Applications of SVD
 Linear Algebra Honours course

Jonathan Nilsson
Linköping University

Part I

Data analysis with SVD

Cosine similarity

$$
\cos \operatorname{Sim}(u, v):=\frac{u \bullet v}{\|u\| \cdot\|v\|}
$$

Weight vs age of Ada, Bob, Cam, Deb, Eli.

$$
\left.\begin{array}{c}
\text { Age } \\
A=\left(\begin{array}{ll}
66 & 31 \\
83 & 40 \\
51 & 18 \\
70 & 65 \\
79 & 59
\end{array}\right) \\
\hline
\end{array}\right)
$$

Weight vs age of Ada, Bob, Cam, Deb, Eli.
$\cos \operatorname{Sim}\left(A_{1}, A_{2}\right)=0.955$

Weight vs age of Ada, Bob, Cam, Deb, Eli.
Age
$A=\left(\begin{array}{ll}66 & 31 \\ 83 & 40 \\ 51 & 18 \\ 70 & 65 \\ 79 & 59\end{array}\right)$

$\cos \operatorname{Sim}\left(A_{1}, A_{2}\right)=0.955 \quad \operatorname{cosSim}($ Bob, Deb $)=0.953$

Direction of maximal variance

Movie ratings example

	Interstellar	Mean Girls	The Matrix	Borat	Ghost Busters
Alex	5	2	4	2	4
Bert	5	1	4	1	4
Cleo	4	5	2	4	5
Dany	3	5	3	5	5
Elle	5	2	5	2	3
Fred	5	3	4	2	4

Movie ratings example

	Interstellar	Mean Girls	The Matrix	Borat	Ghost Busters
Alex	5	2	4	2	4
Bert	5	1	4	1	4
Cleo	4	5	2	4	5
Dany	3	5	3	5	5
Elle	5	2	5	2	3
Fred	5	3	4	2	4

SVD of the movie matrix

$$
\begin{gathered}
A=U \Sigma V^{\top} \\
U=\left(\begin{array}{rrrrr}
0.39 & 0.26 & 0.12 & 0.17 & -0.46 \\
0.36 & 0.45 & 0.41 & 0.52 & 0.15 \\
0.44 & -0.49 & 0.48 & -0.38 & -0.35 \\
0.45 & -0.57 & -0.42 & 0.49 & 0.22 \\
0.39 & 0.37 & -0.64 & -0.30 & -0.29 \\
0.41 & 0.16 & 0.09 & -0.46 & 0.71
\end{array}\right) \Sigma=\left(\begin{array}{lllll}
20.1 & & & & \\
& 5.60 & & & \\
& & 1.57 & & \\
\\
& & & 0.96 & \\
& & & & \\
& & \\
& & & &
\end{array}\right) \quad V=\left(\begin{array}{rrrrr}
0.54 & 0.45 & 0.33 & -0.42 & -0.47 \\
0.38 & -0.56 & -0.05 & -0.61 & 0.41 \\
0.44 & 0.47 & -0.67 & 0.14 & 0.36 \\
0.34 & -0.50 & -0.41 & 0.28 & -0.63 \\
0.51 & -0.13 & 0.53 & 0.60 & 0.30
\end{array}\right)
\end{gathered}
$$

Singular values correspond to "latent features"

$$
\sigma_{1}=20.1 \sim \text { Movie popularity }
$$

Singular values correspond to "latent features"

$\sigma_{1}=20.1 \sim$ Movie popularity
$\sigma_{2}=5.60 \sim$ Movie genre

Right singular vectors in movie-space

$$
v_{1}=(0.54,0.38,0.44,0.34,0.51)^{T} \sim \text { Average popularity for each movie }
$$

Right singular vectors in movie-space

$$
\begin{gathered}
v_{1}=(0.54,0.38,0.44,0.34,0.51)^{T} \sim \text { Average popularity for each movie } \\
v_{2}=(0.45,-0.56,0.47,-0.50,-0.13)^{T} \sim \text { Genre for each movie }
\end{gathered}
$$

Left singular vectors in user-space

$$
u_{1}=(0.39,0.36,0.44,0.45,0.39,0.41)^{T} \sim \text { Average ratings of each user }
$$

Left singular vectors in user-space

$$
\begin{gathered}
u_{1}=(0.39,0.36,0.44,0.45,0.39,0.41)^{T} \sim \text { Average ratings of each user } \\
u_{2}=(0.26,0.45,-0.49,-0.57,0.37,0.1)^{T} \sim \text { Genre preference for each user }
\end{gathered}
$$

Movies in user-space

Sci-fi
$\left(\begin{array}{rr}10.87 & 2.51 \\ 7.60 & -3.13 \\ 8.83 & 2.61 \\ 6.75 & -2.81 \\ 10.27 & -0.74\end{array}\right)$

Users in movie-space

Part II

Facial recognition example

Faces of MAI

Input: 70 faces of employees at the math department MAI at LiU .

