V = U ⊕ U ′. In particular dim(U ⊕ U ′) = dim(U) + dim(U ′).

Example 1.6. Consider the vector space V = Matn(R), and let S be the subspace consisting of
symmetric matrices, and let S′ be the subspace consisting of skew-symmetric matrices. Let us
prove that

V = S ⊕ S′.

According to the theorem above, it suffices to prove that S + S′ = V and that S ∩ S′ = {0}.
Starting with the latter, assume that a matrix A lies in S ∩ S′. Then A is both symmetric and

1Indeed, in a general vector space we don’t even have the concept of orthogonality before defining an inner product.
Note also that it doesn’t make sense to project on a subspace U1 in this sense without specifying what we choose as U2.

2Here U1 + U2 := {u1 + u2 | u1 ∈ U1, u2 ∈ U2}.
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skew symmetric, so A = AT = −A, so 2A = 0 and therefore A = 0. Thus S and S′ intersects only
in the zero matrix.

For the other part we need to show that any square matrix can be expressed as the sum of
a symmetric and a skew-symmetric matrix. For this we note that B = A + AT is symmetric
(since BT = (A + AT )T = AT + A = B), and that C = (A − AT ) is skew symmetric (since
CT = (A − AT )T = AT − A = −C). But then we can express A as a sum a symmetric and a
skew-symmetric matrix as follows:

A =
1

2
(A+AT ) +

1

2
(A−AT ).

△
We can also talk about direct sum of more than two components in an analogous way: If U1, . . . , Un

are subspaces of V , we say that V = U1⊕· · ·⊕Un if and only if each vector v ∈ V has a unique expression

v = u1 + · · ·+ un where ui ∈ Ui.

External direct sum

There is also an analogous construction called the external direct sum. Starting with two vector
spaces we can construct a larger vector space that has the two vector spaces as direct summands in the
above sense (roughly speaking).

Definition 1.7. Let V and W be vector spaces over the same field F. We define V ⊕W to be the
set V ×W which consists of all pairs (v, w) where v ∈ V and w ∈ W , and we define the sum and
scalar action on such pairs in the natural way:

(v, w) + (v′, w′) := (v + v′, w + w′) and λ · (v, w) := (λ · v, λ · w).

Under these operations V ⊕W becomes a vector space, called the (external) direct sum of V and
W .

Note that technically V and W are not subspaces (and not even a subsets) of V ⊕W , since the latter
object consists of elements of form (v, w) while V and W do not. However, if we identify V with pairs of
form (v, 0), and W with pairs (0, w), then V ⊕W is the internal direct sum of V and W . If (v1, . . . , vm)
is a basis for V and if (w1, . . . , wn) is a basis for W then(

(v1, 0), . . . , (vm, 0), (0, w1), . . . , (0, wn)
)

is a basis for V ⊕W .

Example 1.8. The vector space V = Mat2×2(R)⊕C(R) consists of objects of form (A, f(x)), where
A is a 2 × 2-matrix and f : R → R is a continuous function. Here’s an example of a linear
combination in V :

1

2

((1 2
4 3

)
, ex
)
− 1

2

(
I, e−x

)
=
((0 1

2 1

)
, sinhx

)
.

△
External direct sums of more than two vector spaces can also be defined in the natural way.

1.6 Affine subsets

If u is a vector of a subspace, we know that 0 · u ∈ U . This means that the zero-vector always belongs
to a subspace. An affine subset is something that looks like a subspace (think a line or a plane), but it
is shifted away from the origin.

Definition 1.9. Let U be a subspace of V . For each v ∈ V we define

v + U := {v + u | u ∈ U}

and call this an affine subset (or affine subspace) parallell to U .
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Intuitively, this is just the subspace U shifted by a vector v. For example, the line {(2 + 3t, 1 + 5t) ∈
R2 | t ∈ R} is an affine subset of R2. It can be written as (2, 1)+U where U = span(3, 5). Similarly, the
plane x + 2y + 3z = 5 is an affine subspace of R3, it can be written (0, 1, 1) + U where U is the plane
x+ 2y + 3z = 0.

Note that v ∈ U if and only if v + U = U . Also note that an affine subset typically is not closed
under addition or scalar multiplication.

It turns out that the set of all affine subsets is itself a vector space in a natural way.

Definition 1.10. Let U be a subspace of V . We define the quotient space

V/U := {v + U | v ∈ V }.

This is a vector space in the natural way, addition of two affine subsets is defined as

(v + U) + (v′ + U) := (v + v′) + U

and multiplication of scalars is defined by

λ(v + U) := (λv) + U.

So intuitively, to add two affine subsets, pick a vector in each one, add them, and then take the affine
subset which the sum lies in. It turns out this operation is well defined. For example. Let U = span(1, 1).
Then R2/U is the set of lines in R2 with slope 1.

If (u1, . . . , um) is a basis for U and if we extend it to a basis (u1, . . . , un) for V , it is easy to see that
a basis for V/U is given by the affine subsets

(um+1 + U, . . . , un + U).

In particular dim(V/U) = dim(V )− dim(U). Note however that V/U is not itself a subset of V .
Note also that 0+U = u+U for u ∈ U - this means that in V/U , we can’t tell the difference between

different elements of U , so a good way to think about V/U is that we take V and then we ”make all the
elements of U equal”.

Linear maps

Definition 1.11. Let V and W be F-vector spaces. A map F : V → W is called linear if

F (u+ v) = F (u) + F (v) and F (λv) = λF (v)

holds for all u, v ∈ V and λ ∈ F.

Linear maps are sometimes called linear transformations, endomorphisms, or operators if V = W .
A linear map is completely determined by its action on the basis vectors, because if B = (v1, . . . , vn)

is a basis for V , a linear map F satisfies

F (λ1v1 + · · ·+ λnvn) = λ1F (v1) + · · ·+ λnF (vn).

In fact, if pick a basis B′ = (w1, . . . , wm) of W and express the vectors F (vi) in this basis, and put them
as columns in a matrix, we get the matrix of F with respect to the two bases B and B′:

[F ]B′,B =

 | | |
F (v1) F (v2) · · · F (vn)

| | |

 .

Example 1.12. Consider the map D : P3 → P2 defined by taking derivative, D(p(x)) = p′(x). This
map is linear because of the familiar rules proved in a first calculus course:

d

dx
(f(x) + g(x)) =

d

dx
f(x) +

d

dx
g(x) and

d

dx
(λf(x)) = λ

d

dx
f(x).

Let B = (1, x, x2, x3) and B′ = (1, x, x2) be the standard bases P3 and P2 respectively. To find
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the matrix for D with respect to these bases, evaluate D on the basis vectors in B and express
them in the basis B′:

D(1) = 0 =

0
0
0


B′

D(x) = 1 =

1
0
0


B′

D(x2) = 2x =

0
2
0


B′

D(x3) = 3x2 =

0
0
3


B′

.

So the matrix for D with respect to B and B′ is

[D]B′,B =

0 1 0 0
0 0 2 0
0 0 0 3

 .

△
There are two important subspaces associated to a linear map:

Definition 1.13. Let F : V → W be linear. We define

ker(F ) = {v ∈ V | F (v) = 0} and Im(F ) = {F (v) | v ∈ V }

and call these the kernel and image of F respectively.

Note that ker(F ) is a subset of V and Im(F ) is a subset of W , in fact it is not hard to prove that they
are subspaces. The kernel is also called the nullspace of F , and the image is sometimes called the range
of F .

We recall the important dimension theorem, also called the rank-nullity theorem:

Theorem 1.14. Let F : V → W be linear. Then

dimker(F ) + dim Im(F ) = dimV.

The theorem holds even for infinite-dimensional vector spaces if we define 5 + ∞ = ∞ and so on.
The dimension of the image dim Im(F ) is also called the rank of the linear map.

Recall also that if F : V → W is a map, an inverse of F is a map in the other direction G : W → V
such that

G(F (v)) = v for all v ∈ V and F (G(w)) = w for all v ∈ V.

This is commonly expressed as G ◦ F = idV and F ◦G = idW
3.

Direct sum of linear maps

Let F : V → V and G : W → W be linear maps. Then we get a corresponding linear map F ⊕ G :
V ⊕ W → V ⊕ W defined by (F ⊕ G)(v, w) = (F (v), G(w)). Note that if A is the matrix for F with
respect to a given basis of V , and if B is the matrix of G with respect to a given basis of W , then the
matrix of F ⊕G with respect to the corresponding basis of V ⊕W is of block form(

A 0
0 B

)
.

Linear maps and quotient spaces

We have a natural linear projection map π : V → V/U defined by π(v) := v + U .
On the other hand, suppose F : V → W is a linear map, and suppose that U is a subspace of V that

lies inside the kernel of F : F (U) = {0}. Then we can construct a corresponding linear map

F̃ : V/U → W defined by F (v + U) := F (v).

The condition F (U) = {0} guarantees that the map is well defined.

3Here idV : V → V is the identity map on V mapping each v to itself.
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2 Matrices

2.1 A basis for the matrix space

Let eij be the m × n-matrix which has a single 1 in position (i, j) and zeroes elsewhere4. The set of
all these matrices clearly form a basis for Matm×n(C). Note that if eij and ekl are such matrices (of
compatible sizes), then

eijekl =

{
eil if j = k

0 otherwise
.

This is typically expressed more compactly as eijekl = δjkeil, where δjk is the Kronecker-delta
function, it is 1 if j = k and zero otherwise.

We write (aij)ij or just (aij) for the matrix that has element aij in position (i, j), in other words
(aij)ij =

∑
i,j aijeij .

Let A = (aij)ij be a matrix. Recall that the transpose of A is AT = (aji)ij . For complex matrices
we also define the Hermitian conjugate of A as A∗ = (aji), this is just the conjugate-transpose of A.

A matrix A = (aij)ij is called...

� Diagonal if aij = 0 whenever i ̸= j

� Upper triangular if aij = 0 whenever i > j
(strictly upper triangular if aii = 0 also)

� Lower triangular if aij = 0 whenever j > i
(strictly lower triangular if aii = 0 also)

� Symmetric if aij = aji
(skew-symmetric if aij = −aji)

� Hermitian if aij = aji
(skew-Hermitian if aij = −aji)

Note that a matrix needs to be square in order to be symmetric/skew-symmetric/Hermitian, but the
other concepts apply for any size of matrix.5 Note also that Hermitian and symmetric has the same
meaning when the matrix is real.

From the product-rule for matrices eij it follows that matrix multiplication can be expressed like this:
If A = (aij)ij is an m× n-matrix and B = (bij)ij is an n× k-matrix, then

AB =
( n∑
r=1

airbrj
)
ij
,

in words this just encodes the familiar rule that the element in position (i, j) in the product is the
scalar-product of row number i in A and column number j in B.

Note that e12e23 = e13 while e23e12 = 0, so in general AB ̸= BA when A and B are matrices. We
say that two n× n-matrices A and B commute if AB = BA.

Usually we shall not differentiate between square matrices and linear operators. For example, if A
is an m × n-matrix, ker(A) is the set of vectors X ∈ Cn satisfying AX = 0 (when X is written as a
column), and similarly Im(A) is the set {AX | X ∈ Cm}, which is the same as the span of the columns
of A. The rank of A, defined as dim Im(A), can therefore be characterized as the maximum number of
linear independent columns of A.

Recall that if a linear operator F : V → V has matrix A with respect to one basis, and matrix B with
respect to a different basis, then A = SBS−1, where S has the new basis vectors as columns expressed
in the old basis. We say that two square matrices A and B are similar if there is a matrix S such that
A = SBS−1. Then two matrices are similar if they represent the same linear map V → V with respect
to different choices of basis.

4Note that just writing eij is not completely clear since the size of the matrix is not specified, the 3 × 3-matrix e12 is
different from the 2× 2-matrix e12. However, the format of the matrix is usually obvious from the context.

5Although when we say diagonal matrix without qualification, we usually mean a square matrix.
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The trace of an n× n-matrix A is the sum of the diagonal entries:

tr(A) :=

n∑
k=1

akk.

For example we have tr

(
2 + i 3
4i 3− 4i

)
= 5− 3i.

Now let A =

(
1 1 0
0 1 1

)
and B =

1 1
1 2
1 3

. Then we have

tr(AB) = tr

(
2 3
2 5

)
= 7 and tr(BA) = tr

1 2 1
1 3 2
1 4 3

 = 7.

So tr(AB) = 7 = tr(BA). This is no accident:

Theorem 2.1. If both products AB and BA are defined, we have

tr(AB) = tr(BA)

The proof is left as an exercise. An important corollary is that similar matrices have the same trace:

tr((S−1B)S) = tr(S(S−1B)) = tr(IB) = tr(B).

This lets us define the trace of a linear operator, as it is independent of the choice of basis. A further
consequence of this is that if A is diagonalizable with A = SDS−1, where D has the eigenvalues of A on
the diagonal, then tr(A) = tr(D) which is the sum of the eigenvalues of A including multiplicities.6

A square matrix7 is called nilpotent ifNd = 0 for some d, the minimal such d is called the nilpotency-
degree of N . Nilpotent matrices will be important later when we investigate the Jordan normal form.
The prototypical example of such a matrix is:

N =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 N2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 N3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 N4 = 0.

If we think of N as a linear operator, it acts on the standard basis like so:

e4 7→ e3 7→ e2 7→ e1 7→ 0.

The nilpotency-degree of N is 4, and it is clear that Nm = 0 for all m ≥ 4. Note that if A is similar to
N and Nd = 0, then Ad = 0 too, so the nilpotency-degree is basis independent.

2.2 Echelon forms

When solving a linear system by Gaussian elimination, we use row operations to reduce the coefficient
matrix to a form suitable for writing down the solutions. The matrix A below is in row echelon form.
With some further row operations we can reduce it to B which is in reduced row echelon form, the
encircled elements are called pivots.

A =



1 1 9 2 1 8

0 2 4 1 2 5

0 0 0 4 1 9

0 0 0 0 3 3

0 0 0 0 0 0


B =



1 0 7 0 0 2

0 1 2 0 0 1

0 0 0 1 0 2

0 0 0 0 1 1

0 0 0 0 0 0


6This also true for non-diagonalizable operators, we will prove this later.
7Nilpotency can be defined the exact same way when N : V → V is a linear operator.
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Definition 2.2. A matrix is said to be in row echelon form (REF) if the first nonzero element
of each row is to the left of the first nonzero elements in all the rows below, and if all zero-rows are
at the bottom. The first nonzero elements of each row in the REF are called pivots. The matrix is
said to be in reduced row echelon form (RREF) if additionally, all pivots are 1, and the pivots
have zeros above them.

We know that any matrix can be reduced to REF and RREF by row operations. The RREF of a matrix
is unique, and the number of the pivots in the RREF (or REF) is the rank of the matrix.

From the RREF we can immediately solve the corresponding linear system. For example, to solve
BX = 0 for the matrix B above, we introduce parameters x3 = s and x6 = t for the variables cor-
responding to non-pivot columns, then from the RREF we immediately see that the set of solutions8

is

(x1, x2, x3, x4, x5, x6) = (−7s− 2t,−2s− t, s,−2t,−t, t) s, t ∈ R.

Since the matrices A and B are in fact row equivalent, the equation AX = 0 has the same solutions.
In the above example, we considered a matrix in Mat5×6(R), but note that matrices, row operations,

REF, and RREF makes sense over any field F.

2.3 Elementary matrices

Row operations on a matrix can be performed by multiplying the matrix from the left by an elementary
matrix. This is best explained by looking at some concrete examples:

E1A =

 1 0 0
−2 1 0
0 0 1

1 0 1 −1
2 1 0 1
1 1 1 1

 =

1 0 1 −1
0 1 −2 3
1 1 1 1

 .

Here we note that multiplying A by the matrix E1 on the left has the same effect as performing the row
operation of adding (−2) times the first row to the second row.

Another row operation is to multiply one of the rows of A by a nonzero scalar λ, this can be achieved
by multiplying by another type of matrix on the left, for example

E2A =

3 0 0
0 1 0
0 0 1

1 0 1 −1
2 1 0 1
1 1 1 1

 =

3 0 3 −3
2 1 0 1
1 1 1 1

 .

The last type of row-operation is switching two rows:

E3A =

1 0 0
0 0 1
0 1 0

1 0 1 −1
2 1 0 1
1 1 1 1

 =

1 0 1 −1
1 1 1 1
2 1 0 1

 .

In general, an elementary matrix is an m×m-matrix of one of the three forms below (empty positions
are zeros). Multiplying such a matrix by an m×n-matrix A from the left has the effect of making a row
operation on A.

8Here one can ask if we should write s, t ∈ C instead, we still get solutions to the system for such s, t. In this case, the
matrix was real, so we assumed that we were working over the real numbers.
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Matrix Corresponding row operation
1

1
1

λ
. . .

1

 = I + λeij Add λ times row j to row i

(λ in position (i, j))

1
. . .

λ
. . .

1

 = I + (λ− 1)eii Multiply row i by a nonzero scalar λ

(identity except λ ̸= 0 on position (i, i))

1

. . .1
0 1

1. . .1
1 0

1. . .
1


Switching rows i and j

= I − eii − ejj + eij + eji
(I but with rows i and j switched)

Note that multiplying a matrix by an elementary matrix from the right side instead has the effect of
performing a corresponding column-operation. This however is less useful, for example if we perform a
column-operation on a linear system it no longer has the same solutions.

2.4 LU-decomposition

Definition 2.3. An LU-decomposition of an m× n matrix A is a factorization

A = LU

where L is a lower-triangular m×m-matrix, and U is an upper triangular matrix m× n-matrix.

An LU-decomposition of a matrix A can typically be obtained by reducing A to row echelon form
(REF) and keeping track of the elementary matrices corresponding to the row operations.

Example 2.4. We shall find an LU-decomposition A = LU of the matrix A below. We start by
row-reducing A to row echelon form U :

A =

 1 1 1 1
1 3 3 −1

−2 2 −1 −5

 ∼

1 1 1 1
0 2 2 −2
0 4 1 −3

 ∼

1 1 1 1
0 2 2 −2
0 0 −3 1

 = U.

We performed three row operations:

� Add (−1) times the first row to the second row

� Add (2) times the second row to the third row

� Add (−2) times the second row to the the third row
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These row operations correspond to left multiplication by these elementary matrices:

E1 =

 1 0 0
−1 1 0
0 0 1

 E2 =

1 0 0
0 1 0
2 0 1

 E3 =

1 0 0
0 1 0
0 −2 1

 .

Thus we have E3(E2(E1A)) = (E3E2E1)A = U so A = (E3E2E1)
−1U = (E−1

1 E−1
2 E−1

3 )U = LU ,
where

L = E−1
1 E−1

2 E−1
3 =

1 0 0
1 1 0
0 0 1

 1 0 0
0 1 0

−2 0 1

1 0 0
0 1 0
0 2 1

 =

 1 0 0
1 1 0

−2 2 1


We conclude that an LU-decomposition is given by

A =

 1 1 1 1
1 3 3 −1

−2 2 −1 −5

 =

 1 0 0
1 1 0

−2 2 1

1 1 1 1
0 2 2 −2
0 0 −3 1

 = LU.

△
Some questions remain - when do LU-decompositions exist, are they unique when they do, and what

are they good for?
The reason that the method in the example works is that typically we can reduce a matrix to REF

simply by adding multiples of rows to rows below them - the corresponding elementary matrices will be
lower triangular, and then their inverses and their product L is also lower triangular. The only problem is
if we need to switch two rows to reach an echelon form of A. In this case we can first perform a sequence
of row switches in A by left-multiplying by elementary row-switching matrices. Let P be the product
of these matrices9 Then we proceed with the LU-decomposition as usual to obtain a factorization10

PA = LU . We have proved the following theorem:

Theorem 2.5. Each m× n matrix A admits a decomposition PA = LU where

� L is lower triangular m×m matrix with ones on the diagonal

� P is a permutation matrix of size m×m

� U is an upper triangular m× n matrix (a row echelon form of A)

Is such a decomposition unique? Well more or less. First, consider our example above and factor the
matrix U as DU ′ like so:

A = LU =

 1 0 0
1 1 0

−2 2 1

1 1 1 1
0 2 2 −2
0 0 −3 1

 =

 1 0 0
1 1 0

−2 2 1

1 0 0
0 2 0
0 0 −3

1 1 1 1
0 1 1 −1
0 0 1 − 1

3

 = LDU ′.

This is called an LDU-decomposition of A, and it can clearly be found from the LU-decomposition
as above.

Definition 2.6. An LDU-decomposition of A is a factorization A = LDU where L is lower trian-
gular m×m with ones on the diagonal, D is m×m and diagonal, and U is a row echelon form of
A with ones as pivots.

Here we note that A = (LD)U = L(DU) are two LU -decompositions of A (unless D = I). So in
general the LU-decomposition is not unique, however, with some additional conditions it is.

Proposition 2.7. If an invertible n× n matrix A admits an LU-decomposition, then it is unique if we
require that L has ones on the diagonal. It follows that it has a unique LDU-decomposition too.

Proof. Assume L1U1 = L2U2 are two LU-decompositions of A. Then with L = L−1
1 L2 we have U1 = LU2,

where U1 and U2 are both in row echelon form. But note that since A is invertible, any echelon form
must be upper triangular with nonzero elements on the diagonal, but then LU can only itself be upper
triangular if L = I, which means L1 = L2, and then since this matrix is invertible we also get U1 = U2.

9A product of row-switching elementary matrices is called a permutation matrix - these can be characterized as having
a single 1 in each row and each column, with zeros elsewhere.

10Equivalently, A = P−1LU . Since P−1 is also a permutation matrix, some books prefer to write the factorization as
A = PLU
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What are LU-decompositions good for? Imagine that we have a large system of linear equations
Ax = b (let’s say A is n× n, while b, x ∈ Rn). Assume we want to solve this system for many different
right sides b, and perhaps at different times (or perhaps one b is used to calculate the next recursively).
Then if we have a factorization A = LU , we have

Ax = b ⇔ L(Ux) = b ⇔ Ly = b and Ux = y.

So instead of solving Ax = b directly we can solve the two systems Ly = b and then Ux = y. These
systems are triangular, so they are fast to solve by back-substitution. If this is done by a computer on
a very large matrix (say n = 104), the speed-increase is significant.11

2.5 Cholesky-factorization

Definition 2.8. A Cholesky-factorization of a square matrix A is of form

A = CC∗

where C is a lower triangular matrix.

Since CC∗ is always Hermitian, so must A be in order to admit such a decomposition. In case an
invertible Hermitian matrix A has a decomposition A = LDU , we note that

LDU = A = A∗ = U∗D∗L∗ are two LDU-decompositions, so by uniqueness L = U∗ and D = D∗ so
A = LDL∗ and D is real. Moreover, assume that D has positive entries

D =


d1

d2
. . .

dn

 and define
√
D =


√
d1 √

d2
. . . √

dn

 .

The reason for the notation is that (
√
D)2 = D. Now take C = L

√
D. Then C is lower triangular, and

CC∗ = L
√
D
√
D

∗
L∗ = L

√
D
√
DL∗ = LDL∗ = A,

so A = CC∗ is the12 Cholesky-factorization of A.
The Cholesky-factorization can be used when solving linear systems with a Hermitian coefficient

matrix - algorithmically it is twice as efficient as using the LU-decomposition.

Example 2.9. Let’s find the Cholesky-factorization of A =

(
2 4
4 12

)
. We can reduce it to REF by

a single row-operation:

EA =

(
1 0

−2 1

)(
2 4
4 12

)
=

(
2 4
0 4

)
so A =

(
1 0
2 1

)(
2 4
0 4

)
=

(
1 0
2 1

)(
2 0
0 4

)(
1 2
0 1

)
= LDU

is the LDU-decomposition of A. Now take

C = L
√
D =

(
1 0

−2 1

)(√
2 0
0 2

)
=

( √
2 0

2
√
2 2

)
,

then it is easy to verify that

CC∗ =

( √
2 0

2
√
2 2

)(√
2 2

√
2

0 2

)
=

(
2 4
4 12

)
= A

is the Cholesky-decomposition of A.

△
11But we need to find the LU-decomposition first, so for a single right side b it is not an effective method.
12One can show that the Cholesky-factorization exists for Hermitian matrices A that are positive-semidefinite (meaning

that all its eigenvalues are ≥ 0). If the matrix is positive-definite the Cholesky-factorization is additionally unique.
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2.6 Determinants

Recall from a first linear algebra course that if A ∈ Matn(R), the determinant of A was a real number
that could be calculated by several methods:

� Sarrus’ rule for 2× 2 and 3× 3 matrices

� Expansion along rows or columns

� Make row or column operations, then the determinant is the product of the diagonal entries13

� As a sum over the permutation group Sn (maybe not in a first course)

The determinant also had a number of important properties:

� det(I) = 1

� det(A) = det(AT )

� det(AB) = det(A) det(B)

� det(A) ̸= 0 ⇔ A−1 exists and each system AX = 0 has a unique solution

It follows from the second point that that det(S−1AS) = det(A), so the determinant is basis-
independent and can be defined for any linear map. If a linear map is diagonalizable, its determinant is
therefore the same as the determinant ofD = diag(λ1, . . . , λn), in other words, det(A) = λ1 · · ·λn, the de-
terminant is the product of all eigenvalues counting multiplicities. This also holds for non-diagonalizable
maps which will shall see later.

For now we just remark that all these rules and properties above work the same over any field F.
When F = C we also note that det(A) = det(A), and therefore det(A∗) = det(A).

Example 2.10. The determinant of the linear map C2 → C2 with standard matrix A =

(
1 + i 1
i 3

)
is det(A) = 3(1 + i)− i = 3 + 2i ̸= 0, so the map is invertible.

△

3 Introductory spectral theory

3.1 Eigenvalues and eigenvectors

We recap the theory of eigenvalues and eigenvectors from a first linear algebra course.

Definition 3.1. Let F : V → V be a linear map on a vector space over a field F. If

F (v) = λv for some λ ∈ F and some nonzero v ∈ V,

we say that λ is an eigenvalue for F , and v is a corresponding eigenvector.

When dimV < ∞, the map F may be described by a matrix A after a basis is picked, so we shall also
speak of eigenvalues and eigenvectors of matrices, the condition in the definition then looks like Av = λv.

The eigenvalues give important information about the geometric nature of a map as the following
example illustrates.

Example 3.2. Let P : R3 → R3 be given by [P ] = 1
14

1 2 3
2 4 6
3 6 9

 in the standard basis. Then by

the standard methods of linear algebra we may find its eigenvalues and eigenvectors. It turns out
that P has two eigenvalues: 0 and 1. Every nonzero vector in the plane x + 2y + 3z = 0 is an
eigenvector for the eigenvalue 0, and every nonzero vector on the line t(1, 2, 3) is an eigenvector for

13Remember that changing two rows negates the determinant, and multiplying a row or column by a λ changes the
determinant by a factor λn
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the eigenvalue 1. From this information we can deduce that geometrically, F is a projection onto
the line t(1, 2, 3).

△

Example 3.3. Let C∞(R) be the real vector space of infinitely differentiable functions R → R, and
let D be the linear operator on this space that takes the derivative, D(f(x)) = f ′(x). Then every
λ ∈ R is an eigenvalue for D, the set of corresponding eigenvectors are nonzero multiples of eλx.

△
The spectrum of a linear operator F is the set of eigenvalues, and it is written σ(F ). The spectrum

gives important qualitative information about the operator. In the above examples we have σ(P ) = {0, 1}
and σ(D) = R. We shall focus on the case when the dimension of the vector space is finite, then there is
a concrete standard method for finding the eigenvalues and eigenvectors: fix a basis for V and consider
the matrix A of the linear operator. Then λ is an eigenvalue and a nonzero v is an eigenvector if and
only if Av = λv, or equivalently (A− λI)v = 0. This matrix-equation has a nontrivial solution v if and
only if det(A − λI) = 0. Solving this equation14 gives us the eigenvalues, and for each eigenvalue λ we
can then solve (A− λI)v = 0 to find the corresponding eigenvectors.

For λ ∈ F, we define the corresponding eigenspace, to be Eλ := ker(A− λI). This is the subspace
of V consisting of all vectors15 v satisfying Av = λv. Note that ker(A − λI) = {0} when λ is not an
eigenvalue.

Now let A be a matrix representing a linear operator on a finite-dimensional vector space over a field
F. The characteristic polynomial16 for A is defined as

pA(λ) = det(A− λI).

Then pA(λ) = 0 if and only if λ ∈ F is an eigenvalue of A. Note that the coefficients of pA lie in F,
and that deg pA = dimV . A quick calculation

det(SAS−1−λI) = det(S(A−λI)S−1) = det(S) det(A−λI) det(S−1) = det(SS−1) det(A−λI) = det(A−λI)

shows that the characteristic polynomial is the same regardless of the choice of basis in our matrix-
representation and we can therefore speak about pF (λ), the characteristic polynomial of a linear map
F : V → V without specifying a basis.

The algebraic multiplicity mλ of an eigenvalue λ is the multiplicity of λ as a zero in pA(t), in
other words we can factorize pA(t) = (t− λ)mλq(t) where q(λ) ̸= 0. On the other hand, the geometric
multiplicity of λ is defined as dimker(A− λI), the dimension of the λ-eigenspace.

Typically we expect the geometric and algebraic multiplicities to coincide for the eigenvalues of an
operator. This was the case for the operator P : R3 → R3 from Example 3.2 above where we had
g0 = 2 = m0 and g1 = 1 = m1. But there are exceptions:

Example 3.4. Let A =

(
3 5
0 3

)
. The characteristic polynomial is pA(t) = (t − 3)2, so λ = 3 is an

eigenvalue with algebraic multiplicity 2 since t = 3 is a double zero for pA(t). But solving Av = 3v
we notice that the only eigenvectors are multiples of (1, 0), so ker(A − 3I) = span(1, 0) is only
1-dimensional, and the geometric multiplicity of λ = 3 is 1. In other words, 1 = g3 < m3 = 2.

