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Part I

Direct sum
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Direct sum (internal)

Let U1 and U2 be subspaces of V . If every v ∈ V can be expressed uniquely as

v = u1 + u2 where u1 ∈ U1, u2 ∈ U2,

then we write V = U1 ⊕ U2.

With respect to this direct sum we can project vectors onto subspaces, if v = u1 + u2 we write

PU1(v) = u1 and PU2(v) = u2.
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U1 = span((1, 0))

U2 = span((1, 1))

In this example we have PU1(5, 2) = (3, 0) and PU2(5, 2) = (2, 2).
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Theorem
Let U1, U2 be subspaces of V . Then V = U1 ⊕ U2 if and only if

U1 + U2 = V and U1 ∩ U2 = {0}.

Where U1 + U2 = {u1 + u2 | u1 ∈ U1, u2 ∈ U2}.

Example
Consider the vector space Matn(R) and consider the subspaces
S = {A ∈ Matn(R)|AT = A} (symmetric matrices)
S ′ = {A ∈ Matn(R)|AT = −A} (skew-symmetric matrices)
Is Matn(R) = S ⊕ S ′?
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External direct sum

Definition
Let V and W be vector spaces over the same field F. We define the external direct sum as
the F-vector space

V ⊕ W = V × W = {(v , w) | v ∈ V , w ∈ W }

equipped with the natural addition and scalar multiplication:

(v , w) + (v ′, w ′) := (v + v ′, w + w ′) λ(v , w) = (λv , λw).

Note that dim(V ⊕ W ) = dim(V ) + dim(W ).
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Part II

Quotient spaces
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Affine subsets

Definition
Let U be a subspace of a vector space V . For each vector v ∈ V we define the corresponding
affine subset of V as

v + U = {v + u | u ∈ U}.

Geometrically, v + U looks like U but translated away from the origin by a vector V .

Definition
Let U be a subspace of a vector space V . The set of all affine subsets

V /U := {v + U | v ∈ V }

is also called the quotient space of V by U. V /U is a vector space under the operations

(v + U) + (w + U) = (v + w) + U λ(v + U) = λv + U.

Note that dim(V /U) = dim(V ) − dim(U).
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Part III

Linear maps
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Linear maps

Theorem
Let V and W be vector spaces over the same field F. A map F : V → W is called linear if

F (u + v) = F (u) + F (v) and F (λv) = λF (v) for all u, v ∈ V , λ ∈ F.

Let B = (v1, . . . , vn) be a basis for V , let B′ = (w1, . . . , wm) be a basis for W . Then

F (λ1v1 + · · · λnvn) = λ1F (v1) + · · · λnF (vn).

Express each F (vi) in the basis B′ and put these coordinate vectors as columns in a matrix:

A = [F ]B′,B =

 | | |
F (v1) F (v2) · · · F (vn)

| | |

 ∈ Matm×n(F)

Then F (v)B′ = AvB, so A is the matrix of F with respect to the bases B and B′.
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Kernel and image

Definition
Let F : V → W be a linear map (or matrix). We define

• Ker(F ) = {v ∈ V | F (v) = 0}, the kernel or nullspace of F .
• Im(F ) = {F (v) | v ∈ V }, the image of F .

Then Ker(F ) is a subspace of V and Im(F ) is a subspace of W .

Rank nullity theorem (dimension theorem)

dim(Ker(F )) + dim(Im(F )) = dim(V ).

dim(Im(F )) is called the rank of F .
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Inverses

The inverse to a linear map F : V → W is a linear map G : W → V such that

G(F (v)) = v for all v ∈ V and F (G(w)) = w for all w ∈ W .

We write G = F −1 if such a map exists.
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Part IV

Matrices
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Matrices

Matm×n(F) = the F-vector space of m × n-matrices with coefficients in F.

Standard basis: eij ∈ Matm×n(F) - matrix with a single 1 in position (i , j), for example:0 2 5
0 0 −3
0 0 0

 = 2e12 + 5e13 − 3e23.