Faces of MAI

Input: 70 faces of employees at the math department MAI at LiU.

Original \rightarrow Aligned \rightarrow Resized and decolored \rightarrow Mean subtracted

The average face

Performing SVD

A is now an 70×22500-matrix. We find the eigenvectors of $A^{T} A$.

Performing SVD

A is now an 70×22500-matrix. We find the eigenvectors of $A^{T} A$.

The first 18 eigenfaces.

Projection onto the principal components

Projection onto the principal components

$k=10$

$k=25$

Projection onto the principal components

$k=10$

$k=25$

$k=40$

Projection onto the principal components

$k=10$

$k=25$

$k=40$

$k=55$

Projection onto the principal components

$k=10$

$k=25$
$k=40$

$k=55$

$$
k=70
$$

Dimensionality reduction of MAI faces

Further applications

Here are a few examples of- applications where similar techniques can be used:

- Ancestry analysis
- Latent semantic analysis
- Recommender systems
- Signal processing
- Climate data analysis
- Word embeddings

Part III

Total least squares

Fitting a k-plane to a set of points

The total least square problem

Given $x_{i}, \ldots, x_{m} \in \mathbb{R}^{n}$, what affine subspace S of dimension k lies closest to the points in the sense that

$$
\sum_{i=1}^{m} d\left(x_{i}, S\right)^{2} \text { is minimal? }
$$

Fitting a k-plane to a set of points

The total least square problem

Given $x_{i}, \ldots, x_{m} \in \mathbb{R}^{n}$, what affine subspace S of dimension k lies closest to the points in the sense that

$$
\sum_{i=1}^{m} d\left(x_{i}, S\right)^{2} \text { is minimal? }
$$

Here $d\left(x_{i}, S\right)=\min _{s \in S}\left\|x_{i}-S\right\|$.

The answer

To fit a k-plane to points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ do:

The answer

To fit a k-plane to points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ do:

- Let $c=\frac{1}{m} \sum_{i=1}^{m} x_{i}$ be the average of the points.

The answer

To fit a k-plane to points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ do:

- Let $c=\frac{1}{m} \sum_{i=1}^{m} x_{i}$ be the average of the points.
- Put the normalized data-points $x_{i}-c$ as columns in an $m \times n$-matrix A.

The answer

To fit a k-plane to points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ do:

- Let $c=\frac{1}{m} \sum_{i=1}^{m} x_{i}$ be the average of the points.
- Put the normalized data-points $x_{i}-c$ as columns in an $m \times n$-matrix A.
- Find the SVD of A, let v_{1}, \ldots, v_{r} be the right singular vectors.

The answer

To fit a k-plane to points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ do:

- Let $c=\frac{1}{m} \sum_{i=1}^{m} x_{i}$ be the average of the points.
- Put the normalized data-points $x_{i}-c$ as columns in an $m \times n$-matrix A.
- Find the SVD of A, let v_{1}, \ldots, v_{r} be the right singular vectors.
- The affine k-dimensional subspace that best approximates the data in the total least squares sense is

$$
S=c+\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)
$$

Which point in \mathbb{R}^{3} lies closest to $(1,5),(1,2),(4,2)$?

Which point in \mathbb{R}^{3} lies closest to $(1,5),(1,2),(4,2)$?

Old least squares method: Ansatz $y=k x+m \rightarrow$ linear system \rightarrow least square solution.

Which point in \mathbb{R}^{3} lies closest to $(1,5),(1,2),(4,2)$?

Old least squares method:
Ansatz $y=k x+m \rightarrow$ linear system \rightarrow least square solution.

Total least squares:

Recenter points at origin \rightarrow SVD on normalized data-matrix \rightarrow singular vectors gives directions of affine subspace

Regular least squares method

Total least squares method