△

Proposition 3.5. For each eigenvalue λ of a linear map F : V → V , its geometric multiplicity is less
or equal than its algebraic multiplicity:

gλ ≤ mλ.

14Solving a polynomial equation of degree ≥ 5 algebraically is not feasible in general, but there are good numeric methods
for finding a good approximations, so this is not a problem in applications.

15Note that ker(A − λI) also contains the zero-vector, so technically it consists of all eigenvectors of eigenvalue λ and
the zero vector.

16Also called the secular polynomial. Some books define it instead as ker(λI − A), this is the same up to a sign
change. Sometimes a different variable is used in the polynomial, for example pA(t) = det(A − tI). The variable-name is
unimportant, pA(λ) and pA(t) is the same function.
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Proof. Let V be n-dimensional and assume the geometric multiplicity of λ is gλ = m. Then we can pick
a basis of m vectors (v1, . . . , vm) in the eigenspace Eλ and extend this to a basis B = (v1, . . . , vn) of V .
With respect to this latter basis, the matrix of F has block form

A = [F ]B =



λ
. . . B

λ

0 C


where the top-left block is of size m×m.

Since the characteristic polynomial is independent of the choice of basis we have

pF (t) = pA(t) = det(A− tI) = (λ− t)m det(C − tI) = (λ− t)mpC(t),

which was obtained by expanding the determinant along each of the first m columns. This shows that
(λ− t)m divides pF (t), so the algebraic multiplicity of λ is at least m. This completes the proof.

Note however that if λ is an eigenvalue, gλ is at least 1 since there is always at least one eigenvector.
If a matrix A can be factored as A = SDS−1 where D is a diagonal matrix, we say that A is

diagonalizable. This is equivalent to saying that there is a basis for V consisting of eigenvectors for
A. This means that the characteristic polynomial factors completely into linear factors, and that the
algebraic and geometric multiplicities agree for all eigenvalues. Concretely, let D be a diagonal matrix
with the eigenvalues λ1, . . . , λn on the diagonal (repeating according to algebraic multiplicities), and
pick a basis v1, . . . , vn for V consisting of eigenvectors ordered in the same order as the eigenvalues,
such that Avi = λivi. Let S = (v1 · · · vn) be the matrix with these eigenvectors as columns. Then
S−1AS = D, or equivalently SDS−1 = A. A factorization like this is called a diagonalization of A, it
corresponds to making a change of basis so that the new basis vectors are eigenvectors. This just means
that geometrically, any diagonalizable linear map just stretches vectors with different factors along a
number of axes.

One main difference between real and complex vector spaces when it comes to spectral theory is:

Theorem 3.6. Each linear operator on a finite-dimensional complex vector space has an eigenvalue.

Proof. By the fundamental theorem of algebra, every nonconstant polynomial with complex coefficients
has a zero in C. A zero of the characteristic polynomial is an eigenvalue.

Example 3.7. Let’s diagonalize the linear map F : C2 → C2 with matrix [F ] = A =

(
0 −1
1 0

)
.

Since pA(λ) = λ2+1, the eigenvalues are ±i. To find the eigenvectors for λ = i we solve the system
(A− iI)x = 0:{

−ix1 − x2 = 0

x1 − ix2 = 0
⇔ x1 − ix2 = 0 ⇔ (x1, x2) = t(i, 1) where t ∈ C.

Similarly we get (A + iI)x = 0 ⇔ x = t(1, i). We put the eigenvalues in a matrix D and
corresponding eigenvectors as columns in a matrix S. We now have a diagonalization of A:(

0 −1
1 0

)
= A = SDS−1 =

(
i 1
1 i

)(
i 0
0 −i

)
1

2

(
−i 1
1 −i

)
.

Note that the same matrix A can be viewed as the matrix of a linear map G : R2 → R2. This
map G does not have any eigenvalues, since pA(λ) = λ2 +1 has no zeroes in R. Geometrically the
map G corresponds to a rotation a quarter of a turn counter-clockwise in R2.

△

Proposition 3.8. Eigenvectors corresponding to different eigenvalues are linearly independent.
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Proof. We prove the statement by contradiction. Let A be a matrix representing an operator, and
let v1, . . . , vn be eigenvectors Avi = λivi where the eigenvalues λi are distinct, which satisfy linear
dependence relation α1v1+ · · ·+αnvn = 0, where we may assume that all αi ̸= 0 (otherwise just remove
the corresponding vectors vi).

We may also assume that n is minimal, such that there is no dependence relation of eigenvectors of
A with fewer vectors involved. Then we apply (A− λ1I) to the relation and obtain

(A−λ1I)(α1v1+· · ·+αnvn) = α1(A−λ1I)v1+· · ·+αn(A−λ1I)vn = α1(λ1−λ1)v1+· · ·+αn(λn−λ1)vn = 0.

But this is another nontrivial linear dependence but with one less term since the coefficient of v1 is now
zero. This contradicts the minimality of n, and finishes the proof.

3.2 Complexification and realification

In the previous example we saw how a matrix A could represent both a linear map between real vector
spaces R2 → R2, and a linear map between two complex vector spaces C2 → C2. Let’s try to formalize
this idea.

Every complex number can be written uniquely as a+ bi with a, b ∈ R. In other words, the complex
numbers C is a real vector space of dimension 2 with basis (1, i).

Similarly, every vector in C2 can be written uniquely as v + iv′ where v, v′ ∈ R2. For example:(
3 + 2i
5− i

)
=

(
3
5

)
+ i

(
2

−1

)
.

Following this idea we construct the complexification of a real vector space by considering formal pairs
of real vectors.

Definition 3.9. Let V be a real vector space. We define the complexification of V to consist of
all formal sums v+ iv′ where v, v′ ∈ V , where addition of such objects is defined in the natrual way:

(v1 + iv′1) + (v2 + iv′2) := (v1 + v2) + i(v′1 + v′2),

and where multiplication by a complex number a+ bi on such an object is defined via:

(a+ bi) · (v + iv′) := (av − bv′) + i(av′ + bv).

Then V C is a complex vector space, it satisfies all the vector space axioms.

For example, the complexification of R2 is C2, but the construction above is more general and works for
any real vector space V .

Note that a basis for V is still a basis for V C, but complex coefficients are allowed in the latter
space17.

Now, if F : V → W is a linear map between real vector spaces, we can define a map FC : V C → WC

by
FC(v + iv′) := F (v) + iF (v′).

This construction has the effect witnessed before: if [F ] = A with respect to some choice of bases in V
and W , then [FC] = A too with respect to the same bases in V C and WC.

Is the opposite construction possible? Can we from a complex vector space construct a corresponding
real one? Yes, if V is a complex vector space, let VR be the same set as V , where addition is defined the
same way, and where multiplication by a scalar λ is defined the same way as in V when λ ∈ R, but where
it is undefined when λ is not real. Intuitively, just take the same vector space V but ”forget” how to
multiply vectors by non-real complex numbers18. This construction is called the decomplexification
or realification of V . If F : V → W is a linear map between complex vector spaces, then we get a
corresponding linear map between real vector spaces FR : VR → WR, where FR(v) = F (v).

Note that if (e1, . . . , en) is a basis for the complex vector space V , it means that every vector v ∈ V
can be expressed uniquely as

v = λ1e1 + λ2e2 + · · ·+ λnen = (a1 + ib1)e1 + (a1 + ib1)e2 + · · · (an + ibn)en.

17Indeed, this is an alternative way to define complexification. If (e1, . . . , en) is a basis for a real vector space V , then
let V C be the complex vector space with the same basis. It consists of all complex linear combinations of the basis vectors.

18In category theory, the function that maps each complex vector space V to VR is called the forgetful functor.
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This shows that (e1, ie1, e2, ie2, . . . , en, ien) is a basis for the real vector space VR since every v can be
expressed uniquely as a linear combination of these vectors with real coefficients. Note that dimVR =
2 · dimV .

3.3 Invariant subspaces

Let F : V → V be a linear operator, and let U be a subspace of V . We say that the subspace U is
F -invariant, or invariant under F , if

u ∈ U ⇒ F (u) ∈ U.

In other words, we ”stay in the subspace” if we apply F to a vector in the subspace. Since matrices
describe linear maps we shall also talk about invariant subspaces for matrices.

If U ⊂ V is a subspace, and F : V → W is a linear map, the restriction F |U : U → W is the same
map but with domain U .

But if U ⊂ V is a subspace that is invariant under a map F : V → V , we can consider its restriction
to be a map from U to itself19.

An eigenspace for a linear map F is clearly an F -invariant subspace, and so is a sum of eigenspaces.
But there are also other examples as illustrated in the following example:

Example 3.10. Let F : R3 → R3 be the rotation a quarter of a turn in the positive direction
around the axis (1, 2, 2). Then U1 = span(1, 2, 2) is a one-dimensional F -invariant subspace, and
the restriction F |U1 : U1 → U1 is the identity map since every vector in U1 is mapped to itself by
F . In the basis

(
(1, 2, 2)

)
of U1, the matrix of F |U1

is the 1× 1-matrix (1).

Similarly, the plane U2 : x+ 2y+ 2z = 0 is also a F -invariant subspace, since every vector of U2 is
mapped to another vector in U2 when it is rotated around (1, 2, 2). If we pick

(
(2,−2, 1), (2, 1,−2)

)
as a basis for U2, the matrix of P |U2 is

(
0 −1
1 0

)
. Note that U2 contains no eigenvectors of F .

△

Example 3.11. The differential operator D : P → P is given by D(p(x)) = p′(x). Then Pn, the
polynomials of degree ≤ n, is a D-invariant subspace for each n.

△
We know that many maps can be represented by diagonal matrices. What about maps that can’t?

Before we prove the Jordan theorem we need the following preliminary result.

Theorem 3.12. Let F : V → V be linear operator on a finite-dimensional complex vector space V . Then
there exists a basis for V for which the matrix of F is upper triangular. The elements on the diagonal
in this triangular matrix are the eigenvalues for F , counting multiplicities.

Proof. We proceed by induction on dimV , the statement is trivial if dimV = 1 since every 1× 1-matrix
is upper triangular. Let dimV = n and assume the statement is true for all vector spaces of dimension
< n. We know that F has an eigenvalue, so assume F (u1) = λu1. Pick any (n−1)-dimensional subspace
U that doesn’t contain u1; then V = span(u1)⊕U . Pick a basis (u2, . . . , un) of U . Then with respect to
the basis (u1, . . . , un) of V , the matrix of F looks like

[F ] =


λ b2 · · · bn
0
... A
0


where A is the matrix of the projection onto U of the restriction F |U . By the induction hypothesis, for
this operator there exists a basis for U for which A becomes upper triangular. Together with the first
basis vector u1, we get a basis for V for which the matrix for F is upper triangular. Let T = (tij) be
this upper triangular matrix, then since the determinant of a triangular matrix is the product of the

19Technically, to get a map U → U we should compose FU with the projection onto the subspace U , and form PU ◦F |U ,
but it is standard to just write F |U when the context is understood.
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diagonal elements, we have det(T − λI) = (t11 − λ) · · · (tnn − λ) is the characteristic polynomial of T ,
and therefore of F , and its roots t11, . . . , tnn are the diagonal elements of T , so these are the eigenvalues
of F .

Corollary 3.13. Let A be an operator (or a square matrix) with eigenvalues λ1, . . . , λn (repeating ac-
cording to algebraic multiplicity). Then the trace of A is the sum of the eigenvalues, and the determinant
of A is the product of the eigenvalues:

tr(A) = λ1 + . . .+ λn and det(A) = λ1 · · · · · λn.

Proof. We know that trace and determinant is independent of the choice of basis, so use Theorem 3.12
to find a basis for which the matrix of A is upper triangular with the eigenvalues on the diagonal. Then
the result follows.

This result is usually proved in a first course only for diagonalizable operators, now we see that it
holds in general for operators on complex vector spaces.

3.4 Matrix polynomials

There is a natural way to ”plug in” a square matrix into a polynomial.

Definition 3.14. Let p(t) = ant
n + · · ·+ a1t+ a0 be a polynomial with coefficients ai ∈ F, and let

A be a square matrix with coefficients in the same field F. Then we define

p(A) = anA
n + · · ·+ a1A+ a0I.

Example 3.15. Let p(t) = t7 + 12t4 − t3 + 2t2 + 5t+ 3 and N =

0 1 0
0 0 1
0 0 0

. Then

p(N) = N7 + 12N4 −N3 + 2N2 + 5N + 3I = 2N2 + 5N + 3I =

3 5 2
0 3 5
0 0 3


here the calculation was made easy by the fact that N is nilpotent, Nk = 0 for k > 2, so the first
terms disappeared.

△
Note that p(A) is a square matrix of the same size as A, and that P (A) commutes with A since each

term does. Moreover, if B = SAS−1, we get p(B) = Sp(A)S−1. For this reason it also makes sense to
define p(F ) where F : V → V is an operator of an F-vector space.

For a given n× n-matrix A, can we always find a nonzero polynomial p(t) such that p(A) = 0? Yes

- consider the matrices I, A,A2, . . . , An2

. These are n2 + 1 vectors in an n2-dimensional vector space
Matn(F), therefore they are linearly dependent and there are scalars λk such that

n2∑
k=0

λkA
k = 0

so with p(t) =
∑n2

k=0 λkt
k we have p(A) = 0.

Can we find find such a polynomial of smaller degree?

Example 3.16. Let p(t) = t2 − 5t− 2 and A =

(
1 2
3 4

)
. Then

p(A) = A2 − 5A− 2I =

(
7 10
15 22

)
− 5

(
1 2
3 4

)
− 2

(
1 0
0 1

)
=

(
0 0
0 0

)
.

So in this case p(A) is the zero matrix. Note that the characteristic polynomial of A is det(A−λI) =
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λ2 − 5λ− 2.

△
The example above shows an example where a matrix satisfies its characteristic equation: pA(A) = 0.

This is in fact always true, it’s a famous result of linear algebra:

Theorem 3.17. (The Cayley-Hamilton theorem) If A is a square matrix with characteristic poly-
nomial pA(λ) = det(A− λI), then

pA(A) = 0.

The theorem holds over any field, but we prove it only for the complex numbers below:

Proof. Use Theorem 3.12 to find a matrix S and an upper triangular matrix T (with the eigenvalues
λ1, . . . , λn of A on the diagonal) such that S−1AS = T . We have previously shown that similar matrices
have the same characteristic polynomial, so pA(λ) = pT (λ), and

pA(A) = pT (A) = pT (STS
−1) = SpT (T )S

−1

so it suffices to show that pT (T ) = 0 for an upper triangular matrix T .
Now factor pT (λ) completely over C, we know that the eigenvalues of T are its diagonal entries, so

pT (λ) = (t11 − λ) · · · (tnn − λ).

Then pT (T ) = (t11I − T ) · · · (tnnI − T ), and by taking successive products from the right we see that
pT (T )v = 0 for every vector v, as illustrated below when n = 3:

pT (T )v = (t11I − T )(t22I − T )(t33I − T )v =

0 ∗ ∗
0 ∗ ∗
0 0 ∗

∗ ∗ ∗
0 0 ∗
0 0 ∗

∗ ∗ ∗
0 ∗ ∗
0 0 0

v1
v2
v3



=

0 ∗ ∗
0 ∗ ∗
0 0 ∗

∗ ∗ ∗
0 0 ∗
0 0 ∗

∗
∗
0

 =

0 ∗ ∗
0 ∗ ∗
0 0 ∗

∗
0
0

 =

0
0
0


where in the calculation above, ∗ means some arbitrary number. Each multiplication gives one more zero
in the resulting vector. This shows that pT (T )v = 0 for all v, which means that T is the zero matrix. In
light of the above remarks, this completes the proof.

Example 3.18. Let A =

(
1 2
3 4

)
. Let us find a polynomial p such that p(A) = A−1. Since

pA(λ) = λ2 − 5λ− 2 we know by Cayley-Hamilton that pA(A) = 0, so solving for I we get

A2 − 5A− 2I = 0 ⇔ I =
1

2
(A− 5I)A ⇔ A−1 =

1

2
(A− 5I).

This idea works in general whenever A is invertible, because then 0 is not an eigenvalue, and the
constant term in pA is nonzero.

△
The Cayley-Hamilton also provides a quicker way to evaluate a polynomial of high degree at A without

computing many matrix products. For example, in our previous example we had pA(t) = t2 − 5t − 2,
so to evaluate p(A) for some complicated polynomial p(t), first use standard polynomial division to find
polynomials q(t) and r(t) with deg r(t) < 2 such that

p(t) = pA(t)q(t) + r(t).

Then by Cayley-Hamilton we have

p(A) = pA(A)q(A) + r(A) = 0 · q(A) + r(A) = r(A),

so we only have to evaluate r(A) where r has degree ≤ 1.
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Minimal polynomial

Let A be an n × n matrix. Cayley-Hamilton says that there exists a polynomial of degree n (the
characteristic polynomial) satisfying p(A) = 0, but a polynomial of even lower degree may exist.

Definition 3.19. Let A be a square matrix. The minimal polynomial of A is the monic poly-
nomial mA(t) of lowest degree for which mA(A) = 0.

One can also define the minimal polynomial of any operator on a finite-dimensional vector space. The
adjective monic just means that the coefficient of the highest degree term is 1.

Proposition 3.20. The minimal polynomial exists and in unique.

Proof. Cayley-Hamilton shows that there exists some monic polynomial p annihilating A (meaning
p(A) = 0), namely ±pA. Now if two monic polynomials p1 and p2 of the same minimal degree n
both annihilates A, then (p1 − p2)(A) = p1(A)− p2(A) = 0− 0 = 0, so p1 − p2 also annihilates A, and it
has lower degree than n (and can be made monic by dividing my its leading coefficient). This contradicts
minimality unless p1 = p2 which shows uniqueness.

Proposition 3.21. The minimal polynomial divides any polynomial that annihilates A:

p(A) = 0 ⇒ p(t) = mA(t)q(t).

In particular, the minimal polynomial divides the characteristic polynomial.

Proof. Assume p(A) = 0. Divide p(t) by mA(t) using polynomial division. We obtain a polynomial
equation p(t) = q(t)mA(t) + r(t) where deg r(t) < degmA or r(t) = 0. Replacing t by A we get
p(A) = q(A) ·mA(A) + r(A) and 0 = q(A) · 0 + r(A), so r(A) = 0. But then r is the zero-polynomial,
otherwise it would be a polynomial of lower degree than mA that annihilates A, which would contradict
the minimality of mA. We conclude that p(t) = q(t)mA(t) so mA(t) divides p(t).

Proposition 3.22. The characteristic and minimal polynomial have the same zeros:

pA(λ) = 0 ⇔ mA(λ) = 0.

Proof. Any zero of mA is a zero of pA since mA|pA. On the other hand, let λ be a zero of pA. Then λ
is an eigenvalue and there is some eigenvetor v with Av = λv. Then 0 = mA(A)v = mA(λ)v so mA(λ)
is zero too.

Example 3.23. Let us find the minimal polynomial of A =

 1 1 1
−4 4 3
−4 1 6

. We compute and factor

the characteristic polynomial: pA(t) = −(t − 3)2(t − 5). Now since mA(t) divides pA(t) and
still has 3 and 5 are zeros, there are only two options: either mA(t) = −pA(t) = (t− 3)2(t− 5) or
mA = (t−3)(t−5). We test whether the second option annihilates A, but find that (A−3I)(A−5I)
is not the zero-matrix. Therefore mA(t) = (t− 3)2(t− 5).

△
If we know the eigenvalues of some matrix A, what can be said about the eigenvalues of p(A) where

p is some polynomial? The answer is given by the spectral mapping theorem.

Theorem 3.24. Spectral mapping theorem. For any polynomial p, we have

σ(p(A)) = p(σ(A)).

In other words, λ is an eigenvalue for A if and only if p(λ) is an eigenvalue for p(A).

Proof. Note that p(σ(A)) is defined as {p(λ) | λ ∈ σ(A)}. One direction is easy: if Av = λv and
p(t) =

∑
akt

k, then p(A)v =
∑

akA
kv =

∑
akλ

kv = p(λ)v. The other direction is left as an exercise.

Intuitively, the spectrum of A is some finite set of points in C. The theorem says that if we apply
the polynomial p to each of these points we get the spectrum of the operator p(A).
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4 Jordan normal form

Our goal of this section is to show that for any linear operator on a complex finite-dimensional vector
space, there is a basis such that the matrix for the operator has a particular canonical format called the
Jordan form20. We shall soon prove this, and we shall discuss the algorithm for Jordanizing a matrix,
but first, let’s investigate the properties of matrices in this form.

4.1 Properties of matrices on Jordan form

Definition 4.1. The Jordan block of size n and with eigenvalue λ is defined as the n× n-matrix

Jn(λ) =



λ 1
λ 1

λ
. . .

. . . 1
λ

 .

In other words, Jn(λ) has λ’s on the diagonal, and ones on the super-diagonal (one step over the
diagonal), and zeros elsewhere.

Example 4.2. The matrix

J = J3(5) =

5 1 0
0 5 1
0 0 5


is a Jordan block. We note that pJ(t) = det(J − tI) = (5 − t)3 so the only eigenvalue is 5, and
since

J − 5I =

0 1 0
0 0 1
0 0 0

 , only multiples of

1
0
0


are eigenvectors, so the geometric multiplicity of t = 5 is 1 and J is not diagonalizable.

△
The same goes in general, the characteristic polynomial of J = Jn(λ) is pJ(t) = det(J−tI) = (λ−t)n,

and the eigenspace Eλ = ker(J − λI) is spanned by the first standard basis vector e1. In particular, the
geometric multiplicity gλ is 1, so it is not diagonalizable (except for the trivial case n = 1).

Definition 4.3. A matrix J is said to be in Jordan form if it is a block-diagonal matrix where
each block is a Jordan block. In other words,

J = diag(Jn1
(λ1), Jn2

(λ2), · · · , Jnk
(λk)).

Note that the blocks may have different sizes, and that some of the λi can coincide.

Recall that direct sums of linear maps correspond to block-diagonal matrices. For this reason another
common notation for the Jordan-matrix in the definition is

J = Jn1
(λ1)⊕ Jn2

(λ2)⊕ · · · ⊕ Jnk
(λk).

Example 4.4. The following matrix is in Jordan form, for clarity it is common to omit off-diagonal

20Named after Camille Jordan who first stated what is now known as the Jordan decomposition Theorem in 1870.
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zeros and to draw boxes to indicate the Jordan blocks:

J =



5 1 0 0 0 0

0 5 1 0 0 0

0 0 5 0 0 0

0 0 0 2 1 0

0 0 0 0 2 0

0 0 0 0 0 2


=



5 1

5 1

5

2 1

2

2


= J3(5)⊕ J2(2)⊕ J1(2)

Here we see that the characteristic polynomial is pJ(t) = (t − 5)3(t − 2)3 so the eigenvalues are
5 and 2. Each Jordan-block corresponds to an eigenvector, in this example we see that e1 is an
eigenvector with eigenvalue 5, and that e4 and e6 both are eigenvectors of eigenvalue 2.

△
Note in particular that any Jordan block is in Jordan form (with a single block), and that any diagonal

matrix is in Jordan form (all the blocks have size 1× 1).
How can we determine the minimal polynomial for a matrix in Jordan form? Let us first consider an

example where all the eigenvalues coincide:

Example 4.5. For the matrix J below, we have pJ(t) = (2 − t)7, so the minimal polynomial has
form (t− 2)n for some 1 ≤ n ≤ 7 , we plug in J and compute:

J =



2 1 0 0 0 0 0

0 2 1 0 0 0 0

0 0 2 0 0 0 0

0 0 0 2 1 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 1

0 0 0 0 0 0 2


⇒ (J − 2I)n =



0 1 0
0 0 1
0 0 0

n

[
0 1
0 0

]n
[
0 1
0 0

]n



and we see that this is zero if and only if n ≥ 3, because then the largest Jordan block is annihilated
by the polynomial, so mJ(t) = (t− 2)3.

△
We see that the analogous argument works in general: For each zero λ of pJ(t), the corresponding

exponent of (t− λ) in mJ(t) is the size of the largest Jordan block of eigenvalue λ.
For example, in Example 4.4, the largest Jordan block for eigenvalue 5 had size 3, and for eigenvalue

2, the largest block had size 2. So the minimal polynomial is mJ(t) = (t− 5)3(t− 2)2. Here it is easy to
verify that this polynomial annihilates J : we have

mJ(J) = (J − 5I)3(J − 2I)2 =



0 1 0
0 0 1
0 0 0

3

[
−3 1
0 −3

]3
[−3]3





3 1 0
0 3 1
0 0 3

2

[
0 1
0 0

]2
[0]2



=

 0
∗

∗

 ∗
0

0

 =

 0
0

0

 = 0.

To summarize the above discussion, we collect what we know about a matrix in Jordan form.

� The eigenvalues is on the diagonal of J , repeating according to algebraic multiplicity. In other
words, the algebraic multiplicity of λ is the sum of the sizes of all λ-Jordan blocks in J .
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� The geometric multiplicity of λ is the number of λ-Jordan blocks. The top-left position of each
Jordan block corresponds to an eigenvector, if a Jordan-block Jn(λ) sits in J with top-left corner
in position (i, i), then ei is an eigenvector of eigenvalue λ.

� If pJ(t) = ±(t− λ1)
n1 · · · (t− λk)

nk , the minimal polynomial is mJ(t) = (t− λ1)
m1 · · · (t− λk)

mk ,
where mi is the size of the largest λi-Jordan block in J .

Algebraic multiplicities, geometric multiplicities, charactersitic- and minimal polynomials are invari-
ant under a change of basis, so if we know these invariants for an arbitrary matrix A, and we are trying
to write J = S−1AS, we get some information about the shape of J .

4.2 Structure theory for nilpotent operators

Our goal in this section is to from a given a linear map F : V → V find a basis for which the matrix
of F is in Jordan form. This can be somewhat complicated, so let us first restrict ourselves to nilpotent
maps F .

If F is nilpotent, then F d = 0 for some minimal d which is the nilpotency degree of F . Then the
minimal polynomial must be mF (t) = td which shows that zero is the only eigenvalue of F .

We are looking for a special type of basis for V which clearly reveals structure of F :

Definition 4.6. Let F : V → V be nilpotent. A string (for F ) in V is a sequence of nonzero
vectors (v1, . . . , vn), such that F (vi) = vi−1 and F (v1) = 0, or visually

vn 7→ · · · 7→ v2 7→ v1 → 0.

Here we call vn the first vector, and we call v1 the last vector of the string, and the length of the
string is n. We shall sometimes draw simpler arrows and sometimes omit the vectors when drawing
strings.

A string basis for V is a basis for V which is a union of strings.

Strings are sometimes called Jordan chains or just chains, I will use the word string when referring to
nilpotent operators and reserve the other words for the more general case that we will investigate later.

Example 4.7. Suppose that a linear map F : C8 → C8 has a string basis (e1, . . . , e8) which looks
like in the left diagram below. In this basis, the matrix of F will have the form to the right:

e3 → e2 → e1 → 0

e5 → e4 → 0

e7 → e6 → 0

e8 → 0

[F ] =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Here we note that [F ] = J3(0)⊕J2(0)⊕J2(0)⊕J1(0) is in Jordan form, and that the nilpotency

degree of F is 3, which corresponds to the length of the longest string. This also shows that
mF (t) = t3. We see that each string corresponds to a Jordan block, and that the rightmost vectors
of the strings are the eigenvectors with eigenvalue 0.

The images and kernels Im(F k) and ker(F k) can easily be visualized from the string-diagram.
For example, ker(F ) consists of vectors that are mapped to zero, so this subspace is spanned by the
rightmost vectors of all the strings: ker(F ) = span(e1, e4, e6, e8). Similarly, the subspace ker(F 2)
is spanned by vectors which are mapped to zero when F is applied twice, so this is spanned by all
the standard basis vectors except e3. Clearly ker(F 3) = C8.

Dually, the image of F is spanned by all basis vectors except the first (leftmost) vectors of each
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string, Im(F ) = span(e1, e2, e4, e6), while Im(F 2) = span(e1). Clearly Im(F 3) = 0.

△

Lemma 4.8. If the last vectors of a set of strings are linearly independent (the eigenvectors with eigen-

value 0), then so are the whole strings. More precisely, if S = {v(i)k } are strings for F with F (v
(i)
1 ) = 0

and F (v
(i)
k ) = v

(i)
k−1, then if the last vectors {v(i)1 } is a linearly independent set, then so is S.

Proof. Following the same idea as in the proof of Proposition 3.8, assume a minimal nontrivial linear
combination of string-vectors is zero. Then applying the operator F shifts all the vectors in the linear
combination one step to the right, so by applying F until a vector in the linear combination is mapped
to zero, we have obtained a linear combination with fewer elements which is zero, contradicting the
minimality of our original linear combination.

Theorem 4.9. For any nilpotent map F : V → V there exists a string basis, and with respect to this
basis, the matrix [F ] is in Jordan form with zeroes on the diagonal.

Proof. We proceed by induction on dimV , the base case dimV = 0 is obvious.
Now assume F : V → V is nilpotent and dimV = n, and that the statement is true for all nilpotent

maps on vector spaces of dimension lower than n. Now if F is the zero map the statement is obvious (any
basis is a string basis). Otherwise, 0 < dimkerF < n, so by rank-nullity Im(F ) is a proper subspace.
Consider the restriction F |Im(F ) : Im(F ) → Im(F ), by the induction hypothesis there exists a string
basis for this map, denote this basis

{e(i)j | 1 ≤ j ≤ ki}

where the top index indicate the different strings, and ki is the length of string number i, and where

F (e
(i)
j ) = e

(i)
j−1 and F (e

(i)
1 ) = 0. Consider the leftmost vectors e

(i)
ki

in these strings, they belong to Im(F ),

so we can extend each string westwards by picking e
(i)
ki+1 ∈ V such that F (e

(i)
ki+1) = e

(i)
ki
. Now our

extended string-vectors are linearly independent, and they span a subspace U ⊂ V containing Im(F ).
Now by construction, F (U) = Im(F ). The subspace U might not be all of V , so we extend U by vectors
v1, . . . , vs to a basis of V . But F (vi) belongs to Im(F ) = F (U), so F (vi) = F (ui) for some ui ∈ U . Now
take wi = vi − ui. Then the wi still span a complement to U , and we have F (wi) = F (vi)− F (ui) = 0,
so wi ∈ ker(F ). But then take our string basis for U and adjoin the wi as strings of length 1, then we
have a string basis for V .

If you want to understand the proof, it might be instructive to study how it applies to the map:

e2 e1 0

e3

Here the image is spanned by e1, we extend the only string to a string of length 2: e2 7→ e1 7→ 0. Then
U = span(e1, e2) is not all of V , so we extend by v = e3, and note that F (e3) = e1 ∈ F (U), and we pick
an element w of U that is also mapped to e1, let’s take u = e2. Then w = v − u = e3 − e2 is mapped to
zero, and is a string of length 1. So in this case our derived string basis would be (e1, e2, e3 − e2).

Corollary 4.10. Let A be a nilpotent matrix. Then there exists an invertible matrix S and a matrix
J in Jordan-form (with zeros on the diagonal) such that S−1AS = J . The matrix J is unique up to
permutation of the Jordan blocks.

Proof. Use the Theorem 4.9 to find a string basis, and let S be the matrix with the string-basis vectors
as columns in order string by string from the right side of each string, then clearly S−1AS is in Jordan
form. For the uniqueness claim, we note that the sequence of numbers dimker(Ak) = dimker(Jk) will
determine uniquely the number of strings and the length of strings in the string basis, and therefore the
shape of the Jordan form up to permutation.

Since the Jordan form of nilpotent operators is unique we shall speak of the Jordan form of a nilpotent
operator21.

21Usually we consider two Jordan forms to be the same if they contain the same Jordan blocks in different order, if we
define some arbitrary order on C and on the size of blocks, the Jordan form would be truly unique. Note however that
while J is unique, there may be several choices for the actual vectors of the string basis (the columns of S).
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Example 4.11. Let us classify nilpotent operators on a 5-dimensional vector space V . The corollary
above guarantees that any nilpotent operator is similar to a matrix in Jordan form, so we need only
find all Jordan-forms of 5× 5 matrices where the diagonal elements are zero. The block-partition
of the Jordan matrix corresponds to a partition of the integer 5 as a sum of positive integers, and
there are seven such partitions:

(5), (4 + 1), (3 + 2), (3 + 1 + 1), (2 + 2 + 1), (2 + 1 + 1 + 1), (1 + 1 + 1 + 1 + 1).

Here are the corresponding Jordan forms:

0 1

0 1

0 1

0 1

0





0 1

0 1

0 1

0

0





0 1

0 1

0

0 1

0





0 1

0 1

0

0

0




0 1

0

0 1

0

0





0 1

0

0

0

0





0

0

0

0

0


The corollary guarantees that for any nilpotent map F on a 5-dimensional vector space, there
exists a basis for which the matrix of [F ] is one (and only one) of the matrices above. Alternatively
stated, any nilpotent matrix A is similar to exactly one of the matrices above: A = SJS−1 where
J is one of the seven matrices above.

△
Given a nilpotent operator, how do you actually find a string basis algorithmically? Before going

hunting for basis vectors, a good starting point is determining the number of strings and their lengths.
This determines the Jordan form of the operator.

Lemma 4.12. For a nilpotent operator (or matrix) A : V → V , define nk = dimker(Ak), and let dk be
the number of strings of length k in any string basis, or equivalently, the number of Jordan blocks of size
k in the Jordan form of A. Then for k ≥ 1,

dk = 2nk − nk−1 − nk+1.

Proof. Note n0 = 0 and that nk = dimV for all k ≥ m where m is the nilpotency-degree of A, and that
n0, n1, . . . , nm is a strictly increasing integer sequence. Note also that the maximum length of a string
is m, so dk = 0 for k > m.

Visualize a generic string-diagram and consider what the different kernels ker(Ak) look like in terms
of the strings. Now n1 = n1 −n0 = dimker(A) equals the total number of strings, or in other words, the
number of strings of length ≥ 1. Similarly, n2 − n1 equals the number of strings of length ≥ 2. By this
line of reasoning, ni − ni−1 equals the number of strings of length ≥ i. But then the number of strings
of length exactly k is equal to the number of strings of length ≥ k minus the number of strings of length
k + 1, so

dk = (nk − nk−1)︸ ︷︷ ︸
#strings of length ≥k

− (nk+1 − nk)︸ ︷︷ ︸
#strings of length ≥k+1

= 2nk − nk−1 − nk+1.

Example 4.13. Let’s say that we have a matrix A ∈ Mat11(C) and we have found that A4 = 0, and
that rank(A) = 7, rank(A2) = 3, rank(A3) = 1. Let us determine the Jordan form of A from this
information.

Let nk = ker(Ak) as in the lemma. By rank-nullity we get n0 = 0, n1 = 11 − 7 = 4, n2 =
11 − 3 = 8, n3 = 11 − 1 = 10, and nk = 11 for k > 4. By the lemma, the numbers dk of strings

Page 28



Lecture Notes TATA53

can be computed as dk = 2nk − nk−1 − nk+1, which gives

d1 = 0, d2 = 2, d3 = 1, d4 = 1,

and dk = 0 for k ≥ 4.
So we conclude that there are 2 strings of length 2, 1 strings of length 3, and 1 chain of length

4, so the Jordan form for A is:

S−1AS = J2(0)⊕ J2(0)⊕ J3(0)⊕ J4(0).

△
Now, to find the actual vectors in a string basis, it is easiest to start with the first vectors of the

longest strings.
Suppose that we know for some nilpotent map A that there are 2 strings of length 3, and no longer

strings. Some starting vectors for these strings should lie in22 ker(A3)\ker(A2), so we pick two vectors v
and w that span a complement23 to ker(A3) in ker(A2). Then we apply A to get the rest of these strings:

v 7→ Av 7→ A2v 7→ 0 and w 7→ Aw 7→ A2w 7→ 0.

Now we proceed to find the strings of length 2 by by finding their first vectors which should lie in
ker(A2) \ ker(A). However, we should also be careful not to pick any vector which is linearly dependent
the six vectors v,Av,A2v, w,Aw,A2w from our previously chosen strings. Proceeding like this eventually
produces a string basis.

In light of the discussion above, here is an algorithm24 for finding a string basis for a nilpotent matrix
(or operator).

Algorithm 4.14. To find a string basis for a nilpotent matrix A, do the following:

1. Write down Ak and find a basis in each subspace ker(Ak) until Am = 0. Let nk =
dimker(Ak).

2. Find dk = 2nk − nk+1 − nk−1, the number of strings of length k.

3. Sketch a string-diagram and write down the corresponding Jordan matrix J .

4. For each string-length k, from longest to shortest do:

(a) Let B be the set of previously chosen vectors (B is empty in the first step)

(b) Pick vectors v1, . . . , vdk
in ker(Ak) that are linearly independent both to ker(Ak−1)

and to the previously picked vectors in B. These vectors will be first vectors in
strings of length k.

(c) Compute the rest of the strings vi, Avi, A
2vi . . . until this is zero, adjoin all these

nonzero vectors to B.
(d) Decrease k by 1 and repeat until k = 0.

5. B now contains a string basis. Order its vectors string by string from right to left, in the
same order as your string diagram (and Jordan matrix J). Let S be the matrix with the
string-basis vectors as columns in this order.

6. Verify that SJS−1 = A.

In step 1, things are easier if pick a basis in each successive ker(Ak+1) by extending a basis from
ker(Ak). If we know that the matrix S is invertible, it is easier to verify that SJ = AS in the last step,
even faster is to just verify that for each column si of S, we have either Asi = 0 or Asi = si−1.

The algorithm may seem complicated, especially step 4b. However, for small matrices some steps are
quite obvious, let’s illustrate:

22Recall that A \B means the set-difference, it meaning the elements of A that are not in B. Don’t confuse it with our
notation V/U for quotient-spaces.

23In other words, extend a basis of ker(A2) to ker(A3)
24Several variations of this can be found in the literature.
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Example 4.15. Let A =


0 0 0 0
1 0 0 1
0 0 0 0
0 0 1 0

. This gives A2 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 and A3 = 0. We see

immediately that

ker(A) = span(e2, e1 − e4) and ker(A2) = span(e1, e2, e4).

So (n1, n2, n3) = (2, 3, 4) and (d1, d2, d3) = (1, 0, 1), so we are looking for two strings, one of length
1 and one of length 3. The Jordan form will therefore be J3(0)⊕ J1(0).

Following the algorithm we are first looking for one vector v in ker(A3) \ ker(A2) = C4 \
span(e1, e2, e4). We pick v = e3 as the first vector of this string. The rest of the string will be
Ae3 = e4 and Ae4 = e2, and as we expect, this last vector is indeed mapped to 0 by A. So this
is our string of length 3. There are no strings of length 2, so we look instead at the last string of
length 1. Now we should pick a vector in ker(A1) \ ker(A0) = ker(A) \ {0} that is also linearly
independent to our previously chosen vectors (e3, e4, e2). Since ker(A) = span(e2, e1−e4), a natural
choice is to pick e1 − e4, this is indeed mapped to zero.

Now we have our string basis B = (e2, e4, e3, e1 − e4), where the order matches our chosen
Jordan form. We put these string basis vectors as columns of a matrix S, and we take J to be the
corresponding Jordan matrix we found above:

S =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 −1

 J =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .

Now we can verify that we indeed have S−1AS = J .

△

4.3 Jordan chains and Jordanization

Once we know how to deal with nilpotent matrices, the rest of the theory is not hard.

Generalied eigenspaces

Recall that the eigenspace Eλ for a linear operator (matrix) A : V → V consists of all vectors v for which
(A− λI)v = 0. Generalized eigenvectors for the eigenvalue λ are vectors that are eventually mapped to
zero by (A− λI).

Definition 4.16. Let A : V → V be an operator (or matrix). A nonzero vector v is called
a generalized eigenvector for the eigenvalue λ if there exists a positive integer n such that
(A−λI)nv = 0. The set of all generalized eigenvetors for the eigenvalue λ (and and the zero vector)
is called the generalized eigenspace for λ, we denote it by Ẽλ:

Ẽλ = {v ∈ V | (A− λI)nv = 0 for some n}.

We note that we have a sequence

Eλ = ker(A− λI) ⊂ ker((A− λI)2) ⊂ ker((A− λI)3) ⊂ · · ·

so Ẽλ is the union of all these kernels. However, if V is finite-dimensional, this sequence of kernels
eventually stabilizes, so there exists some minimal integer n such that ker((A−λI)n) = ker((A−λI)n+k)
for all k ≥ 0. Then Ẽλ = ker((A−λI)n), so Ẽλ is in fact a subspace. Note also that the operator (A−λI)
acts nilpotently on the subspace Ẽλ, in other words:

((A− λI)|Ẽλ
)n = 0.

But as a map V → V on the whole space, the operator (A− λI) typically is not nilpotent.
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Example 4.17. Consider the matrix J on Jordan form below

A =



5 1 0 0 0 0 0 0

0 5 1 0 0 0 0 0

0 0 5 0 0 0 0 0

0 0 0 8 1 0 0 0

0 0 0 0 8 0 0 0

0 0 0 0 0 5 1 0

0 0 0 0 0 0 5 0

0 0 0 0 0 0 0 3


Here, the eigenvalues are 5, 3 and 8. In the matrix A − 5I, the 5’s on the diagonal disappear,
leaving two nilpotent Jordan blocks. We see that

ker(A−5I) = span(e1, e6), ker((A−5I)2) = span(e1, e2, e6, e7), ker((A−5I)3) = span(e1, e2, e3, e6, e7).

But then the sequence clearly stabilizes and the ker((A − 5I)n) doesn’t change for n ≥ 3. So the
generalized eigenspace Ẽ5 = ker((A − 5I)3) = span(e1, e2, e3, e6, e7) is 5-dimensional. Similarly,
Ẽ8 = span(e4, e5) and Ẽ3 = span(e8). Note that the direct sum of the generalized eigenspaces is
the whole space

C8 = Ẽ5 ⊕ Ẽ8 ⊕ Ẽ3,

and that the dimension of each Ẽλ is equal to the algebraic multiplicity of λ in pA.

△

Jordan chains

The idea for finding the Jordan form of an arbitrary matrix is to treat each generalized eigenspace
separately.

Definition 4.18. Let A : V → V be a linear operator (or matrix). A Jordan chain (for eigenvalue
λ) in V is a sequence of nonzero vectors (v1, . . . , vn) such that (A−λI)vi = vi−1 and (A−λI)v1 = 0.
In other words, a Jordan chain is just a string in the sense of the previous section, but for the operator
(A− λI).

A Jordan basis for V is a basis which is a union of Jordan chains (possibly with different λ).

So a Jordan basis looks like a string basis but where the chains may correspond to different eigenvalues.
Note that the last vector in each string is an eigenvector since some (A − λI) maps it to zero. With
respect to a Jordan basis, the matrix of the operator is clearly in Jordan form.

We can now generalize our algorithm for finding a string basis to an algorithm for finding a Jordan
basis and the corresponding Jordan form, in other words, to Jordanize the operator. Given a square
matrix A, the algorithm produces a matrix J in Jordan form, and an invertible matrix S (with columns
forming a Jordan basis) such that SJS−1 = A.

Jordanizing a matrix
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Algorithm 4.19. To Jordanize a square matrix A:

1. Find the characteristic polynomial, and solve pA(λ) = 0 to find the eigenvalues.

2. For each eigenvalue λ do:

(a) Let B be the set of previously chosen vectors (start with an empty set).

(b) Find the generalized eigenspace Ẽλ by computing ker((A − λI)k) for k = 1, 2, . . .
until the sequence stabilizes: ker((A − λI)n)) = ker((A − λI)n+1), this happens
when the dimension of dimker((A−λI)n)) has reached the algebraic multiplicity of
λ. Then Ẽλ = ker((A− λI)n).

(c) Let N := (A− λI)|Ẽλ
: Ẽλ → Ẽλ. This operator is nilpotent.

(d) Apply Algorithm 4.14 to find a string basis in Ẽλ for the operator N . This basis is
a union of Jordan chains with eigenvalue λ, adjoin all these strings to B.

3. Now B should contain a Jordan basis. Let S be the matrix whose columns are the elements
of the Jordan chains, order each chain from right to left (starting with the eigenvector).
Take J to be the corresponding Jordan matrix with block sizes and eigenvalues corre-
sponding to the ordering of the chains in S.

4. Verify that S−1AS = J .

When we have found Ẽi, one possibility is to pick a basis and construct a smaller matrix for the
operator A|Ẽi

: Ẽi → Ẽi. This may simplify finding the string basis, but the basis should then be
converted back to be written in the standard basis for the whole space. Alternatively, when following
Algorithm 4.14, work with vectors sitting inside Ẽi, but expressed in the basis for the whole space.

Before looking at an example, let’s consider why this algorithm actually works.
There are two important pieces missing: what if the Jordan chains we pick inside one generalized

eigenspace are linearly dependent with chains from other generalized eigenspaces? And how can we be
sure that all the Jordan chains we find in the algorithm actually span the whole space? These concerns
are put two rest by the following lemma:

Lemma 4.20. Let A : V → V be an linear operator (or a matrix) on a finite dimensional complex vector
space. Then V is the direct sum of the generalized eigenspaces for the operator:

V = Ẽλ1 ⊕ Ẽλ2 ⊕ · · · ⊕ Ẽλk

where σ(A) = {λ1, . . . , λk}.

Proof. First we claim that vectors from different generalized eigenspaces are linearly independent. To
show this one can combine the proof-techniques used to prove Proposition 3.8 (vectors from different
eigenspaces are linearly independent), and Lemma 4.8 (strings are linearly independent). We omit the
details here.

It remains to prove that the eigenspaces span V . Let dimV = n, factor the characteristic polynomial
of A over C:

pA(t) = (−1)n(t− λ1)
n1 · · · (t− λk)

nk .

Now perform a partial fraction decomposition of the rational function 1
pA(t) , and multiply it by pA(t),

we get

1 = pA(t) ·
1

pA(t)
= pA(t)

( q1(t)

(t− λ1)n1
+ · · ·+ qk(t)

(t− λk)nk

)
= h1(t)q1(t) + · · ·+ hk(t)qk(t),

where we introduced hi(t) =
pA(t)

(t−λi)ni
in the last step. Note that the hi are polynomials as the denom-

inators cancel out. Now evaluate the polynomial identity above at the matrix A, define the operator
Pi := hi(A)qi(A), we get:

I = h1(A)q1(A) + · · ·+ hk(A)qk(A) = P1 + · · ·+ P2.
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We now claim that Pi maps vectors into the generalized eigenspace Ẽλi
, in other words, Im(Pi) ⊂ Ẽλi

.
Indeed for any v ∈ V , we have

(A− λiI)
ni · Piv = (A− λiI)

niqi(A)hi(A)v = pA(A)qi(A)v = 0 · qi(A)v = 0,

which shows that vectors Piv in the image of Pi are killed by (A− λiI)
ni , so Piv ∈ Ẽλi

as claimed.
But then for v ∈ V we have

v = Iv = (P1 + · · ·Pk)v = P1v + · · ·+ Pkv,

so we can express any vector as a sum of vectors from each generalized eigenspace, so the Ẽλi span V .

Note that the proof of Lemma 4.20 actually provide an explicit way to construct projection maps
onto each eigenspace: The map Pi : V → V where projects each vector v onto Ẽλi

. It is not hard to
prove that these projections satisfy

P 2
i = Pi, PiPj = 0, P1 + · · ·+ Pk = I.

The proof also shows that the algebraic multiplicity of λ is equal to the dimension of the corresponding
eigenspace:

mλ = dim Ẽλ.

This guarantees that the method of Algorithm 4.19 works and will produce a Jordan basis.
The results of this section can be summarized in a single theorem:

Theorem 4.21. Jordan Theorem. Let F : V → V be an operator on a complex vector space. Then
there exists a basis for V with respect to which the matrix of [F ] has Jordan form. Equilvalently, any
complex square matrix A has a factorization A = SJS−1. The Jordan form is unique up to permutation
of the blocks.

Proof. Lemma 4.20 shows that Algorithm 4.19 will produce a Jordan-basis for the space V . For the
uniqueness-claim, we note that the blocks of the Jordan form are uniquely determined by the numbers
dimker((A− λI)k), and these are invariant under a change of basis.

Example 4.22. Let us Jordanize the matrix A below. In other words, we shall find an invertible
matrix S and a matrix J in Jordan form such that S−1AS = J .

A =


3 −2 −3 3 1
0 1 0 0 0
1 −1 1 2 −1
1 −1 1 2 −2
0 0 −1 1 2


We find that the characteristic polynomial is pA(t) = det(A − tI) = −(t − 1)3(t − 3)2, so the
eigenvalues are 1 and 3.

We start with the eigenvalue 1. We compute powers of A− I and find that

A− I =


2 −2 −3 3 1
0 0 0 0 0
1 −1 0 2 −1
1 −1 1 1 −2
0 0 −1 1 1

 (A− I)2 =


4 −4 −4 4 0
0 0 0 0 0
4 −4 0 4 −4
4 −4 0 4 −4
0 0 0 0 0


We solve (A− I)v = 0 and find that

ker(A− I) = span
(
(1, 0, 1, 0, 1), (1, 1, 0, 0, 0)

)
.

Next we solve (A− I)2v = 0 and we find that ker((A− I)2) is spanned by one more vector, so we
extend our previous kernel and write

ker((A− I)2) = span
(
(1, 0, 1, 0, 1), (1, 1, 0, 0, 0), (1, 0, 0,−1, 0)

)
.

Now ker((A− I)3), cannot be bigger (looking at the algebraic multiplicity of λ = 1).
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We conclude that Ẽ1 is three-dimensional, and the dimensions of the kernels tell us that we are
looking for one Jordan chain of length 2, and one of length 1 (see Algorithm 4.14 for details). To find
the longest chain, we start with a vector in ker((A−I)2)\ker(A−I), let’s take v2 := (1, 0, 0,−1, 0).
Then take v1 := (A − I)v2 = (1, 0, 1, 0, 1), so now we have a chain v2 7→ v1 7→ 0. For the second
chain of length 1, we just pick a vector in ker(A − I) independent from v1 and v2, let’s take
v3 = (1, 1, 0, 0, 0). Now we have our chains for the first generalized eigenspace Ẽ1 = span(v1, v2, v3).
With respect to this basis, the restriction of A onto Ẽ1 will have Jordan form J2(1)⊕ J1(1).

We move on to the second eigenvaluie λ = 3 and find that

A− 3I =


0 −2 −3 3 1
0 −2 0 0 0
1 −1 −2 2 −1
1 −1 1 −1 −2
0 0 −1 1 −1

 (A− 3I)2 =


0 4 8 −8 −4
0 4 0 0 0
0 0 4 −4 0
0 0 −4 4 4
0 0 4 −4 0


And there is no reason to look further, we are only missing two vectors. We find a basis for
ker(A− 3I) and extend it to a basis for ker((A− 3I)2):

ker(A− 3I) = span(0, 0, 1, 1, 0) ker((A− 3I)2) = span
(
(0, 0, 1, 1, 0), (1, 0, 0, 0, 0)

)
.

So we are looking for a single chain of length 2, we pick its first vector in ker((A−3I)2)\ker(A−3I),
let’s take v5 := (1, 0, 0, 0, 0), and we compute v4 := (A− 3I)v5 = (0, 0, 1, 1, 0).

Now we have our Jordan chains. We collect the data by creating S = (v1, v2, v3, v4, v5) with
the chain vectors as columns, and we take J to be the corresponding Jordan matrix:

S =


1 1 1 1 0
0 0 1 0 0
1 0 0 0 1
0 −1 0 0 1
1 0 0 0 0

 J =


1 1

1
1

3 1
3


Then S−1AS = J .

△
What if we consider a vector space over a field F other than C? Well, we need the characteristic

polynomial to factor completely over F for the algorithm to work.
The general result is that if A : V → V is an operator on an F-vector space, and if pA(t) factors

completely over F[t] into linear factors:

pA(t) = det(A− tI) = ±(t− λ1)(t− λ2) · · · (t− λk)

for some λi ∈ F, then we can Jordanize A: there exists a basis in V for which the matrix of A has Jordan
form.

The previous computation was actually an example of this, we started with a real matrix in Mat5(R),
and we managed to factor pA(t) completely as a product of real linear factors (t−λ) where λ ∈ R, therefore
the algorithm worked and we obtained a factorization by real matrices A = SJS−1.

4.4 Matrix functions and applications

Motivation

So what is the point of knowing how to Jordanize a matrix? Well, first of all it has many theoretical
applications - if we want to prove a statement for any linear map F : V → V we may always pick a
Jordan basis for V , so it suffices to prove the statement for matrices in Jordan form.

But aside from this there are several applications of a more practical nature. In a first course in linear
algebra, we could approach a large class of problems via diagonalization:

� Dynamical systems in discrete time, such as predator prey models

� Explicit forms for recursively defined sequences, such as the Fibonacci numbers

� Linear systems of differential equations
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Solutions to these problems were found by diagonalizing some constant coefficient-matrix. With the
method if this chapter, these problems become tractable even when the coefficient matrix is non-
diagonalizable.

Dynamical systems in discrete time

A dynamical system in discrete time is a system Xn+1 = AXn where Xn = (x
(1)
n , · · ·x(m)

n )T is a set of
m sequences of numbers, and A is a constant m ×m-matrix. The system tells you how to go from Xn

to Xn+1 (we can think of this as a number of variables changing in the next ”time step”).
Now clearly Xn = AnX0, so to find the explicit form of the solutions we need to find a general formula

for An. This could be done by the Jordan form. Write A = SJS−1, where we can decompose J = D+N
into a diagonal matrix D and a nilpotent matrix N (with some ones on the superdiagonal). Then

An = (SJS−1)n = SJnS−1 = S(D +N)nS−1 = S(D +N)nS−1

So it suffices to find (D +N)n. But the matrices D and N commute, so the binomial theorem applies:

(D +N)n =

n∑
k=0

(
n

k

)
NkDn−k.

But since N is nilpotent, only the first few terms of this sum are nonzero, and powers of a diagonal
matrix is easy to compute.

Hopefully an example will clarify the general method:

Example 4.23. Rabbits and foxes are living in forest, the foxes are hunting the rabbits. In year
number n there are rn rabbits and fn foxes in the forest. From the start there are 40 rabbits and
10 foxes, and we assume that the populations evolve according to the following model:{

rn+1 = 3rn − fn

fn+1 = rn + fn

Intuitively this should sort of make sense: If there are no foxes, the rabbit population increase
3-fold each year, but the more foxes there are the smaller the increase. Similarly, without rabbits
the foxes can just sustain themselves, but more rabbits means an increase in the fox-population.

Let us find explicit formulas for rn and fn. First let Xn =

(
rn
fn

)
and A =

(
3 −1
1 1

)
. Then

X0 =

(
40
10

)
and Xn+1 = AXn so Xn = AnX0.

To compute An we first Jordanize A and find that A = SJS−1 for J =

(
2 1
0 2

)
and S =(

1 1
1 0

)
. We write J = 2I +N where N2 = 0. Then

Jn = (2I+N)n =

n∑
k=0

(
n

k

)
(2I)n−kNk = (2I)n+n(2I)n−1N =

(
2n 0
0 2n

)
+

(
0 n2n−1

0 0

)
=

(
2n n2n−1

0 2n

)
.

So the solution is

Xn = AnX0 = (SJS−1)nX0 = SJnS−1X0 = · · · = 5 · 2n
(
8 + 3n
2 + 3n

)
,

in other words, in year n there are 2n(40 + 15n) rabbits and 2n(10 + 15n) foxes. Note that the
solution gives qualitative information about what happens to the populations in the long run; in
this example we get rn

fn
→ 1 as n → ∞, so in the long run there will be roughly as many foxes as

rabbits.

△
Obviously a model like the one in the example will not match reality exactly, for example, if there

are too many foxes, rk can turn negative which doesn’t make sense. Also, both populations will tend
towards infinity here which is not possible in reality. However, such models can provide a good first
approximation of a real dynamical system, and they may be useful for reasonably small populations.
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Recursively defined sequences

Consider a simple recursively defined sequence xn+1 = 5xn with x0 = 3. Since the next term is obtained
by multiplication by 5, the explicit form of this sequence is clearly xn = 3 · 5n.

The exact same formula actually works when we have several variables.

Example 4.24. Let us find an explicit formula for the sequence bn defined by

bn = 4bn−1 − 4bn−2, where b0 = 0, b1 = 1.

We introduce Xn :=

(
bn+1

bn

)
, X0 =

(
1
0

)
, and A =

(
4 −4
1 0

)
. Then Xn+1 = AXn, so

Xn = AnX0.

We Jordanize A and find that A = SJS−1 with S =

(
2 1
1 0

)
and J =

(
2 1
0 2

)
.

But then we can calculate have

Xn = AnX0 = (SJS−1)nX0 = SJnS−1X0 = S(2I +N)nS−1X0.

Here we can expand (2I +N)n = (2I)n + n(2I)n−1N = 2nI + n2n−1N by the binomial theorem,
as higher powers of N are zero. The expression above simplifies to

Xn = S(2nI + n2n−1N)S−1X0 =

(
2 1
1 0

)(
2n n2n−1

0 2n

)(
0 1
1 −2

)(
1
0

)

=

(
2 1
1 0

)(
2n n2n−1

0 2n

)(
0
1

)
=

(
2 1
1 0

)(
n2n−1

2n

)
=

(
(n+ 1)2n

n2n−1

)
,

And since bn is the bottom coordinate of Xn we obtain the explicit formula

bn = n2n−1.

△
Note that the same technique works if we just want to find a general solution to a recursively

defined sequence without given starting values. In the above example, such a formula would look like
bn = 2n(C +Dn) for arbitrary scalars C,D.

Analytic matrix functions

Before looking at systems of differential equations we need to dig a bit deeper into the topic of matrix
functions.

For a square matrix A, can we evaluate f(A) when f is not a polynomial? For many functions the
answer is yes, and this will turn out to be a useful thing to do.

Definition 4.25. Let f : C → C be a function whose Maclaurin-series converges for all x:

f(x) = f(0) + f ′(0)x+
f ′′(0)x2

2!
+ · · · =

∞∑
k=0

f (k)(0)xk

k!
.

For a square matrix A we then define

f(A) := f(0)I + f ′(0)A+
f ′′(0)A2

2!
+ · · · =

∞∑
k=0

f (k)(0)Ak

k!
.

Note that f(A) is an infinite sum of matrices, so here we should ask ourselves what it means for an
infinite sum of matrices to converge. We will return for this question later when we talk about inner
products and norms, but for now we shall think of it as element-wise convergence: If An is a sequence
of matrices, we say that An → B as n → ∞ if (An)ij → Bij for each position (i, j). The condition that
the Maclaurin-series converges for all x guarantees that we can evaluate f(A) at any square matrix A.
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However, we can use the same definition for f(A) for a larger class of functions, for example log(A) -
but then this expression will only make sense for a a certain class of matrices25.

Example 4.26. For the matrices A =

(
4 0
0 −5

)
and B =

0 2 0
0 0 3
0 0 0

, let us compute eA, eB ,

cos(A), cos(B). Recall that

ex = 1 + x+
x2

2
+

x3

3!
+ · · · and cos(x) = 1− x2

2
+

x4

4!
− · · ·

Therefore

eA = 1 +A+
A2

2
+

A3

3!
+ · · · =

∞∑
k=0

Ak

k!
=

(∑∞
k=0

4k

k! 0

0
∑∞

k=0
(−5)k

k!

)
=

(
e4 0
0 e−5

)
.

Similarly, we get cos(A) =

(
cos(2) 0

0 cos(−3)

)
.

Since B is nilpotent with B3 = 0, the computation becomes easy as all but the first terms of
the series disappear:

eB = I +B +
B2

2
=

1 2 3
0 1 3
0 0 1

 and cos(B) = I − B2

2
=

1 0 −3
0 1 0
0 0 1

 .

△
Note that equalities of functions in one variable are preserved when evaluating them at a matrix,

for example sin(2x) = eix+e−ix

2 are two ways of writing the same function, and the Maclaurin-series are
preserved when taking sums, so the corresponding equality will hold if we replace x by any square matrix
A.

Now we can always Jordanize a matrix as A = SJS−1, and by factoring out S and S−1 from each
term of the Maclaurin-expansion we get f(A) = f(SJS−1) = Sf(J)S−1, so we only need to be able to
evaluate f at a Jordan-matrix. Since the different Jordan-blocks do not interact when taking powers
and sums of the matrix, it is in fact enough to consider how to evaluate f at a single Jordan block.

Proposition 4.27. Let f : C → C be a function whose Maclaurin-series convergent at every x as in
Definition 4.25. For

J = Jn(λ) =



λ 1 0 · · · 0

0 λ 1
. . . 0

0 0
. . .

. . .
...

...
. . .

. . . λ 1
0 · · · · · · 0 λ


we have f(J) =



f(λ)
0!

f ′(λ)
1!

f ′′(λ)
2! · · · f(n−1)(λ)

(n−1)!

0 f(λ)
0!

f ′(λ)
1!

... f(n−2)(λ)
(n−2)!

0 0
. . .

. . .
...

...
. . .

. . . f(λ)
0!

f ′(λ)
1!

0 · · · · · · 0 f(λ)
0!


,

in other words, in f(J), on the k’th superdiagonal, we have the element f(k)(λ)
k! .

Proof. Write J = λI+N and in each term of f(J), expand Jk = (λI+N)k using the binomial theorem.
Then collect terms with the same term factor N j and use the fact that Nn = 0, we omit the details.

Indeed, the proposition above is another common way to define f(J).

Lemma 4.28. If A and B commute, we have

eA+B = eAeB .

25Technically, the spectral radius max{|λ| : λ ∈ σ(A)} of A should be smaller than the radius of convergence for f ,
more on this later.
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Proof. By definition we have

eAeB =

( ∞∑
i=0

Ai

i!

)( ∞∑
j=0

Bj

j!

)
=

∞∑
i=0

∞∑
j=0

AiBj

i!j!

Now reorder the terms so that terms with same total degree are written together. With k := i+ j, the
expression above can be further simplified to

=

∞∑
k=0

k∑
i=0

AiBk−i

i!(k − i)!
=

∞∑
k=0

1

k!

k∑
i=0

(
k

i

)
AiBk−i =

∞∑
k=0

1

k!
(A+B)k = eA+B .

In the second to last step we used the fact that the binomial theorem holds for commuting matrices.

The numbers in our vectors or matrices may depend on some unknown parameter t. Then we can
differentiate such matrices and vectors element-wise, for example:

For A(t) =

(
t 3
t2 sin(t)

)
we write

d

dt
A(t) = A′(t) =

(
1 0
2t cos(t)

)
.

Lemma 4.29. For any square matrix A we have we have d
dte

tA = AetA.

Proof.

d

dt
eAt =

d

dt

∞∑
k=0

(tA)k

k!
=

∞∑
k=0

d

dt
tk
Ak

k!
=

∞∑
k=0

ktk−1A
k

k!

The step where we differentiated termwise may require some motivation, but since the Maclaurin-series
converges anywhere, this step is fine. Now the first term in the sum is zero, so we make a change of
variables and introduce j := k − 1, the sum above becomes:

=

∞∑
j=0

(j + 1)tj
A(j+1)

(j + 1)!
=

∞∑
j=0

tjA
Aj

j!
= A

∞∑
j=0

(tA)j

j!
= AetA.

Note that we can easily calculate eJ where J is a Jordan block, since J = Jn(λ) = λI+N where N is
the nilpotent matrix with ones on the superdiagonal Since λI and N commute, by Lemma 4.28 we have

eJ = eλI+N = eλIeN = (eλI)eN = eλeN ,

and eN is easy to compute, since Nn = 0, we have eN = I +N + N2

2 + · · ·+ Nn−1

(n−1)! .

Since any Jordan matrix is a direct sum of such blocks, we can do the same thing in general in each
block: write J = D +N where D = diag(λ1, . . . , λn) is the diagonal of J , and N is nilpotent. Then

eJ = eD+N = eDeN = diag(eλ1 , . . . , eλn)eN .

Now let A be any square matrix. Jordanize A and write A = SJS−1. Now

eA =

∞∑
k=0

Ak

k!
=

∞∑
k=0

(SJS−1)k

k!
=

∞∑
k=0

SJkS−1

k!
= S

( ∞∑
k=0

Jk

k!

)
S−1 = SeJS−1,

which we can calculate with the previous method.
So with this method we can explicity find eA for any square matrix A.

Example 4.30. Let us compute eA for A =

(
5 −1
1 3

)
. We first Jordanize A. We get pA(t) =

det(A− tI) = (t− 4)2 so the only eigenvalue is 4. We have A− 4I =

(
1 −1
1 −1

)
, and (A− 4I)2 = 0,

so ker((A − 4I)2) = C2 and ker(A − 4I) = span(1, 1). So we will get a single chain of length
2, and as first vector we pick any vector not in ker(A − 4I), let’s take v2 = (1, 0), and then we
take v1 = (A − 4I)v2 = (1, 1). We put v1 and v2 as columns in a matrix S and take J as the
corresponding Jordan matrix, we then have A = SJS−1 where

S =

(
1 1
1 0

)
J =

(
4 1
0 4

)
=

(
4 0
0 4

)
+

(
0 1
0 0

)
= 4I +N S−1 =

(
0 1
1 −1

)
.
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Now we can evaluate

eA = eSJS−1

= SeJS−1 = Se4I+NS−1 = SeJS−1 = Se4IeNS−1 = Se4I(I+N)S−1 = Se4(I+N)S−1

e4
(
1 1
1 0

)(
1 1
0 1

)
S−1 = e4

(
1 2
1 1

)(
0 1
1 −1

)
= e4

(
2 −1
1 0

)
=

(
2e4 −e4

e4 0

)
△

We now expand on this example by solving a related system of differential equations:

Example 4.31. Let us find the general solutions to the linear system of differential equations{
x′
1(t) = 5x1(t) − x2(t)

x′
2(t) = x1(t) + 3x2(t),

and let us then in particular find the solution which also satisfies the boundary condition x1(0) = 3,
x2(0) = 5.

Let X(t) =

(
x1(t)
x2(t)

)
and let A =

(
5 −1
1 3

)
. Then the system can be written simply as

X ′(t) = AX(t). Now we claim that X(t) = etAC is a solution for every 2 × 1 matrix C. Indeed,
for X(t) = etAC we have

X ′(t) =
d

dt
etAC = AetAC = AX(t).

So to write down the general solution we only need to compute etA for the matrix A above.
This exact matrix A was Jordanized in the previous problem, we had A = SJS−1 where S =(
1 1
1 0

)
J =

(
4 1
0 4

)
= 4I +N .

So

etJ = e4tI+tN = e4tIetN = e4tI(I + tN) = e4t
(
1 t
0 1

)
=

(
e4t te4t

0 e4t

)
so

etA = SetJS−1 =

(
1 1
1 0

)(
e4t te4t

0 e4t

)(
0 1
1 −1

)
= e4t

(
t+ 1 −t
t 1− t

)
.

So an arbitrary solution can be written

X(t) = etAC = e4t
(
t+ 1 −t
t 1− t

)(
c1
c2

)
= e4t

(
c1(t+ 1)− c2t
c1t+ c2(1− t)

)
=

(
(c1 − c2)t+ c1
(c1 − c2)t+ c2

)
.

In particular, taking C =

(
3
5

)
, we get X(0) = e0AC = IC = C =

(
3
5

)
, which is the solution

satisfying our boundary condition, explicitly this solution is{
x1(t) = (−2t+ 3)e4t

x2(t) = (−2t+ 5)e4t
.

△
The method in the above example works in general. We state the result as a proposition:

Proposition 4.32. An n× n system of linear differential equations
x′
1(t) = a11x1(t) + a12x2(t) + · · ·+ a1nxn(t)

x′
2(t) = a21x1(t) + a22x2(t) + · · ·+ a2nxn(t)

...
...

...

x′
n(t) = an1x1(t) + an2x2(t) + · · ·+ annxn(t)

can be written as X ′(t) = AX(t) where A = (aij) and X(t) = (x1(t), . . . , xn(t))
T .

The general solution to this system is X(t) = etAC where C = (c1, . . . , cn)
T is an arbitrary vector.

We note that X(0) = C.
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5 Inner product spaces

5.1 Inner products

In a vector space we only have the operations of adding vectors and multiplying vectors by scalars.
Although we usually visualize a 2-dimensional vector space as a plane, we haven’t defined the concept
of distances and angles between vectors yet. For more abstract vector spaces such as the vector space
Matn(C) of matrices, or P(R) of polynomials, it is not even clear how we should define lengths and
angles. So in order to be able to do some geometry in the vector space setting we need to introduce
these concept. It turns out that all you need is an inner product.

Definition 5.1. Let V be a complex vector space. A function ⟨·, ·⟩ : V ×V → C is called an inner
product or a scalar product on V if for all u, v, w ∈ V and λ, µ ∈ C we have:

1. ⟨λu+ µv,w⟩ = λ ⟨u,w⟩+ µ ⟨v, w⟩

2. ⟨u, v⟩ = ⟨v, u⟩

3. ⟨v, v⟩ ≥ 0 with equality if and only if v = 0.

A vector space equipped with an inner product is called a (complex) inner product space. If we
replace C by R we get the definition of a real inner product space, also called a Euclidean space.

A few remarks:

� By applying the second axiom we get ⟨v, v⟩ = ⟨v, v⟩ which shows that ⟨v, v⟩ is a real number, and
the third condition makes sense26.

� Sometimes we want to talk about different inner products on the same space, other common
notations for the inner product of two vectors include (u, v), ⟨u, v⟩1, (u|v), u • v, etcetera.

� Axioms (1) and (2) imply that inner products are conjugate-linear in the second argument:

⟨u, λv⟩ = λ ⟨u, v⟩ .

So inner products are linear in the first argument, and satisfies half of the axioms for being linear
in the second argument, for this reason inner products are called sesqui-linear forms, ”one and a
half”-linear forms.

� In some contexts, such as in quantum mechanics, but not in this course, axiom (1) is replaced by
linearity in the second argument:

⟨w, λu+ µv⟩ = λ ⟨w, u⟩+ µ ⟨w, v⟩ ,

this is just a convention and the theory will be analogous.

� In some branches of physics, like in Lorenzian geometry, Pseudo-Riemannian geometry and when
studying Minkowski spacetime, axiom (3) is relaxed to

⟨u, v⟩ = 0 ∀u ⇒ v = 0,

which allows ⟨v, v⟩ < 0 for some vectors.

We have a number of standard inner products on some of our familiar vector spaces:

Example 5.2. The following functions are inner products on the respective vector space:

� On Cn we have the inner product ⟨u, v⟩ = ⟨(x1, . . . , xn), (y1, . . . , yn)⟩ = x1y1+ · · ·xnyn. This
is also called the dot-product and can also be written u • v, it is defined the same way on Rn.

� On Matm×n(C), we have the Frobenius scalar product ⟨A,B⟩ = tr(AB∗). Although this
looks different than the dot-product, upon closer inspection it really is the same thing:
element-wise products of entries of A with the conjugate of the corresponding elements of B:
tr(AB∗) =

∑
i,j ai,jbij .

26In general, when for z ∈ C we write z > 0, we mean that z is real and positive.
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� On C[a, b], the space of continuous functions from [a, b] to C (or to R), we have ⟨f(x), g(x)⟩ =∫ b

a
f(x)g(x)dx. The same works on subspaces, such as the polynomials.

It is straight forward to verify that the axioms of Definition 5.1 hold for these inner products.

△
We shall assume our vector spaces are equipped with these standard inner products unless otherwise

stated.

Definition 5.3. Let V be an inner product space with inner product ⟨·, ·⟩ and let ∥·∥ be the norm
derived from the inner product: ∥v∥ :=

√
⟨v, v⟩. Then for u, v ∈ V :

� We define the length of v, also called the norm of v, to be ∥v∥ =
√

⟨v, v⟩.

� We define the distance between u and v to be ∥u− v∥.

� We define the angle between u and v to be arccos( ⟨u,v⟩
∥u∥·∥v∥ ) (when V is a real inner product

space).

� We say that u and v are orthogonal if ⟨u, v⟩ = 0.

Example 5.4. The space P(R) of polynomials with real coefficients becomes a real inner product
space when equipped with the inner product

⟨p(x), q(x)⟩ :=
∫ 1

0

p(x)q(x)dx.

Let us find the angle θ between the polynomials 1 and x with respect to this inner product.
We have

⟨1, 1⟩ =
∫ 1

0

1dx =
[
x
]1
0
= 1, ⟨1, x⟩ =

∫ 1

0

xdx =
[x2

2

]1
0
=

1

2
, ⟨x, x⟩ =

∫ 1

0

x2dx =
[x3

3

]1
0
=

1

3
,

So

θ = arccos

(
⟨1, x⟩

∥1∥ · ∥x∥

)
= arccos

(
⟨1, x⟩√

⟨1, 1⟩ ·
√

⟨x, x⟩

)
= arccos

( 1
2

1 · 1√
3

)
= arccos

(√3

2

)
=

π

6
.

△
We summarize a number of direct consequences of the definitions:

Proposition 5.5. Let V be an inner product space with inner product ⟨·, ·⟩ and let ∥v∥ :=
√
v, v be the

norm derived from the inner product. Then for u, v ∈ V and λ ∈ C we have:

1. ∥λv∥ = |λ| · ∥v∥.

2. ∥u+ v∥ ≤ ∥u∥+ ∥v∥ (the triangle inequality)

3. ∥v∥ ≥ 0 with equality if and only if v = 0.

4. | ⟨u, v⟩ | ≤ ∥u∥ · ∥v∥ with equality if and only if u||v (the Cauchy-Schwartz inequality)

5. ∥u+ v∥2 + ∥u− v∥2 = 2 ∥u∥2 + 2 ∥v∥2 (the parallelogram identity)

6. 4 ⟨u, v⟩ =

{
∥u+ v∥2 − ∥u− v∥2 if V is real.

∥u+ v∥2 − ∥u− v∥2 + i ∥u+ iv∥2 − i ∥u− iv∥2 if V is complex.

We leave the proofs as an exercise.
Note that the Cauchy-Schwarz inequality guarantees that the definition of angles in Definition 5.3

makes sense. The last formula is also interesting as it shows that the inner product can be calculated
from the norm.
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5.2 Norms

In some contexts, we want to define norms without necessarily having a corresponding inner product. It
turns out that the first three properties of Proposition 5.5 are the key to make norms useful as a concept.

Definition 5.6. Let V be a complex vector space. A norm on V is a function ∥·∥ : V → R such
that for u, v ∈ V and λ ∈ C we have:

1. ∥λv∥ = |λ| · ∥v∥

2. ∥u+ v∥ ≤ ∥u∥+ ∥v∥

3. ∥v∥ ≥ 0 with equality if and only if v = 0

The definition is the same if V is a real vector space, except that λ ∈ R. A vector space equipped
with a norm is called a normed space. We still define the length of v as ∥v∥ and the distance
between u and v as ∥u− v∥ in any normed space.

Norms appear frequently in functional analysis and physics when investigating some important
infinite-dimensional classes of vector spaces such as Banach-spaces27 and Hilbert spaces28.

Proposition 5.5 shows that every inner product gives rise to a norm, for example, the Frobenius-norm
on Matn(C) is ∥A∥F =

√∑
|aij |2. But the opposite is not true, there are norms that do not come from

any inner product. Here are a few examples:

� On Cn the maximum norm is defined as

∥(x1, . . . , xn)∥max = ∥(x1, . . . , xn)∥∞ = max{|x1|, . . . , |xn|}.

� On Cn the Manhattan norm or the taxicab norm is defined as

∥(x1, . . . , xn)∥Mh = |x1|+ · · ·+ |xn|.

� More generally, for p ≥ 1, the p-norm on Cn is defined as

∥(x1, . . . , xn)∥p = (|x1|p + · · ·+ |xn|p)
1
p .

For p ̸= 2 this does not correspond to an inner product.

� The spectral norm on Matm×nC is defined29 as

∥A∥σ = max{
√
λ | λ ∈ σ(A∗A)}.

� The operator norm of a linear operator between inner product spaces F : V → W is defined as

∥F∥op = max{∥F (v)∥ | ∥v∥ = 1}.

� The supremum norm30 on C[a, b] is defined as

∥f(x)∥sup = max{|f(x)| ; x ∈ [a, b]}.

These all satisfy the conditions in Definition 5.6. In fact many of these are the p-norm ∥.∥p in disguise:
The standard norm is ∥.∥2, the Manhattan norm is ∥.∥1, and the maximum norm is ∥.∥∞ in the sense
that ∥v∥max = lim

p→∞
∥v∥p.

27A Banach-space is a complete normed vector space. ”Complete” means that every Cauchy-sequence vn converges to
some v with respect to the norm: ∥vn − v∥ → 0.

28A Hilbert space is an inner product space, which is complete with respect to the norm induced from the inner product.
29For square matrices A satisfying A∗A = AA∗, this is the same as the spectral radius of A, the largest absolute value

of the eigenvalues of A. We will discuss this in more detail later.
30The analogous definition works on any vector space of continuous functions from some compact subset X ⊂ Cn to C.
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Why should we consider different norms, isn’t the distance between two points objective? Well,
depending on the context it will make sense to measure the distance in different ways. For example, if
you are on Manhattan, the streets form an orthogonal grid, and the distance you need to travel to go
between the points is the sum of the vertical and the horizontal distances between the points (since you
cannot drive diagonally through buildings). For this reason the Manhattan norm is appropriate in this
context. In another setting we might be able to move vertically and horizontally independently with the
same speed, such as a king on a chessboard - in this setting the maximum norm is the appropriate way
to measure distance.

The point is, different norms give rise to different geometries on the vector space. For example, here
is how the unit circle {v ∈ R2 : ∥v∥ = 1} looks for different choices of norms ∥·∥ on R2:

Standard Euclidean norm Manhattan norm

p-norm for p = 3 Maximum norm

What norms can be derived from inner products? The answer is given in:

Theorem 5.7. Let V be a vector space equipped with a norm ∥·∥. There exists an inner product ⟨·, ·⟩
on V such that ∥v∥2 = ⟨v, v⟩ if and only if the norm satisfies the parallelogram identity:

∥u+ v∥2 + ∥u− v∥2 = 2 ∥u∥2 + 2 ∥v∥2 for all u, v ∈ V.

Proof. The idea of the proof is given by the last point of Proposition 5.5: The only option is to define
⟨u, v⟩ = 1

4 (∥u+ v∥2 − ∥u− v∥2) (when V is a real vector space), and then show that this function is an
inner product if and only if the parallelogram law holds. It is quick to check that axioms (1) and (2) of
Definition 5.1 follows from the norm axioms, but showing that ⟨·, ·⟩ is linear in the first argument takes
some work. See the literature for details.

As soon as we have a norm on a vector space we can talk about the concept of convergence in V with
respect to the norm.

Definition 5.8. Let ∥·∥ be a norm on V . A we say that a sequence of vectors v1, v2, . . . in V
converges to some vector v ∈ V with respect to the norm ∥·∥ if and only if

∥vn − v∥ → 0 as n → ∞.

This just means that for each ε > 0 there exists N such that ∥vn − v∥ < ε for n > N .
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Here we might ask ourselves if it is possible that the sequence vn converges with respect to one norm
and diverges with respect to another. When V is finite-dimensional such problems do not arise:

Proposition 5.9. If V is finite-dimensional and vn → v with respect to some norm, then vn → v with
respect to every norm.

This lets us choose norms freely when trying show that a sequence of vectors converges.

5.3 Orthonormal bases and projections

In this section V is a real or complex inner product space of finite dimension unless otherwise stated, we
write ⟨·, ·⟩ for the inner product and ∥·∥ for the norm derived from the inner product.

Definition 5.10. A basis (e1, . . . , en) for V is called an orthonormal basis or an ON-basis, if
the basis vectors have length 1 are pairwise orthogonal:

⟨ei, ej⟩ = δij .

If we drop the condition that the lengths have to be 1, we call the basis an orthogonal basis.

The same definition works in infinite-dimensional spaces.
Orhtonormal bases make many calculations easier: if (e1, . . . , en) is an ON-basis, we have

v = ⟨v, e1⟩ e1 + · · ·+ ⟨v, en⟩ en.

We know that every subspace of a vector space has a complement; for U ⊂ V we can always find
another subspace U ′ such that U ⊕U ′ = V . In an inner product space there is a canonical choice of the
complement U ′:

Definition 5.11. For a subspace U ⊂ V we define its orthogonal complement to U as

U⊥ := {v ∈ V | ⟨v, u⟩ = 0 for all u ∈ U}.

So U⊥ is the set of vectors that are orthogonal to every vector in U . It is not too hard to show that
V = U ⊕ U⊥ and that (U⊥)⊥ = U when V is finite-dimensional.

The canonical choice of complement also gives canonical choices for projection maps onto sub-
spaces:

Definition 5.12. If U is a subspace of V we define the map PU : V → V by PU (v) = u where
v = u+ u′ is the unique expression of v as a sum of u ∈ U and u′ ∈ U⊥.

If U = span(u) is one-dimensional, PU can be calculated explicitly by the familiar projection
formulaa

PU (v) = Pu(v) =
⟨v, u⟩
⟨u, u⟩

u,

Otherwise, if U has higher dimension, we can pick on orthogonal basis (u1, . . . , um) of U , and
then we explicitly have

PU (v) = Pu1
(v) + · · ·+ Pum

(v) =
⟨v, u1⟩
⟨u1, u1⟩

u1 + · · ·+ ⟨v, u1⟩
⟨um, um⟩

um.

We call PU (v) the (orthogonal) projection of v onto the subspace U (or onto the vector u if
U = span(u)).

aNote the order of the vectors in ⟨v, u⟩, for complex vector spaces these cannot be switched.

It is not hard to show that P 2
U = PU and that PU (v) is the vector in U with minimal distance to v. Note

that it is important that the basis u1, . . . , un of the subspace we are projecting onto are indeed pairwise
orthogonal, otherwise the result will be wrong.

We also remark that Pv(u) = Pλv(u) whenever λ is a nonzero complex number so the length of the
vector we project onto is irrelevant, and when projecting onto a subspace it is enough to project onto
the vectors of an orthogonal basis of the subspace.
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5.4 Gram-Schmidt

The Gram-Schmidt process is an algorithm for converting a basis for a finite-dimensional inner product
space (or a subspace) into an orthonormal basis for the same space.

Theorem 5.13. (Gram-Schmidt) Let v1, . . . , vn be linearly independent vectors in an inner product
space V , and let U = span(v1, . . . , vn).

e1 = v1 = v1

e2 = v2 − Pe1(v2) = v2 −
⟨v2, e1⟩
⟨e1, e1⟩

e1

e3 = v3 − Pe1(v3)− Pe2(v3) = v3 −
⟨v3, e1⟩
⟨e1, e1⟩

e1 −
⟨v3, e2⟩
⟨e2, e2⟩

e2

...
...

en = vn − Pe1(vn)− · · · − Pen−1
(v3) = vn − ⟨vn, e1⟩

⟨e1, e1⟩
e1 − · · · − ⟨vn, en−1⟩

⟨en−1, en−1⟩
en−1

Then (e1, . . . , en) is an orthogonal basis for U . If we normalize it and define fi :=
1

∥ei∥ei, the vectors

(f1, . . . , fn) will be an orthonormal basis for U .

Proof. Since each ek is defined as vk − u for some u in the span of the previous vectors ei, we get
span(v1, . . . , vk) = span(e1, . . . , ek) for each 1 ≤ k ≤ n. So we need only verify that the vectors ei and
ek are orthogonal for i ̸= k. Without loss of generality we can assume i < k. We do this by induction.
Assume that the vectors ei are pairwise orthogonal for i < k. We shall prove that ek is orthogonal to
each of these vectors ei. By the definition of ek in the Gram-Schmidt process we have

⟨ek, ei⟩ =
〈
vk − ⟨vk, e1⟩

⟨e1, e1⟩
e1 − · · · − ⟨vk, ek−1⟩

⟨ek−1, ek−1⟩
ek−1, ei

〉
=

〈
vk −

k−1∑
j=0

⟨vk, ej⟩
⟨ej , ej⟩

ej , ei

〉

= ⟨vk, ei⟩ −
k−1∑
j=0

⟨vk, ej⟩
⟨ej , ej⟩

⟨ej , ei⟩ = ⟨vk, ei⟩ −
⟨vk, ei⟩
⟨ei, ei⟩

⟨ei, ei⟩ = ⟨vk, ei⟩ − ⟨vk, ei⟩ = 0.

It is also possible to normalize each ei at each step in Gram-Schmidt. This produces the ON-basis fi
directly, but the calculations of the projections will typically involve square roots even if we start with
integer-vectors.

We also remark that the Gram-Schmidt process still can be applied if the set of vectors is linearly
dependent, then some ei will be zero, but if we remove these we will end up with an ON-basis of
span(v1, . . . , vn).

Example 5.14. Consider the vector space C[0, 1] of real-valued continuous functions on the unit

interval with the standard inner product ⟨f, g⟩ =
∫ 1

0
f(x)g(x)dx.

In this example we shall use Gram-Schmidt to construct an ON-basis for P1, the subspace of
polynomials of degree ≤ 1 (with domains restricted to [0, 1]). We shall then use this basis to find
the function in P1 closest to f(x) = x2.

Since P1 = span(1, x), we apply Gram-Schmidt to convert the basis (v1, v2) = (1, x) of P1 to
an orthogonal basis (e1, e2) of P∞. By the algorithm we should take e1 = v1 = 1 and we note that

∥e1∥2 = ⟨e1, e1⟩ = 1, so we get

e2 = v2 − Pe1(v2) = v2 −
⟨v2, e1⟩
⟨e1, e1⟩

e1 = x−
∫ 1

0
x · 1dx∫ 1

0
1 · 1dx

1 = x− 1
2

and we note that ∥e2∥2 = ⟨e2, e2⟩ =
∫ 1

0
(x− 1

2 )dx = 1
12 . So we conclude that

(e1, e2) =
(
1, x− 1

2

)
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is an orthogonal basis for P1. The second basis vector does not have length 1 though, so if we need
an ON-basis we should also normalize. So with f1 = e1, and f2 = 1

∥e2∥e2 we get an ON-basis for

P1:
(f1, f2) =

(
1,
√
3(2x− 1)

)
.

Now the function g(x) in P1 closest to f(x) = x2 is the projection of x2 onto P1, and this can
be found by projecting onto each of our basis vectors f1, f2 in our ON-basis. To avoid square roots
in our calculations we might as well project onto e1 and e2 instead:

g(x) = PP1
(x2) = Pf1(x

2)+Pf2(x
2) =

〈
x2, 1

〉
⟨1, 1⟩

·1+
〈
x2, (x− 1

2 )
〉〈

(x− 1
2 ), (x− 1

2 )
〉 ·(x− 1

2
) =

1

3
+(x− 1

2
) = x− 1

6
.

So g(x) = x − 1
6 is the function in P∞ closest to x2. Concretely, by our definition of the inner

product, this means that
∥∥x2 − (x− 1

6 )
∥∥2 =

∫ 1

0
(x2− (x− 1

6 ))
2dx is minimized, which we can think

of as minimizing the area between the graphs of x− 1
6 and x2 on [0, 1]a.

0.5 1

0.5

1

f(x) = x2

g(x) = x− 1
6

So in a sense x − 1
2 is the ”best approximation” of x2 by a line if we only care about how

the functions behave on the unit interval. If wanted to find the best approximation for another
interval, we could perform the analogous computation for a different choice of inner product.

aTechnically the area under the squared difference of the functions is being minimized.

△
The idea of the example still works if we replace polynomials by another class of functions. Projection

onto the subspace produces an approximation of a given function as a linear combination of functions
from this class. For example, in Fourier-analysis, we approximate periodic functions by trigonometric
functions, as illustrated by the following example.

Example 5.15. Consider the space of all real 2π-periodic functions equipped with the inner producta

⟨f(x), g(x)⟩ = 1

π

∫ π

−π

f(x)g(x)dx.

Let Fn = span
(
sin(x), sin(2x), . . . , sin(nx)

)
. Let us find the function g(x) ∈ F3 which best ap-

proximates the square wave function f(x), which is defined as sgn(x) on [−π, π) and is 2π-periodic.
One can check that {sin(kx)}k∈N is actually an orthonormal set of functions with respect to

our inner product, so we obtain our approximation immediately as

g(x) = PF3
(f(x)) = ⟨f(x), sin(x)⟩ sin(x) + ⟨f(x), sin(2x)⟩ sin(2x) + ⟨f(x), sin(3x)⟩ sin(3x)

For general k we calculate ⟨f(x), sin(kx)⟩. Since f(x) sin(kx) is an even function and f(x) = 1 for
x ∈ (0, π) we get

⟨f(x), sin(kx)⟩ = 1

π

∫ π

−π

f(x) sin(kx)dx =
2

π

∫ π

0

sin(kx)dx =
2

π

[
− cos(kx)

k

]π
0
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=
2(1 + cos(kπ))

kπ
=

2(1− (−1)k)

kπ
=

{
4
kπ for odd k

0 for even k.
.

This shows that

g(x) = ⟨f(x), sin(x)⟩ sin(x)+⟨f(x), sin(2x)⟩ sin(2x)+⟨f(x), sin(3x)⟩ sin(3x) = 4

π
sin(x)+

4

3π
sin(3x).

−2π −π π 2π

−1

1

x

f(x)

f(x), square wave function

g(x) = 4 sin(x)
π + 4 sin(3x)

3π

Our calculation actually directly tells us the projection of the square wave function onto F2m+1

for arbitrary m:

PF2m+1(f(x)) =

m∑
k=0

4

kπ
sin((2k + 1)x).

Higher m gives better approximations of the function.

aSome technical restrictions of the whole space of functions is needed in order for the integral in the inner product
to exist, let us assume that all functions are continuous except for finitely many points on [−π, π). We shall also
consider two functions in the space to be equal if they differ for only finitely many points on that interval (otherwise
the inner product would not be positive definite).

△
Approximating functions by trigonometric functions has plentiful applications in signal-processing,

audio-compression, etcetera.

5.5 QR-decomposition

Definition 5.16. A QR-factorization or QR-decomposition of a matrix A is a factorization of
form

A = QR

R is an upper-triangular matrix and Q is a square matrix satisfying Q∗Q = I.

The condition Q∗Q = I is equivalent to saying that the columns for Q form an ON-basis with respect
to the standard inner product on Cn, such matrices are called unitary, we will return to these soon.

If A is an invertible matrix, A has a unique QR factorization if we require that the diagonal entries
of R are real positive.

The QR-factorization can be obtained by applying Gram-Schmidt31 to the columns of the matrix as
the following example demonstrates:

31However, the Gram-Schmidt algorithm is unstable numerically, so modern computer algorithms use different methods
to find QR-factorizations.
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Example 5.17. Let us find the QR-factorization of the matrix

A =

1 3 1
1 1 2
0 2 2

 .

We are seeking a matrix Q satisfying QQ∗ = I, and an upper triangular matrix R such that
A = QR.

We apply Gram-Schmidt to the columns of A with respect to the standard inner product on
C3, call the columns v1, v2, v3 so that A = (v1 v2 v3).

We obtain e1 = v1 =

1
1
0

, for which we have ∥e1∥2 = ⟨e1, e1⟩ = 2, so we take f1 = 1√
2

1
1
0

.

Next we get

e2 = v2 −
⟨v2, e1⟩
⟨e1, e1⟩

e1 = v2 − 2e1 =

3
1
2

− 2

1
1
0

 =

 1
−1
2

 ,

for which ∥e2∥2 = ⟨e2, e2⟩ = 6, so we take so we take f2 = 1√
6

 1
−1
2

. And finally

e3 = v3 −
⟨v3, e1⟩
⟨e1, e1⟩

e1 −
⟨v3, e2⟩
⟨e2, e2⟩

e2 = v3 −
3

2
e1 −

1

2
e3 =

1
2
2

− 3

2

1
1
0

− 1

2

 1
−1
2

 =

−1
1
1

 ,

and we have ∥e3∥2 = ⟨e3, e3⟩ = 3 so we take f3 = 1√
3

−1
1
1

.

The steps in Gram-Schmidt give us a way to express our original vectors v1, v2, v3 as linear
combinations of our new basis vectors f1, f2, f3. We had:

v1 = e1 =
√
2f1

v2 = 2e1 + e2 = 2
√
2f1 +

√
6f2

v3 = 3
2e1 +

1
2e2 + e3 = 3

√
2

2 f1 +
√
6
2 f2 +

√
3f3

which can be expressed in matrix form

A =

1 3 1
1 1 2
0 2 2

 =

 | | |
v1 v2 v3
| | |

 =

 | | |
f1 f2 f3
| | |



√
2 2

√
2 3

√
2

2

0
√
6

√
6
2

0 0
√
3



=


1√
2

1√
6

− 1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3



√
2 2

√
2 3

√
2

2

0
√
6

√
6
2

0 0
√
3

 = QR.

△
In the example we obtained our matrix R by keeping track of the coefficients relating our original

vectors vi to our new vectors fi. However, note that if A = QR is a QR-decomposition, we have

R = IR = Q∗QR = Q∗A,

so we can just perform Gram-Schmidt to obtain the matrix Q where the new ON-basis are columns,
and then use it to compute R = Q∗A. If we followed Gram-Schmidt correctly, R will be upper triangular.

The method in the example works in general for finding a QR-factorization. Although the columns
of an m× n-matrix are vectors of Cm, they may not span Cm, but we can always use Gram-Schmidt to
obtain an ON-basis for their span32, and then we extend this to an ON-basis of the full space Cm, then

32In the G-S-algorithm, some resulting vectors may be zero, we drop these when constructing the basis.

Page 48



Lecture Notes TATA53

we take Q as the square matrix with this ON-basis as columns, and R = Q∗A will be upper triangular.
We summarize:

Proposition 5.18. Any matrix A ∈ Matm×n(C) has a QR-factorization A = QR with Q unitary
(Q∗Q = I) and R upper triangular. If m ≥ n we can express this in block form as

A = QR = (Q1 | Q2)

(
R1

0

)
= Q1R1,

where Q ∈ Matm(C) is a unitary and R is upper triangular. In the block-decomposition, Q1 contains
first n columns of Q, and R1 is of shape n× n.

The more compact version A = Q1R1 is sometimes called a thin QR-factorization (but note that Q1

is typically not unitary since it is not square).

Example 5.19. Let A =

1 5
2 7
2 4

. We apply Gram-Schmidt to the columns and get a matrix

Q1 = 1
3

1 2
2 1
2 −2

 whose columns are orthonormal and span the same space as the columns of A.

We then take R1 = Q∗
1A =

(
3 9
0 3

)
. We now have the thin QR-factorization

A = Q1R1 =
1

3

1 2
2 1
2 −2

(3 9
0 3

)
.

To get the full QR-factorization we extend the basis obtained via Gram-Schmidt to an ON-basis

for C3, and adjoin this last column to Q1. Then R = Q∗A =

(
R1

0

)
. We then get a full QR-

factorization:

A = QR = (Q1 | Q2)

(
R1

0

)
=

1

3

1 2 2
2 1 −2
2 −2 1

3 9
0 3
0 0

 .

△

Applications of the QR-decomposition

In the last section we saw how we could solve minimization-problems via Gram-Schmidt: The vector in
v closest to a subspace U is PU (v), and this can be computed by constructing an ON-basis for U via
Gram-Schmidt, and then projecting v onto each of these basis vectors. The QR-factorization gives a
matrix version of this.

We illustrate by an example:

Example 5.20. Let us use the QR-factorization to find the vector in U = span((1, 2, 2), (5, 7, 4))
closest to (1, 2, 3) (with respect to the standard norm). We put the vectors generating U as
columns in a matrix A - this matrix is the same as in the last example and we already have its
QR-factorization.

For the minimization we are trying to find x1, x2 such that x1(1, 2, 2)+x2(5, 7, 4)− (1, 2, 3) has
minimal length, this length can be expressed in matrix form as:∥∥∥∥∥∥

1 5
2 7
2 4

(x1

x2

)
−

1
2
3

∥∥∥∥∥∥ = ∥AX − Y ∥ = ∥QRX − Y ∥ = ∥Q∗QRX −Q∗Y ∥ = ∥RX −Q∗Y ∥

=

∥∥∥∥∥∥
(
R1

0

)
X − 1

3

(11
−2

)
(
1
)
∥∥∥∥∥∥ =

∥∥∥∥∥∥
R1X − 1

3

(
11
−2

)
−
(
1
3

)
∥∥∥∥∥∥ ,

where in one step we used that ∥u− v∥ = ∥Q(u− v)∥ which works since QQ∗ = I. We conclude
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from the calculation that the distance is minimized for R1X = 1
3

(
11
−2

)
which lets us find X =

1
3R

−1
1

(
11
−2

)
= 1

9

(
17
−2

)
, which gives PU ((1, 2, 3)) =

1
9 (7, 20, 26).

△
For a computer there are efficient methods for finding QR-factorizations, so for large systems the

above technique is useful for solving minimization problems.

Another useful application for QR-factorization in computer algebra is the QR-algorithm, an algo-
rithm that is used to find eigenvalues and eigenvectors of a matrix. For large matrices A, our usual
method of computing the characteristic polynomials and finding their roots is not tenable, instead the
following works: Find a QR-factorizaion of our matrix, flip Q and R, and repeat. More precisely, start
with A0 = A, and for each k, QR-factorize Ak = QkRk and take Ak+1 = RkQk. Then the sequence Rk

converges to an upper triangular matrix with the eigenvalues of A on the diagonal, and Qk converges to
a matrix with the corresponding eigenvectors as columns. The proof of this lies beyond the scope of this
course.

Another application ofQR-factorizations is that it simplifies some matrix products, later we shall need
to compute products of form A∗A for non-square matrices A. If A = QR we get A∗A = (QR)∗(QR) =
R∗Q∗QR = R∗IR = R∗R which is faster to compute since R is upper triangular. The calculation also
shows that R∗R is an LU-factorization of A∗A.

5.6 Self-adjoint, unitary, and normal operators

Note that if B = (e1, . . . , en) is an ON-basis for an inner product space V , then we have〈x1

...
xn


B

,

y1
...
yn


B

〉
= ⟨x1e1 + · · ·+ xnen, y1e1 + · · ·+ ynen⟩ =

∑
i,j

⟨xiei, yjej⟩

=
∑
i,j

xiyj ⟨ei, ej⟩ =
∑
i,j

xiyjδij =
∑
i

xiyi =

x1

...
xn

 •

y1
...
yn

 .

In other words, if we choose an ON-basis, the inner product of two vectors corresponds to the standard
dot-product of their coordinate vectors in Cn.

We also remark that if we write vectors X,Y ∈ Cn as column-matrices (X,Y ∈ Matn×1(C)), the
dot-product can be expressed in matrix form as a matrix product

X • Y =

x1

...
xn

 •

y1
...
yn

 =

n∑
i=1

xiyi =
(
y1 · · · yn

)x1

...
xn

 = Y ∗X,

note the flipped order: X • Y = Y ∗X.

Linear functionals and adjoints

Since an inner product is linear in the first argument, if we fix a vector w ∈ V , we get a linear function
α : V → C (a linear functional) by defining α(v) = ⟨v, w⟩, also written α = ⟨·, w⟩. The next theorem
says that every linear functional has this form when V is finite-dimensional.

Proposition 5.21. Riesz representation theorem. Let V be finite dimensional inner product space
and let α : V → C be linear. Then there exists a unique vector vα ∈ V such that

α(u) = ⟨u, vα⟩ for all u ∈ V.

Proof. Let (e1, . . . , en) be an orthonormal basis for V , and define vα := α(e1)e1 + · · · + α(en)en. Then
for any u ∈ V we have

⟨u, vα⟩ =
〈
u, α(e1)e1 + · · ·+ α(en)en

〉
= α(e1) ⟨u, e1⟩+· · ·+α(en) ⟨u, en⟩ = α(⟨u, e1⟩ e1+· · ·+⟨u, en⟩ en) = α(u),
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which shows the existence of such a vα. For uniqueness, we note that if v′α also satisfies α(u) = ⟨u, v′α⟩,
then for all u we have

0 = α(u)− α(u) = ⟨u, vα⟩ − ⟨u, v′α⟩ = ⟨u, vα − v′α⟩ .

But this shows that vα − v′α = 0 by positive-definiteness of the inner product.

A similar theorem also applies in a more general context33.

Proposition 5.22. Let F : V → W be a linear map between finite-dimensional inner product spaces
(real or complex). Then there exists a unique linear map F ∗ : W → V called the adjoint of F that
satisfies

⟨F (v), w⟩ = ⟨v, F ∗(w)⟩ for all v ∈ V and w ∈ W.

If we pick orthonormal bases for V and W , we have [F ∗] = [F ]∗, in other words, the matrix of the
adjoint map is the Hermitian conjugate of the matrix for the original map.

Proof. For each fixed w ∈ W , let αw : V → C be defined by αw(v) = ⟨F (v), w⟩. This map is linear, so
by Proposition 5.21 there exists a unique element, vαw

such that

⟨F (v), w⟩ = αw(u) = ⟨u, vαw
⟩ ,

so define a map F ∗ : W → V by F ∗(w) = vαw
, then it is not too hard to verify that this map is linear.

This just means that we can talk about adjoints of linear maps without specifying bases.

Definition 5.23. Let F : V → V be an operator on an inner product space V .
F is called self-adjoint if F = F ∗.

F is called unitary if F ◦ F ∗ = idV = F ∗ ◦ F .
A square matrix A ∈ Matn(C) is called unitary if AA∗ = I = A∗A.

F is called normal if F ◦ F ∗ = F ∗ ◦ F .
A square matrix in A ∈ Matn(C) is called normal if AA∗ = A∗A

Some remarks are in order.
First, we see that F is self-adjoint if and only if the matrix of F with respect to an ON-basis is

Hermitian.

We see that a matrix A is unitary if and only if it is square and A−1 = A∗, this also shows that a
square matrix is unitary if and only if A∗A = I. Moreover, columns of a unitary matrix forms an ON-
basis with respect to the standard inner product. To see this we denote the columns of A by A1, . . . , An,
and note that the block matrix product shows that

A∗A =

A∗
1
...

A∗
n

(A1 · · · An

)
= (A∗

iAj)ij = (Aj •Ai)ij

so A∗A = I if and only if the columns of A (and equivalently the rows of A) form an orthonormal basis
in Cn.

If A is a real matrix, it is unitary if and only if it is ”orthogonal”34: ATA = I = AAT .
If F is unitary we also note that

∥F (v)∥2 = ⟨F (v), F (v)⟩ = ⟨v, F ∗(F (v))⟩ = ⟨v, id(v)⟩ = ⟨v, v⟩ = ∥v∥2 ,

which means that ∥F (v)∥ = ∥v∥ for all v, and consequently ∥F (u)− F (v)∥ = ∥u− v∥ so applying F
doesn’t change distances in the vector space, and F is called an isometry. Intuitively we should think
of unitary operators as a sort of rotation or reflection on Cn.

We also remark that both self-adjoint and unitary operators are normal.

33In an infinite-dimensional Hilbert space, the theorem says that every bounded linear functional α can be represented
as α = ⟨., v⟩ for some fixed v.

34”Orthonormal matrix”, or ”ON-matrix” in some texts.
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Theorem 5.24. (Schur’s Theorem) Let F : V → V be an operator on a finite dimensional complex
inner product space. Then there exists an orthonormal basis for V with respect to which the matrix of
F is upper triangular. Equivalently, any square complex matrix A is unitarily equivalent to an upper
triangular matrix T : there exists a unitary matrix U such that A = UTU∗.

Proof. This follows directly from a modification of the proof of Theorem 3.12. We just make sure to
normalize the eigenvectors we pick, and in the induction step, instead of picking an arbitrary complement
to the line spanned by an eigenvector v, we pick its orthogonal complement span(v)⊥.

5.7 Spectral theorem for normal operators

We recall the real version of the spectral theorem from a first linear algebra course, it says that symmetric
matrices are orghogonally diagonalizalble:

Theorem 5.25. (Real spectral theorem) Let A ∈ Matn(R). There exists an orthonormal basis
for Rn consisting of eigenvectors for A if and only if A is symmetric. This means that there exists a
factorization A = SDST where D is diagonal and S is orthogonal (SST = I).

We may now prove the more general complex spectral theorem which says that the normal operators
are precisely the ones that are orthogonally diagonalizable:

Theorem 5.26. (Complex spectral theorem) Let F : V → V be an operator on a finite dimensional
complex inner product space. Then there exists an orthonormal basis for V consisting of eigenvectors for
F if and only if F is normal.

Equivalently, if A is a square complex matrix there exists unitary U and diagonal D such that A = UDU∗

if and only if A is normal.

Proof. We prove the statement in matrix form. Suppose first that A = UDU∗ as in the theorem. Then

AA∗ = (UDU∗)(UD∗U∗) = UDD∗U∗ = UD∗DU∗ = (UD∗U∗)(UDU∗) = A∗A,

so A is normal.

In the other direction, suppose A is normal. We use Schur’s Theorem 5.24 to write A = UTU∗, and
we will show that the upper triangular matrix T is in fact diagonal. Since A is normal, so is T :

TT ∗ = (U∗AU)(UA∗U∗) = UAA∗U∗ = UA∗AU∗ = (U∗A∗U)(UAU∗) = T ∗T.

We claim that normal upper triangular matrices are always diagonal, we prove this by induction. The
statement is trivially true for 1× 1-matrices. Let T = (tij)ij . Then explicitly the normality TT ∗ = T ∗T
looks like

t11 t12 · · · t1n
0 t22 · · · t2n
...

. . .
. . .

...
0 · · · 0 tnn



t11 0 · · · 0

t12 t22 · · ·
...

...
. . .

. . . 0
t1n t2n · · · tnn

 =


t11 0 · · · 0

t12 t22 · · ·
...

...
. . .

. . . 0
t1n t2n · · · tnn



t11 t12 · · · t1n
0 t22 · · · t2n
...

. . .
. . .

...
0 · · · 0 tnn


We compare position (1, 1) in both sides of the product and get

|t11|2 + |t12|2 + · · ·+ |t1n|2 = |t11|2

which shows that t12 = t13 = · · · = t1n = 0. So T has block form

(
t11 0
0 T ′

)
, where T ′ is normal since

T is, and since T ′ is smaller than T , the inductive hypothesis gives that T ′ is diagonal which shows that
T is diagonal.

To actually find the matrix U we follow the standard diagonalization algorithm, eigenvectors corre-
sponding to different eigenvalues will then be orthogonal, but when the geometric multiplicity is greater
than one we need to make sure to pick an orthogonal basis for each eigenspace, and also normalize all
eigenvectors before putting them as columns in the matrix U .
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Corollary 5.27. Self-adjoint operators, Hermitian, skew-Hermitian, and unitary matrices, as well as
all complex multiples of such matrices and operators are orthogonally diagonalizable.

Proof. It is easy to verify that all the operators listed are normal, they commute with their adjoints.

We remark that if A is a normal matrix whose eigenvalues are all real, we get D = D∗ above, which
implies

A∗ = (UDU∗)∗ = UD∗U∗ = UDU∗ = A,

and A is not only normal but Hermitian.
If A = UDU∗, and if we write ui for the columns of U such that U = (u1 · · ·un), then we have:

A = UDU∗ = (u1 · · ·un)

λ1

. . .

λn


u∗

1
...
u∗
n

 = (u1 · · ·un)

λ1u
∗
1

...
λnu

∗
n

 = λ1u1u
∗
1 + · · ·λnunu

∗
n.

So here we have written A as a linear combination of n×n-matrices of form uiu
∗
i . Such matrices clearly

have rank 1 and we can see that they are in fact all orthonormal with respect to the Frobenius-inner
product: 〈

uiu
∗
i , uju

∗
j

〉
F
= tr(uiu

∗
i (uju

∗
j )

∗) = tr(uiu
∗
i uju

∗
j ) = tr((uiu

∗
i uj)u

∗
j︸ ︷︷ ︸

n×n

)

= tr(u∗
j (uiu

∗
i uj)︸ ︷︷ ︸

1×1

) = tr((u∗
jui)(u

∗
i uj)) = tr((ui • uj)(uj • ui)) = tr(δijδji) = δij .

We will return to such decomposition of matrices when we talk about singular values and the Schmidt-
decomposition, but then in the more general context of rectangular matrices.

Example 5.28. Let A =

(
3 2

−2 3

)
. One easily verifies that A∗A = AA∗, so A is normal. The

standard-method shows that

(
1
i

)
is an eigenvector with eigenvalue 3 + 2i and that

(
1

−i

)
is an

eigenvector with eigenvalue 3 − 2i, these two eigenvectors are indeed orthogonal with respect to

the standard inner product on C2:

(
1
i

)
•
(

1
−i

)
= 1 · 1 + i · (−i) = 0. We normalize them and put

them as columns in a matrix U , which will then be unitary, and we take D as the diagonal matrix
with the eigenvalues in the same order: with

U =
1√
2

(
1 1
i −i

)
and D =

(
3 + 2i 0

0 3− 2i

)
we have A = UDU∗.

If we want to express A as a linear combination of Frobenius-orthonormal matrices as discussed
above, this looks like

A = UDU∗ =
(
u1 u2

)(3 + 2i 0
0 3− 2i

)(
u∗
1

u∗
2

)
= (3 + 2i)u1u

∗
1 + (3− 2i)u2u

∗
2

= (3+2i) 1√
2

(
1
i

)
1√
2

(
1 −i

)
+(3−2i) 1√

2

(
1

−i

)
1√
2

(
1 i

)
= (3+2i)

1

2

(
1 −i
i 1

)
+(3−2i)

1

2

(
1 i

−i 1

)
.

△

5.8 Positive definite operators
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Definition 5.29. Let F : V → V be a self-adjointa operator on a complex inner product space V .
F is called...

� Positive definite if ⟨F (v), v⟩ > 0 for all nonzero v ∈ V .

� Positive semi-definite if ⟨F (v), v⟩ ≥ 0 for all nonzero v ∈ V .

� Negative definite if ⟨F (v), v⟩ < 0 for all nonzero v ∈ V .

� Negative semi-definite if ⟨F (v), v⟩ ≤ 0 for all nonzero v ∈ V .

These concept are defined analogously for matrices, for example:
A Hermitian matrix A is called positive definite if AX •X > 0, or equivalently

X∗AX > 0 for all nonzero columns X.

aThis condition is not necessary for complex matrices, every positive (semi-)definite matrix will be Hermitian, the
proof of this is left as an exercise.

So we note that F is positive definite if and only if its matrix [F ] with respect to an ON-basis is positive
definite.

Example 5.30. Let A =

(
3 0
0 5

)
and B =

(
6 0
0 0

)
and C =

(
2 1
0 2

)
, and let X =

(
x1

x2

)
be an

arbitrary nonzero vector.

Then X∗AX = (x1 x2)

(
3 0
0 5

)(
x1

x2

)
= 3|x1|2 + 5|x2|2 > 0 so A is positive definite.

For B we have X∗BX = (x1 x2)

(
6 0
0 0

)(
x1

x2

)
= 6|x1|2 ≥ 0, but it can be zero for X ̸= 0, take

for example X =

(
0
1

)
. So B is positive semi-definite.

For C we have X∗CX = (x1 x2)

(
2 1
0 2

)(
x1

x2

)
= 2|x1|2 + x1x2 + |x2|2. This may be non-real

number (take for example X =

(
1
i

)
), so it is neither ≥ 0 nor ≤ 0 for all X, and C is neither

positive or negative (semi)-definite.

△
Suppose that A is positive definite and that A is unitarily equivalent to a matrix B via B = U∗AU .

Then for X ̸= 0 we have
X∗BX = X∗U∗AUX = (UX)∗A(UX) > 0,

and since X is arbitary nonzero and U is bijective, Y = UX is also arbitrary nonzero. This shows that
B is positive definite too.

In particular, since A is necessarily Hermitian, by the spectral theorem it is unitarily equivalent
to a diagonal matrix (with the eigenvalues of A on the diagonal), and for a diagonal matrix D =
diag(λ1, . . . , λn) we have

X∗DX = λ1|x1|2 + · · ·λn|xn|2

which is clearly positive for all nonzero X if and only if all λi > 0. We conclude that a Hermitian matrix
A is positive definite if and only if all its eigenvalues are positive (and positive semi-definite if all its
eigenvalues are ≥ 0).

We note that if we write X,Y ∈ Cn as columns-matrices, ⟨X,Y ⟩ := X∗AY defines an inner product
on Cn if and only if A is positive definite. The sesquilinearity and conjugate-symmetry follows directly,
and positive-definiteness of the inner product ⟨X,X⟩ > 0 is equivalent to A being positive definite.

The following result provides a useful condition for testing whether a Hermitian matrix is positive
definite:

Theorem 5.31. (Sylvester’s criterion) Let A ∈ Matn(C) be a Hermitian matrix (A = A∗). The
principal minor of size m ×m in A is the determinant of the matrix obtained from removing all but
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the first m rows and columns from A.

The Hermitian matrix A is positive definite if and only if all its principal minors are positive, and A
is positive semi-definite if all its principal minors are ≥ 0.

We don’t prove this here, but we illustrate with an example:

Example 5.32. The matrix A =

 1 i 1
−i 2 1
1 1 5

 is Hermitian. Its three principal minors of size 1, 2,

3 are:

|1| = 1,

∣∣∣∣ 1 i
−i 2

∣∣∣∣ = 1,

∣∣∣∣∣∣
1 i 1
−i 2 1
1 1 5

∣∣∣∣∣∣ = 2.

Since all of these are positive, by Sylvester’s criterion A is positive definite.

△

Square roots

In calculus, for x ∈ R we normally define
√
x as the unique non-negative real number y satisfying y2 = x.

So for x < 0, the square root
√
x is normally undefined. For x > 0 there are two real numbers y satisfying

y2 = x, but only one of them is positive.
For matrices the situation is analogous if we replace ”positive” by ”positive definite”:

Definition 5.33. Let A be a positive semi-definite matrix. Then A is necessarily Hermitian, and
by the spectral theorem we may write A = UDU∗ for D = diag(λ1, . . . , λn) and since A is positive
semi-definite, so is the matrix D, so λi ≥ 0. We define

√
D = diag(

√
λ1, . . . ,

√
λn) and

√
A = U

√
DU∗.

So we leave
√
A undefined when A is not positive semi-definite, even if there may exist matrices which

squares to A.

Proposition 5.34.
√
A is well defined for positive semi-definite A.√

A is the unique positive semi-definite matrix whose square is A.

Proof. We have
√
A

2
= U

√
DU∗U

√
DU∗ = U

√
D
√
DU∗ = UDU∗ = A, and

√
A is positive semi-definite

since all its eigenvalues are ≥ 0.
For the uniqueness claim, suppose B is any positive semi-definite matrix for which B2 = A. Since B

is positive semi-definite it is Hermitian, and we can use the spectral theorem to write B = ŨD̃Ũ∗ where
D̃ = diag(µ1, . . . , µn) has the eigenvalues of B on the diagonal. Then A = B2 = ŨD̃2Ũ∗ so AŨ = ŨD̃2

which shows that the columns of Ũ are orthonormal eigenvectors for A with eigenvalues µ2
i , this shows

that µ2
i = λi. Since A is positive semi-definite and Hermitian, all its eigenvalues λi are real and ≥ 0,

which shows that µi = ±
√
λi, but since B is required to be positive semi-definite, only the plus-signs

can occur. But then
√
A and B acts the same way on a basis for the vector space (the columns of Ũ),

so B =
√
A.

Example 5.35. Let A =

(
3 1
1 3

)
. By Sylvesters criterion, A is positive definite and it has a square

root
√
A. Let us compute it:

We find the eigenvalues of A and an orthonormal basis of eigenvectors, this gives us

A = UDU∗ where U =
1√
2

(
1 1
1 −1

)
and D =

(
4 0
0 2

)
.

So we have

√
A = U

√
DU∗ =

1

2

(
1 1
1 −1

)(
2 0

0
√
2

)(
1 1
1 −1

)
=

1

2

(
2 +

√
2 2−

√
2

2−
√
2 2 +

√
2

)
.

Page 55



Lecture Notes TATA53

Note that each of the four matrices B = U

(
±2 0

0 ±
√
2

)
U∗ satisfies B2 = A, but only one of them

is positive definite.

△
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6 Problems

Vector spaces, subspaces, direct sum, quotients

1.1. Use the vector space axioms to prove that v + v = 2 · v holds in any complex vector space.

1.2. Consider R+ =]0,∞[, the set of positive real numbers. We define an addition +++ on R+ by

x+++ y := xy.

We define a multiplication of real numbers λ on R+ by

λ • x := xλ.

Under this addition and scalar multiplication, R+ is in fact a vector space.

a) What is the zero element (the additive identity) of the vector space V ?

b) What is −5? (the additive inverse of the vector 5)?

c) Verify that the vector space axiom (λ+ µ) • v = λ • v+++ µ • v holds in V .

d) Verify that λ • (µ • v) = (λµ) • v.

1.3. Which of the following subsets of R2 are subspaces? Which satisfy the additive property, and which
satisfy the homogeneity property?

a) S1 = {(x, y) ∈ R2 | 2x+ y = 3}

b) S2 = {(x, y) ∈ R2 | x = y}

c) S3 = {(x, y) ∈ R2 | xy = 0}

d) S4 = {(x, y) ∈ R2 | x ≥ 0 and y ≥ 0}

e) S5 = {(x, y) ∈ R2 | x ∈ Z and y ∈ Z}

f) S6 = R2

g) S7 = ∅

1.4. In R3, let U be the plane x+2y+3z = 0 and let U ′ be the line spanned by (1, 1, 1). Then R3 = U ⊕U ′.
Find the projection of v = (1, 4, 1) on U with respect to this direct sum.

1.5. Show that S = {p(x) ∈ P3 | p(2) = 0} is a subspace of P3. Also find a basis for it.

1.6. Let S and S′ be any two subspaces of a vector space V . Which of the following statements are true? For
false statements, give a counterexample. For true statements, give a short proof.

a) The intersection S ∩ S′ := {v ∈ V | v ∈ S and v ∈ S′} is a subspace.

b) The union S ∪ S′ := {v ∈ V | v ∈ S or v ∈ S′} is a subspace.

c) The sum S + S′ := {u+ v | u ∈ S, v ∈ S′} is a subspace.

1.7. Let U1, U2, U3 be three subspaces of V such that U1+U2+U3 = V and U1∩U2 = U1∩U3 = U2∩U3 = {0}.
Show that we do not necessarily have V = U1 ⊕ U2 ⊕ U3.

1.8. Let F be the vector space of all functions R → R. Let e be the set of all even functions, and let o be the
set of all odd functions in F .

a) Show that e and o are subspaces of F .

b) Show that F = e⊕ o.

c) Find the projection of ex onto the subspace e.
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d) Find the projection of f(x) = sin(x)x10 arctan(x) onto o.

1.9. Which of the following maps are linear?

a) F : R2 → R2 where F (x, y) = (y + x, 2x− 1).

b) I : Pn → Pn+1 where I(p(x)) =
∫ 1

0
p(x)dx

c) G : Matn×n(C) → C where G(A) = tr(A)

d) H : Matn×n(C) → Matn×n(C) where H(A) = AT + 3A

e) T : C(R) → C(R) where T (f(x)) = f(x+ 1)

f) C : R3 → R3 where C(v) = v × (1, 2, 3).

1.10. Let T : Matn(C) → Matn(C) where T (A) = A − AT . Show that T is linear and determine ker(T ) and
Im(T ).

1.11. Show that a linear map F is injective if and only if ker(F ) = {0}.

1.12. Let V be the vector spaces of all infinite sequences (a1, a2, . . .) where ai ∈ R; the sum and scalar action
is defined coordinate-wise. Let F : V → V be the right-shifting operator F (a1, a2, . . .) = (0, a1, a2, . . .),
this is a linear map. Is F injective? Surjective? Does F have an inverse?

1.13. Let P4 be the space of polynomials with real coefficients and of degree ≤ 4. Define a linear map
F : P4 → P4 by F (p(x)) = p(x+1). Find the matrix of F with respect to the standard basis of P4. Also
find the inverse of F .

1.14. In Lie theory an important object of study is sl2, the set of complex matrices with trace zero:

sl2 = {
(
a b
c d

)
∈ Mat2×2(C) | a+ d = 0},

this is a subspace of Mat2×2(C) with basis (X,H, Y ) =

((
0 1
0 0

)
,

(
1 0
0 −1

)
,

(
0 0
1 0

))
. Define two

maps F,G : sl2 → sl2 by
F (A) = HA−AH and G(A) = XA−AX.

Find the matrices of F and of G with respect to the basis (X,H, Y ).

1.15. Let U be a subspace of a vector space V . Let v + U and w + U be two affine subsets. Prove first that
v + U = (v + u′) + U whenever u′ ∈ U . Use this to prove that v + U = w + U whenever v − w ∈ U .

1.16. Let V = R2 and let U be the subspace spanned by (1, 1). Let A = (2, 3) + U , B = (1, 0) + U , and
C = (4, 5) + U be affine subsets.

a) Are any of A,B,C equal?

b) Sketch the affine subsets A,B, and A+B in a picture of R2.

c) Show that A is a basis for V/U and express B in this basis.

1.17. Let U ⊂ R3 be the subspace spanned by (1, 2, 3). Then the pair (A,B) =
(
(1, 1, 0) + U, (0, 1, 1) + U

)
is

a basis for R3/U . Express the vector C = (1, 1, 1) + U of V/U in this basis.

1.18. Let V = R4/ℓ where ℓ = span(3, 2, 1, 2). Is

(e1, e2, e3) =
(
(1, 1, 0, 0) + ℓ, (0, 1, 1, 0) + ℓ, (0, 0, 1, 1) + ℓ

)
a basis for V ?

1.19. Let F : V → V be a linear map, and let U ⊂ V be a subspace. Show that if F (u) = 0 for all u ∈ U ,
then the map defined by F̃ : V/U → V/U with F (v + U) = F (v) + U is well-defined and linear. How
does the matrix of F and F̃ look?
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1.20. Write Aspan(p1, . . . , pn) for the affine span of vectors (or think of them as points) p1, . . . , pn, defined
as the smallest affine subset containing all vectors p1, . . . , pn. Find a geometric description of each affine
span below, and express it as v + U for suitable vector v and subspace U .

a) Aspan
(
(1, 2), (3, 4)

)
in R2.

b) Aspan
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
in R3.

1.21. A map F : V → V is called an affine map if F (v) = G(v) +w where G is a linear map and w is a fixed
translation-vector.

a) Show that the composition of affine maps is affine.

b) Show that the map that reflects points of R2 in the line (1 + t, t) is an affine map.

1.22. In this problem we consider vector spaces and matrices over the field Z3, it consists of only three elements
{0, 1, 2} which can be added and multiplied modulo 3 as indicated in these tables:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

a) Compute 2(1, 2, 1, 1) + (2, 2, 0, 1)

b) Solve the linear system

(
1 2
2 2

)(
x1

x2

)
=

(
1
0

)

c) Compute det

(
2 1
0 2

)

d) Find

(
2 1
0 2

)−1

e) How many elements does Mat2×2(Z3) have?

1.23. Let X = {1, 2, 3, 4, 5} be a finite set, and let P(X) be the set of all subsets of X. Define an addition on
P(X) by the symmetric difference operator

S1 +++ S2 := S1∆S2 = (S1 ∪ S2) \ (S1 ∩ S2).

a) How should scalar multiplication be defined in order for P(X) to become a vector space over Z2?
What is the additive identity in P(X)?

b) Compute {1, 3, 5}+++ {1, 2, 3}

c) Compute −{1, 3, 5}

d) Find a basis for P(X)

e) Are the vectors {1, 3, 4}, {1, 2}, {1, 4, 5}, {2, 3, 4} ∈ P(X) linearly dependent?

1.24. Let V and W be vector spaces over Q, and let F : V → W be a map satisfying F (u+ v) = F (u) + F (v)
for all u, v ∈ V . Show that F is linear.
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Matrices, echelon forms, LU-factorization

2.1. Let A and B be Hermitian matrices of the same size. Which of the matrices below are guaranteed to be
Hermitian? Give a proof or a counterexample to each.

A+B AB λA AT AB∗ +BA∗

2.2. Any complex matrix can be written uniquely as A + Bi where A and B are real matrices. Prove that
A+Bi is Hermitian if and only if A is symmetric and B is skew-symmetric.

2.3. Prove that tr(AB) = tr(BA) whenever both matrix products are defined. Recall that the trace of a
matrix is the sum of its diagonal entries.

2.4.

a) Show that if an n× n-matrix A has eigenvalues λ1, . . . , λn (all different), then

tr(A) = λ1 + · · ·+ λn.

b) Suppose that A is a 3×3-matrix with 3 different eigenvalues λ1, λ2, λ3. Find a formula for tr(An).

c) Suppose that A is 3× 3 and tr(A) = 1, tr(A2) = 6, and tr(A3) = 10. Find the eigenvalues of A.

2.5. The matrix P below is an example of what is called a permutation matrix. Compute Pn for each integer
n.

P =

0 1 0
0 0 1
1 0 0


2.6. A permutation matrix is a matrix which has a single 1 in each column and in each row.

a) Prove that a permutation matrix must be square.

b) Prove that the product of two permutation matrices is a permutation matrix.

c) Prove that if P is a permutation matrix, then Pn = I for some n > 0.

d) We define the order of a permutation matrix P as the minimal positive n for which Pn = I. Find
an example of an n× n-permutation matrix whose order is greater than its size n.

2.7. Let A ∈ Matn(R) be a square matrix, and let CA := {B ∈ Matn(R) | AB = BA} be the commutant
of A, the set of matrices that commute with A. Show that CA is a subspace of Matn(R). Then find the

commutant of A =

(
1 2
2 1

)
.

2.8. Let C = {A ∈ Matn(C) | AB = BA for all B ∈ Matn(C)} be the set of matrices that commute with
every other matrix. Describe the set C explicitly.

2.9. In algebra, an object x satisfying x ·x = x is called an idempotent. For example, there are exactly two
idempotents in R: 1 and 0. Show that there are infinitely many idempotents in Mat2(R).

2.10. Let A be a real diagonalizable 5×5-matrix. What values are possible for the dimension of the commutant
dim CA?

2.11. Recall that matrix N is called nilpotent if Nd = 0 for some d. Let N and M be nilpotent matrices that
commute. Show that NM and N +M are both nilpotent. Is the statement still true if the matrices do
not commute?

2.12. Let F : V → V be nonzero operator satisfying Im(F ) ⊂ ker(F ). Show that F is nilpotent, and find its
nilpotency degree.
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2.13. Show that if N ∈ Matn(C) is nilpotent, then its nilpotency degree is ≤ n.

2.14. Show that I +N is invertible whenever N is nilpotent.

2.15. Let M =

(
2I 0
A 3I

)
be the blockmatrix of size 2n × 2n, where each of the blocks has size n × n and

A is some given matrix. Show that M−1 = 1
6

(
3I 0
−A 2I

)
.

2.16. Find a general formula for the inverse of the block matrix M =

(
A B
0 C

)
, where each block has size

n× n, and where A and C are invertible.

2.17. For the matrix below, find a row echelon form and find rank(A). Also find the reduced row echelon form
of A, and use your result to find the nullspace ker(A).

A =

1 −1 1 2 1
2 −2 4 3 1
3 −3 5 5 2



2.18. For the matrix C below, find the reduced row echelon form, and use it to solve the linear system CX = 0.

C =

(
1 2i 1 + i i
2i −4 1 3i

)

2.19. A is a 3× 5 matrix with ker(A) = {(−2s+3t− r, s, t,−r, 2r) | s, t, r ∈ R}. Find the reduced row echelon
form of A.

2.20. Later, when determining Jordan canonical form of a matrix, we will have to find bases for various
subspaces related to the matrix.

Let A =


0 1 0 2 −1

−1 1 1 −1 0
1 0 −1 4 −1
0 0 0 0 0

−1 1 1 −2 0


a) Find a basis for Im(A)

b) Find a basis for ker(A)

c) Find a basis for ker(A) ∩ Im(A)

2.21. Give an example of a matrix A such that ker(A) and Im(A) have a nontrivial intersection, and neither
is a subset of the other

2.22. Find the inverse of each elementary matrix below:

E1 =

1 0 0
2 1 0
0 0 1

 E2 =

1 0 0
0 1 0
0 0 5

 E3 =

0 1 0
1 0 0
0 0 1

 .

Then describe a general formula for the inverse of an elementary matrix.

2.23. Row and column operations can be achieved by matrix multiplication. Let A be a 3× 3 matrix. What
matrix should we multiply A by, and from what side, to have the effect of

a) Adding two times the first row of A to the third row of A

b) Multiplying the middle column of A by 3
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c) Switching the first two rows in A

2.24. Write A =

(
1 2
3 4

)
as a product of elementary matrices. Then do the same for A−1.

2.25. Recall the Gauss-Jordan method for finding the inverse of a square matrix A: Write down the block-
matrix [A|I] and do row operations on this matrix until it has form [I|B], then A−1 = B. Prove that
the Gauss-Jordan method works.

2.26. Let

A =

(
1 1 2

−2 1 0

)
.

Find the LU-decomposition and the LDU-decomposition of A.

2.27. Let

A =

 1 −1 1 1
−2 5 0 −1
3 3 1 2

 .

Find the LU-decomposition and the LDU-decomposition of A.

2.28. The matrix A below does not admit an LU -decomposition. Find instead a decomposition PA = LU
where L is lower triangular, U is upper triangular, and P is a permutation matrix.

A =

1 1 1
1 1 2
1 2 3



2.29. Let U be a row echelon form of A. Prove that if the columns of A satisfy a linear dependence relation

λ1A1 + λ2A2 + · · ·λnAn = 0

then the columns of U satisfy the same relation:

λ1U1 + λ2U2 + · · ·λnUn = 0.

Conclude that the dimension of the span of the columns of A is equal to the number of pivots in U .

2.30. We say that a matrix A is in (reduced) column echelon form if and only if AT is in (reduced) row
echelon form. Describe the set of matrices that are both in reduced row echelon form and reduced column
echelon form.

2.31. Solving a linear system by row operations involves multiplying and adding numbers (and making a few
divisions too to figure out what row operations to make, and to solve the final diagonal system, but
let’s ignore all these). For a computer, addition is a lot faster than multiplication, so the number of
multiplications is the limiting factor when solving a linear system.

a) How many multiplications are required to solve a generic system AX = b where A is a 4×4-matrix
with the standard Gaussian elimination algorithm? (here generic means that no unexpected zeros
appear when performing the row operations)

b) Assume now that A = LU is an LU-factorization of the matrix above. The system AX = b can
then be written L(UX) = b, and we can solve it by solving the two triangular systems LY = b and
then UX = Y . How many multiplications are required in total?

c) Assume that in (b) the matrix A is an n × n-matrix. Determine the number of multiplications
needed.

2.32. Find the Cholesky-factorization for each of the matrices below:

A =

(
1 2
2 6

)
B =

(
1 2− i

2 + i 9

)
.
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2.33. Find the Cholesky-factorization of the matrix A below.

A =

 9 3 −3
3 2 1
−3 1 10



2.34. Prove that if A admits a Cholesky-factorization, then A is Hermitian. Also prove that the reverse
implication does not hold.

2.35. Find the reduced row echelon form of the matrix A ∈ Mat3×4(Z3) below, and use your result to solve
AX = 0.

A =

2 1 2 1
2 1 1 0
1 2 2 0

 .

Introductory spectral theory

3.1. Find the spectrum σ(F ), and the dimension of the corresponding eigenspaces for each of the linear maps
F : R3 → R3 described below:

a) Projection onto a line

b) Reflection in a plane

c) Rotation around an axis

d) The identity map

e) A nilpotent operator of nilpotency-degree 3

3.2. Find all eigenvalues and eigenvectors of the linear map on C2 given by the matrix A =

(
1 1

−1 1

)
. Also

diagonalize A, in other words, find matrices S,D ∈ Mat2(C) such that D is diagonal and A = SDS−1.

3.3. Let P be the space of all polynomials with real coefficients. Find all eigenvectors and eigenvalues of the
operator F : P → P defined by F (p(x)) = xp′(x). What is the spectrum σ(F )?

3.4. Show that if A is a real matrix and λ is an eigenvalue, then so is λ.

3.5. We know that a linear operator on C2 with matrix A ∈ Mat2(R) has 2 + 3i as an eigenvalue with
corresponding eigenvector (1, 1 + i). Find the matrix A.

3.6. Let R : Mat2(C) → Mat2(C) be the linear map that rotates matrices a quarter of a turn clockwise like
so:

R

(
a b
c d

)
=

(
c a
d b

)
.

a) Find all eigenvalues and eigenvectors of R. Is R is diagonalizable?

b) Do the same for the corresponding map Mat3(C) → Mat3(C).

3.7. Let V be a three-dimensional complex vector space with basis (e1, e2, e3), and let P : V → V be the
linear map that permutes the basis vectors cyclically: P (e1) = e2, P (e2) = e3, P (e3) = e1. Show that P
is diagonalizable and find a new basis of V consisting of eigenvectors of P .

3.8. Let A =
(
1 2 3 4

)
. Find all eigenvalues and eigenvectors of the 4 × 4-matrix ATA without writing

down the matrix first.
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3.9. An integer sequence an is defined recursively by a0 = 4, a1 = 6 and

an = 2an−1 − 2an−2 for n ≥ 2.

Find an explicit expression for an.

3.10. Compute p(A) and p(B) where p(t) = t4 + 2t2 − 5t+ 3 and A =

(
1 1
0 1

)
and B =

0 0 1
0 0 1
0 0 0

.

3.11. Let A =

(
1 2
3 2

)
. Find a polynomial p(t) for which p(A) = 0 by computing I, A,A2, . . . until these

matrices become linearly dependent in Matn(R).

3.12. The Cayley-Hamilton says that pA(A) = 0 where pA(t) = det(A − tI). A famous ”fake proof” of the
theorem goes like this:

pA(A) = det(A−A · I) = det(0) = 0.

This proof is incorrect, why?

3.13. Verify that the Cayley-Hamilton theorem holds for A =

−2 5 0
0 −2 0
0 0 3

.

3.14. Let p(t) = t2 − 4t+ 3 and q(t) = (t− 1)2(t− 2)2(t− 3)2. Compute p(A) and q(A) where A =

(
2 1
1 2

)
.

3.15. We know that pA(λ) = λ2 + (−3− i)λ+ 2 + 2i. Find all eigenvalues of B = A2 + 3A− 5I.

3.16. We know that a matrix A has characteristic polynomial pA(t) = −t5 − 2t4 − t3. What are the possible
expressions for the minimal polynomial mA(t)?

3.17. We know that a matrix A has minimal polynomial t2 − 1. Simplify A3 + 2A2 + 2A.

3.18. Find the minimal polynomial of each matrix below.

a) A =

(
4 −1
1 2

)
b) B =


0 1 2 3
0 4 5 6
0 0 7 8
0 0 0 9

 c) C =


1 0 1 0
0 1 1 1
0 0 2 1
0 0 0 2


3.19. Let R : Matn(C) → Matn(C) be the linear operator that rotates a matrix M a quarter of a turn

counter-clockwise: R

(
A

)
= A . Find the minimal polynomial of R.

Jordan canonical form

4.1. Which of the following matrices are in Jordan normal form?

a)

1 0 0
0 2 1
0 0 3

 b)

2 1 0
0 2 0
0 0 3

 c)

0 1 0
0 0 1
0 0 0


4.2. For each Jordan-matrix below, determine the algebraic and the geometric multiplicity of each eigenvalue.

Also find the characteristic polynomial and the minimal polynomial.

a)

2 1 0
0 2 0
0 0 −3

 b)


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 c)


5 1 0 0 0
0 5 1 0 0
0 0 5 0 0
0 0 0 3 1
0 0 0 0 3


4.3. For a matrix A we know that its characteristic polynomial is det(A− λI) = (λ− 3)5(λ+ 1)3. Find the

number the possible Jordan forms of A (up to permutation of the blocks).

4.4. How many different Jordan forms of nilpotent 6× 6-matrices are there?
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4.5. Find two square matrices A and B with different Jordan forms such that

a) A and B has the same characteristic and minimal polynomials.

b) A and B has the same characteristic and minimal polynomials, and the same dimension of all the
eigenspaces.

4.6. Show that for any square matrix A, the trace tr(A) is the sum of the eigenvalues and det(A) is the
product of the eigenvalues (counting multiplicities)

4.7. Prove that for any nilpotent map N : Cn → Cn we have Nn = 0.

4.8. Find all matrices that commute with the Jordan block J =

5 1 0
0 5 1
0 0 5

. Generalize your result to

matrices that commute with an arbitrary Jordan block.

4.9. For a certain nilpotent operator A we have pA(t) = t7, mA(t) = t4, and we know that the geometric
multiplicity of the eigenvalue 0 is 3. Determine the Jordan form of A.

4.10. We know that a nilpotent linear map F on a 14-dimensional vector space has a string basis that looks
like the diagram below, where each dot represents a vector in the string basis.

• → • → • → • → • → 0
• → • → • → 0

• → • → 0
• → • → • → 0

• → 0

Find the dimension of:
a) ker(F ) b) Im(F ) c) ker(F 3) d) Im(F 2) e) ker(F ) ∩ Im(F 2)

4.11. Suppose F : R6 → R6 is defined by the diagram below. Without using any matrices, find the character-
istic and minimal polynomials for F . Also find a string basis for F .

e1 e2 e3 0

e4

e5 e6

4.12. For the nilpotent matrix N below, find a matrix S and a matrix J in Jordan form such that SJS−1 = N .

N =

1 −1 0
1 −1 0
1 −1 0



4.13. For the nilpotent matrix M below, find a matrix S and a matrix J in Jordan form such that SJS−1 = M .

M =

 0 0 −1
2 −1 −3

−2 1 1



4.14. Jordanize the matrix A below. In other words, find a matrix J in Jordan form and an invertible matrix
S such that S−1AS = J .

A =

−1 0 0
−3 2 0
3 0 2


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4.15. Jordanize the matrix A below. In other words, find a matrix J in Jordan form and an invertible matrix
S such that S−1AS = J .

A =


1 0 1 0
3 1 −2 1

−2 0 4 0
3 −1 −2 3


4.16. Jordanize the matrix A below. Its only eigenvalue is 2.

A =


1 1 5 −1 7

−1 3 9 4 10
0 0 0 −2 −2
0 0 1 3 1
0 0 1 1 3

 .

4.17. Jordanize the matrix

A =

(
9 + i 9
−4 −3 + i

)
.

4.18. Find a non-diagonalizable matrix 2× 2-matrix A for which

(
1
1

)
is an eigenvector of eigenvalue 3.

4.19. Let F : P3 → P3 be the shifting operator F (p(x)) = p(x+ 1). Find the Jordan form of F .

4.20. Prove that a square matrix A is invertible if and only if 0 is not an eigenvalue of A.

4.21. Prove that if two matrices A and B have the same Jordan form J , then A and B are similar.

4.22. Let U be the subspace of C(R) generated by (ex, xex, x2ex, sin(x), cos(x)), and let D be complexification
of the differentiation operator acting on U . Find the Jordan form of D.

4.23. Prove that if A is an operator whose minimal polynomial has simple zeros (the multiplicity of each zero
is 1), then A is diagonalizable.

4.24. Prove that for n ≥ 2, the Jordan block Jn(0) does not have a square root: no matrix X satisfies
X2 = Jn(0).

4.25. Suppose a matrix A has the Jordan form J below. Find the Jordan form of An for each n > 0.

J =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 2 1
0 0 0 0 2



4.26. Find the Jordan form of

2 0 1
1 1 2
0 0 2

 ∈ Mat3(Z3).

4.27. Find a matrix in Mat2(Z2) which does not admit a Jordan-decomposition, meaning that A ̸= SJS−1 for
any S, J ∈ Mat2(Z2).

4.28. Compute An for the Jordan matrix

A =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 −6 1
0 0 0 0 −6

 .
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4.29. Compute eA and eB for each of the matrices below.

A =

−3 0 0
0 1

2 0
0 0 0

 B =

0 1 2
0 0 3
0 0 0



4.30. Compute eJ where J is the matrix below.

J =

2 1 0
0 2 0
0 0 3



4.31. Suppose that v is an eigenvector of A with eigenvalue λ. What can be said about eigenvalues and vectors
of the matrix eA?

4.32. Compute sin(Ak) and cos(Ak) for k = 1, 2, 3 where

A1 =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 A2 =


2 1 0 0
0 2 1 0
0 0 2 1
0 0 0 2

 A3 =


π
3 1 0 0
0 π

3 0 0
0 0 π

2 0
0 0 0 π

 .

4.33. Prove that d
dt sin(At) = A cos(At) and that d

dt cos(At) = −A sin(At). Find a differential equation that
can be solved using this fact.

4.34. Show that if tr(A) = 0, then det(eA) = 1.

4.35. A discrete dynamical system evolves according to the model{
an+1 = −2an + bn

bn+1 = −an − 4bn
where a0 = 2 and b0 = 0.

Find explicit expressions for an and bn and determine the limit of an

bn
as n → ∞.

4.36. Jordanize the matrix below by finding S and J such that SJS−1 = A.

A =

 1 1 0
−1 3 0
−4 7 −1



4.37. Solve the initial value problem
x′
1(t) = x1(t) + x2(t)

x′
2(t) = −x1(t) + 3x2(t)

x′
3(t) = −4x1(t) + 7x2(t)− x3(t)

x1(0) = 0, x2(0) = 1, x3(0) = 0.

Inner products and norms

5.1. Let ⟨·, ·⟩ be the standard inner product on C2: ⟨(x1, x2), (y1, y2)⟩ = x1y1 + x1y2. Find:
a) ⟨(i, 1 + i), (3, 1 + 2i)⟩ b) ∥(1 + i, 3)∥ c) All vectors orthogonal to (1, 1 + i)

5.2. Find the length of p(x) = x2 + x + 1 in the real vector space of polynomials equipped with the inner

product ⟨p(x), q(x)⟩ =
∫ 1

0
p(x)q(x)dx.
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5.3. Consider a complex inner product space V . Show that the inner product function is conjugate-linear in
the second argument:

⟨u, λv + µw⟩ = λ⟨u, v⟩+ µ⟨u,w⟩.

5.4. Which of the following rules define inner products on the given vector space? In case it is not an inner
product, give an example of an axiom that is being violated.

a) ⟨(x1, y1), (x2, y2)⟩ = 2x1x2 + y1y2 on R2.

b) ⟨(x1, y1), (x2, y2)⟩ = x1x2 + x1y2 + y1y2 on R2.

c) ⟨(x1, y1), (x2, y2)⟩ = x1y1 + y1y2 on C2.

d) ⟨(x1, y1), (x2, y2)⟩ = x1x2 on C2.

e) ⟨x, y⟩ = |xy| on R2.

f) ⟨f(x), g(x)⟩ =
∫ 1

0
f(x)g(x)dx on R (the real vector space of continuous functions R → R).

g) ⟨A,B⟩ = tr(A+B) on Matn×n(R).

h) ⟨A,B⟩ = tr(AB) on Matn×n(R).

5.5. Let ⟨·, ·⟩ be an inner product on a real vector space V . Show that (u|v) := 2 ⟨u, v⟩ defines a new inner
product on V . Inner products are used to define lengths and angles in V - how are lengths and angles
changed by using (·|·) instead of ⟨·, ·⟩ as the inner product on V ?

5.6. Does there exist an inner product ⟨·, ·⟩ on C2 for which u = (1, 1) and v = (1, i) are orthogonal? Answer
the same question for u′ = (1, 1 + i) and v′ = (1− i, 2)?

5.7. Let V be an inner product space. Show that the norm arising from the inner product satisfies the
parallelogram law:

∥u+ v∥2 + ∥u− v∥2 = 2 ∥u∥2 + 2 ∥v∥2 .

5.8. Let V be an inner product space. Show that the norm arising from the inner product is indeed a norm
in the sense of Definition 5.6: It satisfies absolute homogeneity, the triangle inequality, and positivity:

∥λv∥ = |λ| · ∥v∥ , ∥u∥+ ∥v∥ ≥ ∥u+ v∥ , ∥v∥ ≥ 0 with equality only for v = 0.

5.9. Show that the maximum norm on R2 can not be derived from an inner product.

5.10. Let V be a complex vector space. Then the set of all functions V × V → C is also a vector space that
we call F . Let I be the set of all inner products on V . Is I a subspace of F?

5.11. Find the distance between (2, 1, 3) and (4,−2, 6) with respect to:

a) The standard norm

b) The maximum norm

c) The Manhattan norm

d) The p-norm for p = 3

5.12. For the matrix A =

(
1 −1
1 1

)
, find the Frobenius norm ∥A∥F and the spectral norm ∥A∥σ.

5.13. Prove that an equivalent definition of the operator norm of F : V → W is

∥F∥op = max
v ̸=0

{∥F (v)∥
∥v∥

}.
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5.14. Let C = {(cos 3
2 (t), sin

3
2 (t)) |t ∈ R}. Find p such that C is the unit circle with respect to the p-norm.

5.15. Show that the definition of the p-norm does in fact not give a norm for 0 < p < 1.

5.16. Two norms ∥·∥1 and ∥·∥2 are called equivalent if there exists positive constants C and D such that

C ∥v∥2 ≤ ∥v∥1 ≤ D ∥v∥2

holds for all v ∈ V . Show that on R2, the maximum norm is equivalent to the standard norm, find the
maximal possible C and the minimal possible D.

5.17. Show that if any two norms ∥·∥1 and ∥·∥2 are equivalent (as defined in the previous problem), then
vn → v with respect to ∥·∥1 if and only if vn → v with respect to ∥·∥2.

5.18. The familiar vector product on R3 is given by

(x1, y1, z1)× (x2, y2, z2) = (y1z2 − y2z1,−x1z2 + x2z1, x1y2 − x2y1).

With this rule we know that u× v is orthogonal to both u and v. Does the same property hold if we use
the same definition of a vector product on C3? Give a proof or a counter-example.

5.19. On R3, define ((x1, x2, x3)|(y1, y2, y3)) := x1y1 + x2y2 − x3y3. Show that (·|·) is not an inner product,
and describe the set of all v ∈ R3 which has length zero (meaning (v|v) = 0)

5.20. Let U be a subspace of a finite-dimensional inner product space V . Recall that

U⊥ := {v ∈ V | ⟨v, u⟩ = 0 for all u ∈ U}.

a) Show that U⊥ is a subspace of V .

b) Show that V ⊥ = {0}, in other words, the only vector orthogonal to all of V is the zero vector.

c) Show that U ∩ U⊥ = {0}.

5.21. In an inner product space V , for u, v ∈ V with u ̸= 0, define

Pu(v) =
⟨v, u⟩
⟨u, u⟩

u.

a) Show that Pu(v) = Pλu(v) for complex λ ̸= 0

b) Show that Pu : V → V is a linear map

c) Show that Im(Pu) = span(u) and that ker(Pu) = Im(Pu)
⊥

d) Show that v − Pu(v) is orthogonal to u.

e) Show that P 2
u = Pu

5.22. Prove that if (e1, . . . , en) is an orthonormal basis in an inner product space, then

v = ⟨v, e1⟩ e1 + · · ·+ ⟨v, en⟩ en.

5.23. Prove the Pythagorean theorem in the inner product space setting: If u is orthogonal to v we have

∥u+ v∥2 = ∥u∥2 + ∥v∥2 .

5.24. Let U ⊂ V be a subspace, and fix v ∈ V . Show u = PU (v) is the vector in U closest to v.
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5.25. Consider C3 with the standard inner product, and let

U = span
(
(1, i, 0), (0, 2i, 1)

)
be a subspace. Use the Gram-Schmidt process to find an ON-basis for U , and extend this basis to an
ON-basis for C3.

5.26. Find the function g(x) ∈ P1 that best approximates ex with respect to the standard inner product on
C[0, 1]:

⟨f, g⟩ =
∫ 1

0

f(x)g(x)dx.

5.27. Consider the space F of 2π-periodic real valued continuous functions equipped with the inner product

⟨f, g⟩ := 1

π

∫ π

−π

f(x)g(x)dx.

Show that
{ 1√

2
, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), . . .}

is an orthonormal set of functions in F , in other words, show that these functions are pairwise orthogonal,
and that each function has length 1 with respect to our given inner product.

5.28. Let f(x) be a triangular wave function with period 2π which equals |x| on [−π, π]. Find the function of
form g(x) = a+ b cos(x)+ c sin(x) that best approximates f (with respect to the inner product from the
previous problem).

5.29. Find a QR-factorization of the matrix A =

(
1 3
1 1

)
. In other words, find a matrix Q which is unitary

(Q∗Q = I), and a matrix R which is upper triangular, such that QR = A.

5.30. Find a QR-factorization of the matrix A =

1 2 1
1 3 2
1 1 3

.

5.31. Find QR-factorizations of A =

(
1 2 2
1 4 1

)
and of B =

1 3
2 2
3 1

.

5.32. Let F : V → W be a linear operator between inner product spaces. Recall that the adjoint of F is the
map F ∗ : W → V where F ∗(w) is defined as the unique vector in W such that ⟨F (v), w⟩ = ⟨v, F ∗(w)⟩
for all v ∈ V . Show that F ∗ is a linear map (without using the fact that [F ∗] = [F ]∗).

5.33. Show (G ◦ F )∗ = F ∗ ◦G∗ and that (F ∗)∗ = F .

5.34. Let F : V → W , and pick ON-bases in V and in W . Prove that [F ∗] = [F ]∗, in other words, the matrix
of the adjoint of F is the Hermitian conjugate of the matrix for F with respect to the same ON-bases
for V and for W .

5.35. Let operators F,G,H be given by the following matrices with respect to an ON-basis:

[F ] =

(
1 2
3 4

)
[G] =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 [H] =
1

5

(
3 4

−4 3

)

Which of the operators F,G,H are...
a) Self-adjoint? b) Unitary? c) Normal?

5.36. Find an operator that is normal, but that is neither unitary nor self-adjoint.
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5.37. Determine for what a, b ∈ C the matrix A = 1
5

(
3 a
b 3

)
is...

a) Self adjoint b) Unitary c) Normal

Then answer the same question in the special case when a, b ∈ R.

5.38. Show that the spectral radius of a unitary operator is always 1.

5.39. Let F : V → V be unitary. Show that F preserves inner products: ⟨F (u), F (v)⟩ = ⟨u, v⟩ for all u, v ∈ V .

5.40. Prove that self-adjoint maps are normal and that unitary maps are normal.

5.41. Let F : V → W be a linear map between inner product spaces. Show that:

a) ker(F ∗) = Im(F )⊥

b) Im(F ∗) = ker(F )⊥

5.42. Prove that compositions of unitary operators are unitary.

5.43. Let A be a normal matrix: AA∗ = A∗A.

a) Show that A+ λI is normal for all λ.

b) Show that ker(A) = ker(A∗).

c) Show that if Av = λv then A∗v = λv.

d) Show that if u and v are eigenvectors of A corresponding to different eigenvalues, then u ⊥ v.

5.44. Recall that a matrix A is called positive definite if X∗AX > 0 for all nonzero column-matrices X ∈ Cn.

a) Show that a Hermitian matrix need not be positive definite.

b) Prove that if a matrix is positive definite then it must be Hermitian.

c) Find a non-Hermitian real matrix A such that X∗AX > 0 for all nonzero X ∈ Rn.

d) Why does the result in (c) not contradict the result in (b)?

5.45. For what a, b, c ∈ C is the matrix A =

2 1 + i 1
a b 1
1 1 c

 positive definite?

5.46. Prove Sylvester’s criterion for diagonal matrices: If D is diagonal it is positive definite if and only if all
principal minors are positive.

5.47. Prove one of the implications in Sylvester’s criterion: If one principal minor of a matrix is negative, then
the matrix is not positive definite.

5.48. Write the matrix A =

(
2 1
1 2

)
as a linear combination of two matrices which are orthonormal with

respect to the Frobenius inner product.

5.49. For square matrices A and B we define

A ≺ B ⇔ B −A is positive semi-definite.

Prove that ≺ is a partial order relation; in other words, show that

� A ≺ A for all A
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� If A ≺ B and B ≺ C, then A ≺ C

� If A ≺ B and B ≺ A, then A = B

5.50. Find the square root of the matrix A = 1
5

(
17 6
6 8

)
.
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7 Hints

1.1. The equality looks obvious, but note that + and · can be defined in some non-standard way. Start from
the left hand side and simplify it using the axioms. Start with the axiom that says that 1 · v = v.

1.2. The zero element 0 is the unique element of R+ satisfying 0+++ v = v for all v ∈ R+.

1.3. Recall that a (real) subspace of V is a non-empty subset S ⊂ V such that:

� u, v ∈ S ⇒ u+ v ∈ S (additivity)

� λ ∈ R, v ∈ V ⇒ λ · v ∈ S (homogeneity).

To show that S is a subspace, these conditions have to be tested for all vectors and scalars. To show
that S is not a subspace, it suffices to find a single counter-example to the conditions.

1.4. The projection is not orthogonal. Express v = u+ u′ with u ∈ U and u′ ∈ U ′.

1.5. For the basis, note that if a polynomial p(x) lies in S, so does all its multiples q(x)p(x).

1.6.

1.7. Look for a counterexample in V = R2

1.8. A function f is even if f(−x) = f(x) for all x and odd if f(−x) = −f(x). Show these properties are
preserved when taking sums of functions or products of functions by scalars. To show that each f can
be expressed as e(x) + o(x), note that f(x) + f(−x) is always even and f(x)− f(−x) is odd.

1.9. For each map F , check weather F (u + v) = F (u) + F (v) and F (λv) = λF (v) holds for all vectors u, v
in the domain of F and all scalars λ.

1.10.

1.11. Recall that the definition of F being injective is that F (u) = F (v) only when u = v.

1.12. Recall the definitions. A map F : V → V is injective if ker(F ) = 0, surjective if Im(F ) = V , and has an
inverse G if both G ◦ F and F ◦G is the identity map on V .

1.13. Consider where the standard basis (1, x, x2, x3, x4) is mapped, the images form the columns of [F ]. For
the inverse, figure it out without matrices.

1.14. The matrices of F and G will be 3× 3 where the columns are the images of the basis vectors expressed
in the given basis.

1.15. Recall that v + U = {v + u | u ∈ U}.

1.16.

a) Two affine subsets are equal v + U = w + U if and only if v − w ∈ U .

b) Each subset is a line in R2 through the given point and in the direction (1, 1).

c) The coordinate for B in the basis (A) is the single number λ such that λA = B, or in other words
λ(2, 3) + U = (0, 1) + U .

1.17. Visually, elements of V/U are all the lines in direction (1, 1, 1). The coordinates (λ1, λ2) you seek must
satisfy λ1A+ λ2B = C, these can be found by solving λ1(1, 1, 0) + λ2(0, 1, 1) + λ3(1, 2, 3) = (1, 1, 1).

1.18. e1, e2, e3 are linearly dependent if λ1e1 + λ2e2 + λ3e3 = 0 + ℓ (the right side is the zero vector in V ).
This means that

λ1(1, 1, 0, 0) + λ2(0, 1, 1, 0) + λ3(0, 0, 1, 1) = λ4(3, 2, 1, 2),

solve this linear system.

1.19. If v−w ∈ U , then v+U = w+U , so we must have F̃ (v) = F̃ (w) in order for F̃ to be well-defined. The
second question is vague, since it depends on what basises we pick, but consider a bases for (u1, . . . , um)
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of U and extend it to a basis (u1, . . . , um, v1, . . . vn) of V , then a natural choice of basis for V/U is
(v1 + U, . . . , vn + U), consider how the matrices look with respect to these bases.

1.20. Note that if p1, p2 lies in an affine subset v + U , then p1 − p2 ∈ U , so U is spanned by all differences
between the points.

1.21. For (b), to find the translation vector w, consider where the origin is mapped.

1.22. Basically everything you can do over a real vector space you can do the same way over Z3. Recall that
the only scalars are 0, 1, 2 though.

1.23. Note that v = −v when the field is Z2.

1.24. It remains to show that the property F (λv) = λF (v) holds for all λ ∈ Q. Start by showing that it holds
for λ ∈ Z.

2.1. Recall that A∗ = A
T
, the conjugate transpose of A. A matrix is Hermitian if A∗ = A.

2.2. That A is symmetric means that AT = A and that B is skew-symmetric means that BT = −B.

2.3. Let A be m×n and let B be n×m, use the sum-version of matrix multiplication: (AB)ij =
∑n

k=1 aikbkj
- what are the diagonal elements of AB?

2.4.

a) Since A is diagonalizable, A = SDS−1, where D = diag(λ1, . . . , λn). Apply the previous problem
to prove that tr(A) = tr(D).

b) (S−1AS)n = Dn

c) (the eigenvalues are integers)

2.5. Compute P 2 and P 3

2.6.

a) Count the 1’s of the matrix first row by row, then column by column.

b) Think of the two matrices as performing permutations of the basis vectors.

c) Same hint as above.

d) You need at least a 5× 5-matrix.

2.7. For example, let X =

(
x1 x2

x3 x4

)
and solve the linear system AX = XA

2.8. Suppose that A ∈ C, and compute eijA and Aeij for different choices of (i, j) (where eij is a matrix
with a single 1 in position (i, j) and zeroes elsewhere), what does this say about the entries of A?

2.9. E =

(
1 0
0 0

)
is an idempotent.

2.10. Diagonalize A so that S−1AS = D. Then A commutes with B, if and only if D commutes with S−1BS,
so dim CA = dim CD, so it suffices to investigate what matrices commute with a given diagonal matrix.
Consider first the case where all eigenvalues are distinct, then the case where all eigenvalues coincide,
and finally the case where some of them coincide.

2.11. Assume that Mm = 0 and Nn = 0, what can be said about (AB)m+n and (M +N)m+n? For M +N ,
think about the binomial theorem. For the case when A and B do not commute, look for a 2 × 2
counterexample.

2.12. What can be said about F (F (v))?
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2.13. Consider the sequence of subspaces ker(N) ⊂ ker(N2) ⊂ · · · . Show that the dimensions of these
subspaces must be strictly increasing. (What would it mean if ker(Nk) = ker(Nk+1) for some k?)

2.14. You can write down (I +N)−1 explicitly, think of the formula for geometric sums and its proof.

2.15. Multiply M by M−1 in block form and show that the product is the identity matrix.

2.16. Make an ansatz M−1 =

(
X1 X2

X3 X4

)
and multiply by M . Both MM−1 and M−1M should equal the

identity matrix

(
I 0
0 I

)
.

2.17. The rank is the number of pivots in the REF (or RREF). ker(A) is the set of solutions to AX = 0,
which is the same as the set of solutions to ÃX = 0 where Ã is the reduced row echelon form of A.

2.18. Row operations works exactly the same over C. Recall that a complex fraction can be simplified by
multiplying numerator and denominator by the complex conjugate of the denominator.

2.19. Remember that the parameters r, s, t correspond to non-pivot columns, find the rows of the RREF from
bottom to top.

2.20. Im(A) is spanned by the columns of A, to remove linearly dependent columns, find the echelon form of
A, and remove columns of A corresponding to non-pivot columns in the echelon form.
ker(A) consists of all solutions X to AX = 0, such X can easily be found from the echelon form. The
parametrization of the solutions yields a basis.
There are sometimes quick ways to see what the intersection is, but recall the standard algorithm: If
u1, . . . , um is a basis for U and v1, . . . , vn is a basis for V , then a vector w lies in the intersection if
λ1u1 + · · ·λmum = w = λm+1v1 + · · ·λm+nvn has a solution, in other words there exists a (m+n)-tuple
(λ1, . . . , λm+n) satisfying this equation. One can find all such λi by row-operating on the matrix which
has all the m+ n vectors as columns.

2.21. For example, consider a linear map on R4 such that e1 7→ e2 7→ e3 7→ 0 and e4 7→ 0. What are the three
subspaces?

2.22. Think of the matrices as performing row operations - what is the opposite of a given row operation?

2.23. Multiplying A by elementary matrices from the left corresponds to doing row operations on A. Multi-
plication on the right corresponds to column operations.

2.24. Reduce A to the identity matrix by multiplying by elementary matrices on the left (each multiplication
corresponding to a row operation). If E3E2E1A = I, then A = (E3E2E1)

−1 = E−1
1 E−1

2 E−1
3 . The

factorization of the inverse is trivial once you have the factorization of A.

2.25. Row operations on [A|I] can be realized as multiplying the block matrix by elementary matrices on the
left. Consider whap happens to the left and to the right part.

2.26. By multiplying A on the left by E =

(
1 0
2 1

)
, we reduce A to echelon form: EA = U . Then A = E−1U

is the LU decomposition.

2.27. If E3E2E1A = U where U is in row echelon form, then A = (E−1
1 E−1

2 E−1
3 )U = LU gives the LU -

decomposition.

2.28. After the first two standard row operations, note that rows 2 and 3 will be in the wrong order. So
start by multiplying A by a permutation matrix P that switches rows 2 and 3, then PA admits an
LU -factorization, proceed as usual.

2.29. Such a dependence relation can be written Av = 0 where v is a column vector of the coefficients λi.

2.30. Think of how a matrix in column echelon form looks, and think what happens when reducing it to row
echelon forms

2.31. First use the element in position (1, 1) to get zeros in positions (2, 1) and (3, 1) and (4, 1). This takes
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4 multiplications each. Then use the element in position (2, 2) to get zeros in positions (3, 2) and (4, 2),
this takes 3 more multiplications each...

2.32. Recall that a Cholesky-factorization of A is A = CC∗ where C is lower triangular. First find the LDU-
factorization A = LDU , then D is diagonal with positive entries, so find a diagonal matrix D̃ such that
D̃2 = D and let C = LD̃.

2.33. Same hint as the previous problem

2.34. For the first part it is enough to show that CC∗ is Hermitian. For the second part it suffices to find a
Hermitian matrix that can not be factored as CC∗ - look for the smallest possible counter-example.

2.35. Remember that over Z3 there are only three scalars: 0, 1, 2, so any row operations can only involve
these. Start by multiplying the first row by 2 to get a one top left. Remember that the solutions X
should also be vectors in (Z3)

4.

3.1. Think about where vectors on the lines/planes/axes are mapped to.

3.2.

3.3. Compute F (xn).

3.4. We know that Av = λv, take the complex conjugate. What can be said about the complex conjugate
of a matrix product?

3.5. Use the previous problem to obtain S,D such that A = SDS−1.

3.6. Assume that v is an eigenvector - what can be said about R4(v)?

3.7. Find the eigenvalues and eigenvectors of P , it may help to introduce some new notation for the eigen-
values.

3.8. Consider (ATA)X when X ∈ R4 parallel with (1, 2, 3, 4). Then consider the case when AX = 0.

3.9. Write Xn :=

(
an+1

an

)
. Then X0 =

(
6
4

)
and Xn+1 = AXn where A =

(
2 −2
1 0

)
. It follows that

Xn = AnX0. This becomes easy to evaluate if X0 is written as a linear combination of eigenvectors for
A.

3.10. Find A2 and A4, the definitions says that p(A) = A4 + 2A2 − 5A+ 3I. Do the same for B.

3.11. The matrices (vectors) I, A, A2 are linearly dependent. To find the dependence relation, express these
three matrices in the standard basis e = (e11, e12, e21, e22), and use the standard method.

3.12. Take a small (say 2 × 2) matrix A and write down the matrix A − tI, what happens when we try to
replace t by A?

3.13. pA(t) = −(t+ 2)2(t− 3), inserting A directly into this factorized form makes the computation trivial.

3.14. Factor p(t) and note that p(t) is a factor in q(t).

3.15. Find the eigenvalues of A by factoring pA, then use the spectral mapping theorem.

3.16. m(t) is monic and divides p(t), and each root of p(t) is a root of m(t).

3.17. Divide t3 + 2t+ 2 by t2 − 1

3.18. For (a) the characteristic polynomial is (t−3)2, so the only possible minimal polynomials are m(t) = t−3
or m(t) = (t−3)2, remember that m(A) should be the zero matrix. In (b) and (c) the matrix is triangular
so the characteristic polynomial is easy to find.

3.19. What does the map R4 do?

4.1. Try visualizing the Jordan-blocks on the diagonal. Each block should have the same value one the
diagonal and ones on the super-diagonal
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4.2. The matrices are all on Jordan-form, so the algebraic multiplicity of λ is the number of occurrences
of λ on the diagonal. Each Jordan block with λ’s on the diagonal corresponds to a single eigenvector
for that eigenvalue, so the number of Jordan blocks corresponding to the eigenvalue λ is the geometric
multiplicity of λ

4.3. The eigenvalues 3 and−1 can be treated independently. For the eigenvalue−1 there are three possibilities
of the sizes of Jordan blocks: (3), (2, 1), (1, 1, 1) corresponding to integer partitions of 3.

4.4. Different Jordan forms correspond to decreasing sequences that add up to 6

4.5. You need at least size 4 × 4 for (a), and 7 × 7 for (b). Take all eigenvalues as the same. Look for A
and B with different partitions of Jordan blocks. Remember that for a given eigenvalue, the minimal
polynomial determines the size of the largest Jordan block, and the geometric multiplicity is the number
of Jordan blocks.

4.6. We know that any matrix A can be Jordanized: A = SJS−1 where J is in Jordan form.

4.7. What eigenvalues can N have? Jordanize N , with SNS−1 = J .

4.8. Try the 2× 2 and the 3× 3 case first.

4.9. The given data decoded says that the matrix is of size 7 × 7 with zeros on the diagonal, the largest
Jordan block should be of size 4, and there should be tree Jordan blocks.

4.10. Remember, a vector represented by a dot is in ker(F ) if it is mapped to zero, it is in ker(F 2) if it lands
in zero after moving along the arrows in one or two steps, and so on. The image consists of dots that
are pointed to by some arrow, etc.

4.11. F is clearly nilpotent, so zero is the only eigenvalue. For what n is Fn first zero? To get started on the
string basis, consider where e1 − e4 is mapped.

4.12. Find ker(N) and ker(N2), think about what the chains should look like (or follow the standard algo-
rithm).

4.13. Same hint as the last problem.

4.14. Follow the standard algorithm, it is easy in this case to find the characteristic polynomial.

4.15. In this case, finding the characteristic and minimal polynomials will give enough information to determine
the Jordan form. Find a basis for each eigenspace and extend to string bases.

4.16. Since 2 is the only eigenvalue, the matrix A− 2I will be nilpotent. A string basis for A− 2I will be a
Jordan basis for A, so just follow Algorithm 4.14.

4.17. Proceed as usual, the only difference in this case is that the characteristic polynomial have non-real
roots.

4.18. You know the Jordan form and the first column of the matrix S, complete the matrix S in any way,
and use that SJS−1 = A.

4.19. The only eigenvalue is clearly 1. So the operator F − id is nilpotent.

4.20. Without loss of generality you can assume that A is in Jordan form.

4.21. Remember that A and B are called similar if there exists T such that TAT−1 = B. Combine that
A = S1JS

−1
1 and that B = S2JS

−1
2 .

4.22. Either find the matrix form of D relative to the given basis for U and go for there. Or think first,
perhaps you can guess the eigenvalues and (generalized) eigenvectors.

4.23. Pick a new basis for which the matrix of the operator is in Jordan form, then the same statement is
simple to prove.

4.24. Suppose X2 = Jn(0) where X = SJS−1 is the Jordan form of X, consider what the matrix J must look

Page 77



Lecture Notes TATA53

like.

4.25. Consider the two Jordan blocks separately. Note that while An is similar to Jn, this latter matrix may
not be in Jordan form, in particular A2 is not in Jordan form.

4.26. Follow the standard algorithm, but remember that all numbers, polynomial coefficients, and matrix
elements are in Z3. In particular, the matrices S and J should also belong to Mat3(Z3).

4.27. The only way such a matrix can fail to have a Jordan-decomposition is if the characteristic polynomial
doesn’t factor completely over Z2. The characteristic polynomial has degree 2 and there are only four
polynomials of degree 2 in Z2[x], namely x2, x2 + 1, x2 + x, x2 + x + 1. Only one of them can not be
factored, find a matrix which has this characteristic polynomial.

4.28. You can consider each of the two Jordan blocks separately, write each block as J = λI +N and use the
binomial theorem.

4.29. Recall the definition: eA :=
∑∞

k=0
Ak

k! . In A, consider the two diagonal positions of eA separately. B is
nilpotent so all but the first terms of the sum disappear.

4.30. Write J = D+N where D is diagonal and N is nilpotent. Verify that N and D commute, so that Show
that eD+N = eDeN . Compute the right side by considering the blocks separately.

4.31. Av = λv, so eAv = (I +A+ A2

2 + · · · )v = ...

4.32. Recall that sin(x) = x− x3

3! +
x5

5! − · · · and cos(x) = 1− x2

2! +
x4

4! . A1 is nilpotent, use Proposition 4.27
for A2 and A3 and consider the Jordan blocks separately.

4.33. Follow the proof of the fact that d
dte

At = AeAt. For a differential equation, if X = sin(At)C, what is
X ′′(t)?

4.34. Trace and determinant is basis-independent, so you can assume that A is a Jordan matrix without loss
of generality. Consider the diagonal elements of eA.

4.35. Follow the example with rabbits/foxes. Start by introducing Xn =

(
an
bn

)
and expressing the system in

matrix form, then Jordanize the coefficient matrix.

4.36. The eigenvalues are 2 and −1, so study the kernels of (A − 2I)k and of (A + I) to find (generalized)
eigenvectors forming Jordan chains

4.37. The system can be written X ′(t) = AX(t) where A is the same as in the previous problem!

5.1. Recall that the norm is defined via the inner product ∥v∥ :=
√
⟨v, v⟩, and that vectors are said to be

orthogonal if their inner product is zero.

5.2.
∥∥x2 + x+ 1

∥∥2 =
〈
x2 + x+ 1, x2 + x+ 1

〉
5.3. Use symmetry, linearity in the first argument, and symmetry again.

5.4.

5.5. The axioms for an inner product are easy to verify. In the first case IP-space, ∥v∥1 =
√

⟨v, v⟩, in the

second it is ∥v∥2 =
√
(v|v). Recall that the angle between two vectors u and v of a real IP-space is

defined as the number θ between 0 and π satisfying ∥u∥ · ∥v∥ cos(θ) = ⟨u, v⟩.

5.6. Is it possible to define an inner product such that (u, v) is an ON-basis?

5.7. Expand the left side using the fact that ∥u± v∥2 = ⟨u± v, u± v⟩.

5.8. For the triangle inequality, expand ∥u+ v∥2 = ⟨u+ v, u+ v⟩ using sesqui-linearity, you will have to use
Cauchy-Schwarz in one step.

5.9. Recall that ∥(x, y)∥max = max{|x|, |y|)}. It is enough to show that the norm does not satisfy the
parallelogram law.
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5.10. I is clearly a subset of F . Is the sum of two inner products an inner product? Is a scalar times an inner
product still an inner product?

5.11. The distance is defined as ∥(2, 1, 3)− (4,−2, 6)∥ = ∥(2, 1,−4)∥, so compute this for the various definitions
of the norm.

5.12. ∥A∥F =
√

⟨A,A⟩F where ⟨A,B⟩F = tr(AB∗). ∥A∥σ = max{|λ| | λ ∈ σ(A)}.

5.13. Normalize v and write v = ∥v∥ ( 1
∥v∥v) ∥v∥.

5.14. Choose p such that the identity cos2(t) + sin2(t) = 1 appear in the norm calculation.

5.15. Find an example of vectors violating the triangle inequality.

5.16. Look at the pictures of the unit circles in the different norms. How should the circles be scaled to
contain one another?

5.17. Recall that a sequence of vectors vn converges to a vector v with respect to a norm ∥·∥ if and only if
∥vn − v∥ → 0.

5.18. Look for a counterexample.

5.19. The form is symmetric and bilinear, but not positive definite.

5.20. For the first part, verify that for u1, u2 ∈ U⊥ and λ ∈ C we have u1 + u2 ∈ U⊥ and λu1 ∈ U⊥, use
linearity in the first argument of the inner product. For the second part, use the positive-definiteness.

5.21. The statements follow directly from the definition. They show that we can define projections in arbitrary
inner product spaces.

5.22. Show that the difference w := v− (⟨v, e1⟩ e1 + · · ·+ ⟨v, en⟩ en) is zero by showing that its inner product
with each of the basis vectors ei is zero.

5.23. The left hand side is ⟨u+ v, u+ v⟩.

5.24. ∥v − u∥2 = ∥(v − PU (v)) + (PU (v)− u)∥2, show that v − PU (v) ∈ U⊥ and PU (v) − u ∈ U , and apply
Pythagorean theorem.

5.25. Call the spanning vectors for u1 and u2. Replace the second vector u2 by itself minus its projection on

u1, u
′
2 := u2 − ⟨u2,u1⟩

⟨u1,u1⟩u1. Then u1 and u′
2 are orthogonal and span U . Normalize to get an ON-basis.

Solve a linear system to get the last basis vector.

5.26. Project ex onto P1, use the basis from Example 5.14.

5.27. If f is odd,
∫ a

−a
f(x)dx = 0. If g is even,

∫ a

−a
g(x)dx = 2

∫ a

0
g(x)dx. Eulers formulas may also help.

5.28. The set {1, cos(x), sin(x)} is an orthogonal set of vectors according to the last problem, so project f
onto each of these vectors.

5.29. Applying Gram-Schmidt to the columns of A to get an ON-basis of C2, put these vectors as columns in
Q and find R = Q∗QQR = Q∗A.

5.30. Apply Gram-Schmidt to the columns.

5.31. Use Gram-Schmidt to find orthogonal vectors spanning the same set as the columns. To obtain a unitary
square matrix Q, extend this basis to an ON-basis.

5.32. To show homogeneity F (λw) = λF (w) we can calculate ⟨v, F ∗(λw)⟩ = ⟨F (v), λw⟩ = λ ⟨F (v), w⟩ =
λ ⟨v, F ∗(w)⟩ = ⟨v, λF ∗(w)⟩, so F ∗(λw) = λF (w). Additivity can be proved similarly.

5.33. For the first part, ⟨u, (F ∗ ◦G∗)(v)⟩ = ⟨u, F ∗(G∗(v))⟩ = ⟨F (u), G∗(v)⟩ = · · ·

5.34. Let {vi} and {wj} be the ON-bases, then ⟨vi, F ∗(wj)⟩ = ⟨F (vi), wj⟩
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5.35. Since the matrices are given with respect to an ON-basis: Self-adjoint maps correspond to symmetric
matrices, unitary maps corresponds to matrices whose columns form an ON-basis, and normal maps
have matrices satisfying NN∗ = N∗N .

5.36. Try a scaled rotation-matrix.

5.37. Self adjoint: A∗ = A, Unitary: AA∗ = I, Normal: AA∗ = A∗A.

5.38. Show that if λ is an eigenvalue, then |λ| = 1.

5.39. ⟨F (u), F (v)⟩ = ⟨u, F ∗(F (v))⟩...

5.40. This follows easily from the definitions

5.41. For (a), the key step is F ∗(w) = 0 ↔ ⟨v, F ∗(w)⟩ = 0 ∀v ∈ V .

5.42.

5.43.

a) Show that (A+ λI)(A+ λI)∗ = (A+ λI)∗(A+ λI) by expanding both sides.

b) It suffices to show that ∥A∗v∥2 = ⟨A∗v,A∗v⟩ = ⟨Av,Av⟩ = ∥Av∥2.

c) Combine parts (a) and (b): Av = λv ⇔ v ∈ ker(A− λI) ⇔ v ∈ ker((A− λI)∗) = ker(A∗ − λI) ⇔
A∗v = λv.

d) Assume Au = λu and Av = µv. Expand both sides of the equality ⟨Au, v⟩ = ⟨u,A∗v⟩ using part
(c) and subtract.

5.44.

a) Finding one counterexample suffices.

b) Write A = A+A∗

2 + i i(A
∗−A)
2 = B +Ci, and show that X∗AX > 0 for all nonzero complex X ∈ Cn

implies that C = 0.

c) Try an upper triangular 2× 2-matrix.

d) In (b) we allow X to have complex entries...

5.45. A must be Hermitian, then use Sylvesters criterion.

5.46. Show that all principal minors are positive if and only if all the diagonal elements of D are positive.

5.47. If the k × k principal minor is negative, consider columns X on block form

(
X ′

0

)
where X ′ is of size

k × 1.
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8 Answers

1.1. v + v = 1 · v + 1 · v = (1 + 1) · v = 2 · v. The condition that the vector space is complex is not really
necessary, the only problematic step is the last one: 1 + 1 = 2, as 2 may not be an element of the field.

1.2. The zero element is 1, the additive inverse of 5 is 1
5

1.3.

a) S1 is not additive and not homogeneous, it is not a subspace. Geometrically it is a line not passing
the origin.

b) S2 is both additive and homogeneous, it is a subspace. Geometrically it is a line through the origin.

c) S3 is not additive but it is homogeneous, it is not a subspace. Geometrically S3 is the union of the
coordinate axes.

d) S4 is additive but not homogeneous, it is not a subspace. Geometrically S4 is the first quadrant.

e) S5 is additive but not homogeneous, it is not a subspace. Geometrically S5 is a lattice.

f) S6 is additive and homogeneous, it is a subspace. By definition every vector space is a subspace of
itself, although it is called a non-proper subspace.

g) S7 is technically both additive and homogeneous since a statement of form ∀x ∈ M : P (x) is true
whenever M is empty. However, it is not a subspace - by definition subspaces are required to be
nonempty. Note however that the point set {0} is a subspace.

1.4. The projection is u = (−1, 2,−1).

1.5. One choice of basis is
(
(x− 2), x(x− 2), x2(x− 2)

)
.

1.6. S ∩ S′ and S + S′ are both subspaces. S ∪ S′ is in general not a subspace, as illustrated by S3 of the
previous exercise.

1.7. For example, consider the three lines spanned by (1, 0), (0, 1), and (1, 1).

1.8.

a)

b)

c) cosh(x) = ex+e−x

2

d) 0 (the function is clearly even)

1.9. I,G,H, T, C are linear.

1.10. The kernel consists of all symmetric matrices, the image of all skew-symmetric matrices.

1.11. If ker(F ) contains some nonzero v, then F (0) = 0 = F (v), so F is not injective. On the other hand,
if F is not injective with F (u) = F (v) for two different vectors u and v, then by linearity F (u − v) =
F (u)− F (v) = 0, so u− v is a nonzero vector in the kernel.

1.12. F is injective but not surjective since the first coordinate is always zero in the image. F doesn’t have
an inverse (the function G that left-shifts sequences is a right inverse but not a left-inverse to G)

1.13. [F ] =


1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

. F−1(p(x)) = p(x− 1).
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1.14. [F ] =

2 0 0
0 0 0
0 0 −2

 and [G] =

0 −2 0
0 0 0
0 1 0


1.15.

1.16. A = C since (4, 5) − (2, 3) ∈ U . Graphically, A, B, and A + B are lines in R2 intersecting the y-axis
in 1, −1, and 0 respectively. In the basis (A), B has coordinates (−1), since (−1)A = −1((2, 3) + U) =
(−2,−3) + U = (0, 1) + U = B.

1.17. ( 12 ,−
1
2 ).

1.18. Since 3e1 − 1e2 + 2(0, 0, 1, 1) = 0 + ℓ the vectors are linearly dependent and is not a basis.

1.19. Consider the choice of bases from the hint. If the matrix for F̃ is A, then the matrix for F has block

form

(
0 B
0 A

)
where B is some matrix.

1.20.

a) The line (1, 2) + t(1, 1) (so v = (1, 2), U = span(1, 1).)

b) The plane x+ y + z = 1 (so v = (1, 0, 0), U : x+ y + z = 0.)

1.21. For (b): The map is given by F (v) = G(v) + w with w = (1,−1) fixed and G(x, y) = (y, x) linear.

1.22.

a) (1, 0, 2, 0)

b) X =

(
2
1

)
c) 2 · 2− 0 · 1 = 1

d)

(
2 2
0 2

)
e) 34 = 81

1.23.

a) The zero vector is the empty set ∅ since S +++ ∅ = S∆∅ = S for all subsets S. It follows from
the axioms that 0 · S = ∅, and 1 · S = S must hold, this defines scalar multiplication over Z2

completely.

b) {1, 3, 5}+++ {1, 2, 3} = {2, 5}

c) Compute −{1, 3, 5} = {1, 3, 5}

d) The natural choice of basis are the singleton sets
(
{1}, {2}, {3}, {4}, {5}

)
, any set is a (the natural

linear combination of these).

e) Yes, since S1 +++ S2 = S4 we have 1 · S1 +++ 1 · S2 +++ 1 · S4 = ∅

1.24.

2.1. (A+B)∗ = A∗ +B∗ = A+B so A+B is always Hermitian when A and B are.
(AB)∗ = B∗A∗ = BA so AB is only Hermitian when A and B commute. For a counterexample, take

A =

(
0 1
1 0

)
and B =

(
1 0
0 0

)
.

(λA)∗ = λA∗ = λA so λA is only Hermitian when λ ∈ R. For a counterexample, take λ = i and A = I.

(AT )∗ = (AT )T = (A∗)T = AT so AT is always Hermitian when A is.
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(AB∗ + BA∗)∗ = B∗∗A∗ + A∗∗B∗ = BA∗ + AB∗ = AB∗ + BA∗, so AB∗ + BA∗ is Hermitian when A
and B are.

2.2. (A+Bi)∗ = A∗ + iB∗ = A
T − iB

T
= AT − iBT = A+Bi ⇔ A = AT and B = −BT .

2.3. After using the formula and taking the sum of the diagonals in both AB and BA, the trace of both is
equal to

∑
i,k aikbki.

2.4.

a)

b) λn
1 + λn

2 + λn
3

c) −1, 1, 2

2.5. P 3 = I, which shows that

Pn =


I for n = 3k

P for n = 3k + 1

P 2 for n = 3k + 2

where k ∈ Z. Note that since P−1 = P 2 the formula also holds for negative n.

2.6. For the last part: take for example the matrix

P =


0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0


and consider how it acts on basis vectors: e1 → e2 → e3 → e1 and e4 ↔ e5. The first cycle becomes the
identity in Pn when n is divisible by 3, and the second cycle when n is divisible by 2. The order of P is
therefore 6, the least common multiple of 3 and 2.

2.7. CA = span(A, I).

2.8. C = span(I), only multiples of the identity-matrix commute with everything.

2.9. With E as in the hint, all the matrices of form S−1ES are also idempotents.

2.10. dim CA ∈ {5, 7, 9, 11, 13, 17, 25}

2.11. For the last statement, neither MN nor M + N need be nilpotent if AB ̸= BA, take for example

M =

(
0 1
0 0

)
and N =

(
0 0
1 0

)
. Then M and N are nilpotent, but M +N and MN are not.

2.12. F (F (v)) = 0, since by definition, the inner argument F (v) lies in the image, and therefore in the kernel,
and thus is mapped to zero. SoF 2 = 0 and F is nilpotent with nilpotency degree 2.

2.13. (If 0 ̸= ker(Nk) = ker(Nk+1) for some n, thenN would act bijectively on ker(Nk), so ker(Nk′
) = ker(Nk)

for all k′ > k, which contradicts nilpotency).

2.14.

2.15.

2.16. M−1 =

(
A−1 −A−1BC−1

0 C−1

)
2.17.

REF =

1 −1 1 2 1
0 0 2 −1 −1
0 0 0 0 0

 RREF =

1 −1 0 5
2

3
2

0 0 1 − 1
2 − 1

2
0 0 0 0 0


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Other answers are possible for the REF, but not for the RREF.

ker(A) = {(s− 5t− 3r, s, t+ r, 2t, 2r) | s, t, r ∈ R} = span
(
(1, 1, 0, 0, 0), (−5, 0, 1, 2, 0), (−3, 0, 1, 0, 2)

)
2.18. The RREF of C is

(
1 2i 0 1
0 0 1 i

)
. The solutions to CX = 0 are

(x1, x2, x3, x4) = (−2is, s,−it, t) where s, t ∈ C.

2.19. The RREF of A is

1 2 −3 0 1
0 0 0 1 1

2
0 0 0 0 0


2.20.

(
(0,−1, 1, 0,−1), (1, 1, 0, 0, 1), (2,−1, 4, 0,−2)

)
is one choice of basis for Im(A)(

(1, 0, 1, 0, 0), (1, 1, 0, 0, 1)
)
is one choice of basis for ker(A)(

(1, 0, 1, 0, 0), (1, 1, 0, 0, 1)
)
is one choice of basis for Im(A) ∩ ker(A) (so in thise case ker(A) ⊂ Im(A))

2.21. The suggestion from the hint gives: Im(A) = span(e2, e3), while ker(A) = span(e3, e4), and their
intersection is span(e3).

2.22.

E−1
1 =

 1 0 0
−2 1 0
0 0 1

 E−1
2 =

1 0 0
0 1 0
0 0 1

5

 E−1
3 =

0 1 0
1 0 0
0 0 1

 .

In general: (I+λeij)
−1 = I−λeij , diag(d1,d2, . . . ,dn) = diag( 1

d1
, 1
d2
, . . . , 1

dn
), and P−1 = P for matrices

corresponding to switching two rows of the identity matrix (P = I − eii − ejj + eij + eji ⇒ P−1 = P )

2.23.

(a)

1 0 0
0 1 0
2 0 1

A (b) A

1 0 0
0 3 0
0 0 1

 (c)

0 1 0
1 0 0
0 0 1

A

2.24.

A =

(
1 0
3 1

)(
1 −1
0 1

)(
1 0
0 −2

)
A−1 =

(
1 0
0 − 1

2

)(
1 1
0 1

)(
1 0

−3 1

)
(other answers are possible, multiply to verify)

2.25. If EA = En · · ·E2E1A = I is a product of matrices that reduces A to the identity, this shows that
A = E−1 and A = E. When multiplying the block matrix on the left by E we get E[A|I] = [EA|EI] =
[I|E] = [E|A−1].

2.26.

LU =

(
1 0

−2 1

)(
1 1 2
0 3 4

)
LDU =

(
1 0

−2 1

)(
1 0
0 3

)(
1 1 2
0 1 4

3

)
2.27.

LU =

 1 0 0
−2 1 0
3 2 1

1 −1 1 1
0 3 2 1
0 0 −6 −3

 LDU =

 1 0 0
−2 1 0
3 2 1

1 0 0
0 3 0
0 0 −6

1 −1 1 1
0 1 2

3
1
3

0 0 1 1
2



2.28. PA = LU where L =

1 0 0
1 1 0
1 0 1

, P =

1 0 0
0 0 1
0 1 0

, U =

1 1 1
0 1 2
0 0 1

.

2.29. Let E be a product of elementary matrices that reduces A to row echelon form U . Then Av = 0 ⇒
EAv = 0 ⇔ Uv = 0.
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2.30. Such a matrix has block form

(
I 0
0 0

)
, a diagonal matrix where the diagonal has a number of ones

followed by a number of zeros.

2.31.

a) (3 · 4 + 2 · 3 + 1 · 2) + (3 + 2 + 1) = 26. The first parenthesis corresponds to the operations to put
A in echelon form, the rest corresponds to the back-substitution.

b) 2
(
3 + 2 + 1

)
= 12

c) 2
(
1+2+ · · · (n−1)

)
= n(n−1) (for the standard Gaussian elimination when A is n×n, the answer

is a polynomial of degree 3).

2.32. With C =

(
1 0

2
√
2

)
we have A = CC∗.

With G =

(
1 0

2 + i 2

)
we have B = GG∗.

2.33. With C =

 3 0 0
1 1 0

−1 2
√
5

 we have A = CC∗.

2.34. (CC∗)∗ = (C∗∗)(C∗) = CC∗ so CC∗ is Hermitian. The 1× 1-matrix (−1) is Hermitian but does clearly
not admit a factorization (−1) = (λ)(λ)∗ = (|λ|2).

2.35.

RREF:

1 2 0 1
0 0 1 1
0 0 0 0

 , X = s(1, 1, 0, 0) + t(2, 0, 2, 1) s, t ∈ Z3.

Note that since s, t ∈ {0, 1, 2} there are exactly nine solutions to the linear system.

3.1.

a) σ(F ) = {0, 1}, dimE1 = 1, dimE0 = 2

b) σ(F ) = {1,−1}, dimE1 = 2, dimE−1 = 1

c) σ(F ) = {1}, dimE1 = 1 (unless the rotatation angle is a multiple of π)

d) σ(F ) = {1}, E1 = R3 so dimE1 = 3.

e) σ(F ) = {0}, dimE0 = 1.

3.2. D =

(
1 + i 0
0 1− i

)
and S =

(
1 1
i −i

)
works. Other choices may also work.

3.3. σ(F ) = N since F (xn) = nxn for all integers n ≥ 0. The eigenvectors for eigenvalue k are nonzero
multiples of xk. The operator F is sometimes called the degree-operator.

3.4. Since A is real we have A = A. And we can compute

Av = Av = Av = λv = λv

which shows that v is an eigenvector of A with eigenvalue λ.

3.5. The previous problem shows that 2− 3i is an eigenvalue with eigenvector (1, 1− i), so

A = SDS−1 =

(
1 1

1 + i 1− i

)(
2 + 3i 0

0 2− 3i

)
1

2

(
1 + i −i
1− i i

)
=

(
−1 3
−6 5

)
.

3.6. In the 2× 2 case the eigenvalues are 1,−1, i,−i with corresponding eigenvectors(
1 1
1 1

) (
1 −1

−1 1

) (
1 i

−i −1

) (
1 −i
i −1

)
,
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so the operator is diagonalizable. The same is true in the 3× 3-case, with the geometric multiplicities of
the eigenvalues in this case being g1 = 3,g−1 = 2,gi = 2,g−i = 2.

3.7. Let ξ = e
2iπ
3 = − 1

2 +
√
3
2 . Then with D =

1 0 0
0 ξ 0
0 0 ξ2

 and S =

1 ξ2 1
1 ξ ξ
1 1 ξ2

 we have SDS−1 =

[P ] =

0 0 1
1 0 0
0 1 0

.

3.8. Every nonzero vector in the hyperplane x+2y+3z+4w = 0 is an eigenvector with eigenvalue 0. Every
vector parallell to (1, 2, 3, 4) is an eigenvector of eigenvalue 30.

3.9. With notation as in the hint: the eigenspaces are E1+i = span(1 + i, 1) and E1−i = span(1− i, 1), and

X0 = (2− i)

(
1 + i
1

)
+ (2 + i)

(
1− i
1

)
, so

Xn = AnX0 = (2− i)(1 + i)n
(
1 + i
1

)
+ (2 + i)(1− i)n

(
1− i
1

)
.

Here the bottom coordinate is an, so

an = (2− i)(1 + i)n + (2 + i)(1− i)n for all n ≥ 0.

Note that despite how the expression looks, an is a real integer for each n ∈ N.

3.10. p(A) = A4 + 2A2 − 5A+ 3I =

(
1 4
0 1

)
+ 2

(
1 2
0 1

)
− 5

(
1 1
0 1

)
+ 3

(
1 0
0 1

)
=

(
1 3
0 1

)
.

Since B2 = 0 we get p(B) = B4 + 2B2 − 5B + 3I = −5B + 3I =

3 0 −5
0 3 −5
0 0 3

.

3.11. We have A2 − 3A − 4I = 0 (zero matrix), so p(t) = t2 − 3t − 4 does the job. Note that p(t) is in fact
the characteristic polynomial of A.

3.12.

3.13. pA(A) = −(A+ 2I)2(A− 3I) = −

0 5 0
0 0 0
0 0 5

2−5 5 0
0 −5 0
0 0 0

 = 0 (easy when computed as a product

of block-matrices)

3.14. p(A) = 0, q(A) = 0

3.15. The eigenvalues of A are 1+i and 2, so the eigenvalues for B are 22+3·2−5 = 5 and (1+i)2+3(1+i)−5 =
5i− 2.

3.16. Since p(t) = −t3(t+ 1)2, we have

m(t) ∈ {t3(t+ 1)2, t2(t+ 1)2, t(t+ 1)2, t3(t+ 1), t2(t+ 1), t(t+ 1)}

3.17. 3A+ 2I

3.18. a) mA(t) = (t− 3)2 b) mB(t) = t(t− 4)(t− 7)(t− 9) c) mC(t) = (t− 1)(t− 2)2

3.19. R4 is the identity map on Matn(C), so m(t) = t4 − 1 annihilates R. It is clear that no lower degree
polynomial can annihilate R (unless n = 1), so mR(t) = t4 − 1.

4.1. (b) and (c) are in Jordan form

4.2. With aλ and gλ as algebraic and geometric multiplicity of λ, and with p(t) and m(t) as characteristic
and minimal polynomials:
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a) (a2, g2) = (2, 1), (a−3, g−3) = (1, 1), p(t) = (t − 2)2(t + 3) = m(t) b) (a0, g0) = (4, 2), p(t) = t4,
m(t) = t2 c) (a5, g5) = (3, 1), (a3, g3) = (2, 1), p(t) = (t− 5)3(t− 3)2 = m(t)

4.3. 7 · 3 = 21

4.4. There are 11 different such Jordan forms. They corresponds to the 11 partitions of 6:

6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1

4.5. For example:

a) A =


3 1

3
3

3

, B =


3 1

3
3 1

3



b) A =



5 1
5 1

5
5 1

5
5 1

5


, B =



5 1
5 1

5
5 1

5 1
5

5


4.6.

4.7.

4.8.

CJ = span

(1 0 0
0 1 0
0 0 1

 ,

0 1 0
0 0 1
0 0 0

 ,

0 0 1
0 0 0
0 0 0

) =

{a b c
0 a b
0 0 a

∣∣∣∣a, b, c ∈ C
}

In general, let N be the n×n-Jordan-block with eigenvalue 0. Then the commutant of any n×n-Jordan
block J is CJ = span(I,N,N2, . . . , Nn−1)

4.9. J4(0)⊕ J2(0)⊕ J1(0) is the only possibility (up to block-permutation).

4.10. a) dimker(F ) = 5 b) dim Im(F ) = 9 c) dimker(F 3) = 12 d) dim Im(F 2) = 5 e) dimker(F )∩Im(F 2) = 3

4.11. pF (t) = t6 and mF (t) = t3. Let e′4 = e4 − e1, e
′
5 = e5 − e1, and e′6 = e6 − e2. Then e1, e2, e3, e

′
4, e

′
5, e

′
6 is

a string basis for R6:
e1 7→ e2 7→ e3 7→ 0, e′4 7→ 0, e′5 7→ e′6 7→ 0.

4.12. For example, with: S =

1 1 1
1 0 1
1 1 0

 and J =

0 1 0
0 0 0
0 0 0

 we have SJS−1 = N .

4.13. For example, with: S =

1 0 1
2 1 1
0 −1 0

 and J =

0 1 0
0 0 1
0 0 0

 we have SJS−1 = M .

4.14. For example, S =

 1 0 0
1 1 0

−1 2 1

 and J =

−1
2

2

.

4.15. For example, with

S =


−1 0 1 1
1 1 1 1

−2 0 1 1
1 1 1 0

 and J =


3 0 0 0
0 2 1 0
0 0 2 0
0 0 0 2


we have SJS−1 = A. Other S are possible, but J is unique up to switching the two blocks.
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4.16. For example, with S and J as below we have A = SJS−1:

S =


1 2 0 4 1
1 3 0 8 0
0 0 3 −2 1
0 0 −1 1 0
0 0 −2 1 0

 J =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2


Other options for S is possible, but not for J (except switching the two Jordan blocks).

4.17. For example, with J =

(
3 + i 1
0 3 + i

)
and S =

(
3 −1

−2 1

)
we have A = SJS−1.

4.18. For example, J =

(
3 1
0 3

)
and S =

(
1 0
1 1

)
gives A = SJS−1 =

(
2 1

−1 4

)
.

4.19. [F ] = J4(1). (F − id)(p(x)) = p(x+1)− p(x) clearly decreases the degree of a polynomial by exactly 1,
so x3 is a first vector in a Jordan chain of length 4 for the eigenvalue 1, this determines the Jordan form.

4.20. The determinant is the product of diagonal in the Jordan-matrix, these are the eigenvalues of A, so
det(A) = 0 ⇔ 0 ∈ σ(A).

4.21. With notation as in the hint, A = S1JS
−1
1 = S1(S

−1
2 BS2)S

−1
1 = (S1S

−1
2 )B(S1S

−1
2 )−1, so A = TBT−1

for T = S1S
−1
2 .

4.22. J = J3(1) ⊕ J1(i) ⊕ J1(−i). The functions cos(x) + i sin(x) = eix and cos(x) − i sin(x) = e−ix are
eigenvectors for the eigenvalues ±i, and x2ex is the first vector of a Jordan chain of length 3 for the
eigenvalue 1.

4.23. (A polynomial with simple roots would not be able to annihilate a Jordan block of size > 1.)

4.24.

4.25.

A2 ∼


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 4 1
0 0 0 0 4

 , for n ≥ 3 we have An ∼


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2n 1
0 0 0 0 2n



4.26. For example, with J =

2 1 0
0 2 0
0 0 1

 and S =

1 2 0
1 0 1
0 1 0

 we have A = SJS−1.

4.27. x2 + x + 1 is the only irreducible polynomial of degree 2 with coefficients in Z2 (note that x2 + 1 =

(x + 1)(x + 1)). So take one of the matrices A =

(
1 1
1 0

)
or A =

(
0 1
1 1

)
, these are the only matrices

in Mat2(Z2) with the pA(t) = t2 + t+ 1.
As a remark, if we extend our field of scalars from Z2 to the field F = Z2[x]/Z2[x](x

2 + x + 1) =

{0, 1, x, x+1} (a field of four elements), the two matrices above actually do admit a Jordan-decomposition
A = SJS−1 where S, J ∈ Mat2(F). But constructions like this lie beyond the scope of this course.

4.28.

An =


2n n2n−1 n(n−1)

2 2n−2 0 0
0 2n n2n−1 0 0
0 0 2n 0 0
0 0 0 (−6)n n(−6)n−1

0 0 0 0 (−6)n

 = 2n−3


8 4n n(n− 1) 0 0
0 8 4n 0 0
0 0 8 0 0
0 0 0 8(−3)n 4n(−3)n−1

0 0 0 0 8(−3)n


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4.29.

eA =

e−3 0 0
0

√
e 0

0 0 1

 eB = I +B +
B2

2
=

1 1 2
0 1 9

2
0 0 1



4.30. eJ =

e2 e2 0
0 e2 0
0 0 e3

 = e2

1 1 0
0 1 0
0 0 e

.

4.31. eAv = eλv so v is still an eigenvector but with eigenvalue eλ.

4.32.

sin(A1) =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 sin(A2) =


sin(2) cos(2) − sin(2)

2 − cos(2)
6

0 sin(2) cos(2) − sin(2)
2

0 0 sin(2) cos(2)
0 0 0 sin(2)

 sin(A3) =


√
3
2

1
2 0 0

0
√
3
2 0 0

0 0
√
2
2 0

0 0 0 0



cos(A1) =


1 0 − 1

2 0
0 1 0 0
0 0 1 0
0 0 0 1

 cos(A2) =


cos(2) − sin(2) − cos(2)

2
sin(2)

6

0 cos(2) − sin(2) − cos(2)
2

0 0 cos(2) − sin(2)
0 0 0 cos(2)

 cos(A3) =


1
2 −

√
3
2 0 0

0 1
2 0 0

0 0
√
2
2 0

0 0 0 −1


4.33. The linear system of differential equations of order two X ′′(t) + A2X(t) = 0 has the general solution

sin(At)C + cos(At)D.

4.34. If A has Jordan form with eigenvalues λi on the diagonal, then det(eA) =
∏

eλi = e
∑

λi = etrA = e0 = 1.

4.35.

{
an = (−3)n−1(2n− 6)

bn = (−3)n−1(−2n)
so an

bn
→ −1.

4.36. With v1 = (1, 1, 1), v2 = (0, 1, 2), and v3 = (0, 0, 1) we have (A − 2I)v1 = 0, (A − 2I)v2 = v1, and
(A+ I)v3 = 0, so (v1, v2, v3) is a Jordan basis:

With S =

1 0 0
1 1 0
1 2 1

 and J =

2 1 0
0 2 0
0 0 −1

 we have A = SJS−1.

4.37. With X0 = (0, 1, 0)T , and with A = D + J from in the previous problem, the solution is etAX0 =
SetDetNS−1

=

1 0 0
1 1 0
1 2 1

e2t 0
0 e2t 0
0 0 e−t

1 t 0
0 1 0
0 0 1

 1 0 0
−1 1 0
1 −2 1

0
1
0


=

 te2t

(t+ 1)e2t

(t+ 2)e2t − 2e−t


5.1.

a) 3 + 2i

b)
√
11

c) t(i− 1, 1) where t ∈ C

5.2.
∥∥x2 + x+ 1

∥∥2 =
∫ 1

0
(x2 + x + 1)2dx =

∫ 1

0
x4 + 2x3 + 3x2 + 2x + 1dx =

[
x5

5 + 2x4

4 + 3x3

3 + 2x2

2 + x
]1
0
=

1
5 + 1

2 + 1 + 1 + 1 = 37
10 , so the sought length is

√
37
10 .
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5.3.

5.4. Only the first rule gives an inner product.

5.5. ∥v∥2 =
√
(v|v) =

√
2 ⟨v, v⟩ =

√
2 ∥v∥1, so in the new norm vectors are a factor of

√
2 longer. Similarly,

in the new norm cos(θ) = (u|v)
∥u∥2·∥v∥2

= 2⟨u,v⟩√
2∥u∥1

√
2∥v∥1

= ⟨u,v⟩
∥u∥1∥v∥1

so angles between vectors are the same

with the two inner products.

5.6. For the first question the answer is yes: Since (u, v) is a basis for C2 we can define an inner product by
declaring that ⟨u, v⟩ = 0, ⟨u, u⟩ = 0, and ⟨v, v⟩ = 1.
For the second question the answer is no: Since v′ = (1 − i)u′ we would then have 0 = ⟨v′, u′⟩ =
⟨(1 + i)u′, u′⟩ = (1 + i) ⟨u′, u′⟩ ⇔ ⟨u′, u′⟩ = 0, but u′ ̸= 0 so this contradicts the inner product axioms.

5.7.

5.8.

5.9. For example, take u = (1, 0) and v = (0, 1). Then the parallelogram law for the maximum norm becomes

2 = 1 + 1 = ∥(1, 1)∥2 + ∥(1,−1)∥2 = 2 ∥(1, 0)∥2 + 2 ∥(0, 1)∥2 = 2 + 2 = 4 which does not hold.

5.10. No, I is closed under addition but not scalar multiplication: (−1) ·⟨v, v⟩ ≤ 0 so it is not positive definite.

5.11.

a) ∥(2, 1,−4)∥2 =
√

22 + 12 + (−4)2 =
√
21

b) ∥(2, 1,−4)∥max = max{|2|, |1|, | − 4|} = 4

c) ∥(2, 1,−4)∥Mh = |2|+ |1|+ | − 4| = 7

d) ∥(2, 1,−4)∥3 = (|2|3 + |1|3 + | − 4|3) 1
3 = (73)

1
3

5.12. ∥A∥F =
√
12 + (−1)2 + 12 + 12 = 2 and ∥A∥σ = |1± i| =

√
2

5.13.

5.14. p = 4
3 (In general, (cos

2
p (t), sin

2
p (t)) is a paramterization of the unit circle with respect to the p-norm)

5.15. Let e1, e2 be two standard basis vectors in Cn. For 0 < p < 1 we have ∥e1 + e2∥p = (1p + 1p)
1
p = 2

1
p >

2 = 1 + 1 = ∥e1∥p + ∥e1∥p.

5.16. 1 · ∥v∥max ≤ ∥v∥ ≤
√
2 · ∥v∥max. Remark: On a finite dimensional vector space, all norms are in fact

equivalent.

5.17.

5.18. No, for example: (1, i, 0) × (1, 1, 1) is not orthogonal to (1, i, 0). In fact it is not possible to define a
vector product on C3 with the same properties as the vector product on R3.

5.19. The vectors of length zero is corresponds to the surface z2 = x2+y2, a double cone in R3 (the ”light-cone”
in two-dimensional space time in physics) .

5.20.

5.21.

5.22.

5.23.

5.24. By the Pythagorean theorem we get ∥v − u∥2 = ∥v − PU (v)∥2 + ∥PU (v)− u∥2 ≥ ∥v − PU (v)∥2, so the
minimal distance between u and v is ∥v − PU (v)∥, and it is attained when v − PU (v) = 0.
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5.25. Following the method in the hint we obtain

(f1, f2, f3) =
(

1√
2
(1, i, 0), 1√

3
(−1, i, 1), 1√

6
(1,−i, 2)

)
which is an orthonormal basis for C3 where (f1, f2) is an ON-basis for U .

5.26. With the orthogonal basis (e1, e2) = (1, x− 1
2 ) of P1 we get

g(x) = PP1
(ex) =

⟨ex, 1⟩
⟨1, 1⟩

1 +

〈
ex, x− 1

2

〉〈
x− 1

2 , x− 1
2

〉 (x− 1

2
) = 6(3− e)x+ 4e− 10.

5.27.

5.28. g(x) = π
2 − 4

π cos(x)

5.29. With Q = 1√
2

(
1 1
1 −1

)
and R =

√
2

(
1 2
0 1

)
we have A = QR satisfying all the conditions.

5.30.

Q =


1√
3

1√
3

1√
3

0 1√
2

−1√
3

−2√
6

1√
6

1√
6

 R =


3√
3

6√
3

6√
3

0 2√
2

−1√
2

0 0 3√
6

 .

5.31. A = QR = 1√
2

(
1 1
1 −1

)
· 1√

2

(
2 6 3
0 −2 1

)

B = Q′R′ =


1√
14

4√
21

1√
6

2√
14

1√
21

−2√
6

3√
14

−2√
21

1√
6

 ·


√
14 10√

14

0 12√
21

0 0

.

5.32.

5.33.

5.34.

5.35. a) Self adjoint: G b) Unitary: Only H c) G and H

5.36. For example: The operator on C2 with matrix

(
0 2

−2 0

)
is normal but neither self-adjoint nor unitary.

5.37. For a, b ∈ C we get a) a = b b) |a| = 4, b = −a c) |a| = |b|, a − b ∈ R For a, b ∈ R this becomes
a) a = b b) (a, b) = ±(4,−4) c) a = ±b

5.38.

5.39.

5.40.

5.41. For (a): w ∈ ker(F ∗) ⇔ F ∗(w) = 0 ⇔ ⟨v, F ∗(w)⟩ = 0 ∀v ∈ V ⇔ ⟨F (v), w⟩ = 0 ∀v ∈ V ⇔ w ⊥ Im(F ) ⇔
w ∈ Im(F )⊥. For b, just replace F by F ∗ and take the complement of both sides in (a).

5.42.

5.43.

5.44.

a) For example, −I is Hermitian but not positive definite.

b) With notation as in the hint we have X∗AX = X∗BX + iX∗CX. Since B and C are Hermitian,
X∗BX ∈ R and X∗CX ∈ R, so in order for X∗AX to be positive it needs to be real, and thus

0 = C = i(A∗−A)
2 , and A = A∗.
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c) For example, with A =

(
1 2
0 2

)
, when X ∈ Mat2×1(R) is nonzero we get

X∗AX = XTAX = (x1 x2)

(
1 2
0 2

)(
x1

x2

)
= x2

1 + 2x1x2 + 2x2
2 = (x1 + x2)

2 + x2
2 > 0.

d) Our matrix A =

(
1 2
0 2

)
from the last problem is in fact not positive definite, because there exists

nonzero complex X such that X∗AX ̸> 0. For example, X =

(
1
i

)
gives X∗AX = 3 + 2i ̸> 0.

5.45. a = 1− i, b > 1, c > b
2(b−1)

5.46.

5.47.
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