For a matrix A = (aij)ij =
∑

i ,j aijeij we define
• AT = (aji)ij the transpose of A
• A∗ = (aji)ij the Hermitian conjugate (conjugate-transpose) of A (when F = C)
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Matrix properties

A matrix A = (aij) ∈ Matm×n(F) is called
• Diagonal if aij = 0 whenever i ̸= j
• Upper triangular if aij = 0 whenever i > j

(strictly upper triangular if aii = 0 also)
• Lower triangular if aij = 0 whenever j > i

(strictly lower triangular if aii = 0 also)
• Symmetric if aij = aji

(skew-symmetric if aij = −aji)
• Hermitian aij = aji (when F = C)

(skew-Hermitian if aij = −aji)
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Multiplication

The standard basis-matrices multiply as

eijekl =
{

eil if j = k
0 otherwise

= δjkeil .

Let A = (aij) =
∑

i ,j aijeij ∈ Matm×n(F) and let B = (bij) =
∑

i ,j bijeij ∈ Matn×k(F). Then

AB =
( n∑

r=1
air brj

)
ij ∈ Matm×k(F).
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Trace

The trace of a n × n-matrix is the sum of the diagonal elements: tr(A) =
∑n

k=1 akk .

Theorem
tr(AB) = tr(BA) whenever both products are defined.

For example, with A =
(

1 1 0
0 1 1

)
and B =

1 1
1 2
1 3

 we have

tr(AB) = tr
(

2 3
2 5

)
= 7 and tr(BA) = tr

1 2 1
1 3 2
1 4 3

 = 7.

It follows that tr(S−1AS) = tr(SS−1A) = tr(A), so the trace is basis-independent.
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Jonathan Nilsson (Linköping University) TATA53 Lecture 2 17 / 32



Trace

The trace of a n × n-matrix is the sum of the diagonal elements: tr(A) =
∑n

k=1 akk .

Theorem
tr(AB) = tr(BA) whenever both products are defined.

For example, with A =
(

1 1 0
0 1 1

)
and B =

1 1
1 2
1 3

 we have

tr(AB) = tr
(

2 3
2 5

)
= 7 and tr(BA) = tr

1 2 1
1 3 2
1 4 3

 = 7.

It follows that tr(S−1AS) = tr(SS−1A) = tr(A), so the trace is basis-independent.
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Nilpotent matrices

A matrix A is called nilpotent if An = 0 for some n.

Example

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 A2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 A3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 A4 = 0

Similarly, a linear map F : V → V is called nilpotent if F n = 0 for some n.
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Block matrices
It is sometimes useful to consider a matrix as a matrix with matrix-coefficients:

X =


3 2 3 0
1 1 0 3
0 0 6 4
0 0 2 2

 =
(

A 3I
0 2A

)
where A =

(
3 2
1 1

)
.

This can simplify calculations, for example:

X 2 =
(

A 3I
0 2A

)(
A 3I
0 2A

)
=
(

A · A + 3I · 0 A · 3I + 3I · 2A
0 · A + 2A · 0 0 · 3I + 2A · 2A

)

=
(

A2 9A
0 4A2

)
=


11 8 27 18
4 3 9 9
0 0 44 32
0 0 16 12

 .
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Part V

Echelon forms
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Matrices in echelon forms

A =



1 1 9 2 1 8

0 2 4 1 2 5

0 0 0 4 1 9

0 0 0 0 3 3
0 0 0 0 0 0


B =



1 0 7 0 0 2

0 1 2 0 0 1

0 0 0 1 0 2

0 0 0 0 1 1
0 0 0 0 0 0



A is in row echelon form (REF) - first nonzero element in each row is to the left of first
nonzero element in rows below. Zero-rows at bottom. The encircled elements are pivots.
B is in reduced row echelon form (RREF) - also pivots are 1 and have zeros above them.

Theorem
Every A ∈ Matm×n(F) can be reduced to RREF by row operations. The RREF is unique.

Note that Ker(A) = Ker(B) when the matrices are row equivalent.
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Part VI

Elementary matrices
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Row operations as matrix products

E1A =

 1 0 0
−2 1 0

0 0 1


1 0 1 −1

2 1 0 1
1 1 1 1

 =

1 0 1 −1
0 1 −2 3
1 1 1 1



Adding (−2) times the first row to the second row of A.

E2A =

3 0 0
0 1 0
0 0 1


1 0 1 −1

2 1 0 1
1 1 1 1

 =

3 0 3 −3
2 1 0 1
1 1 1 1


Multiplying the first row of A by 3.

E3A =

1 0 0
0 0 1
0 1 0


1 0 1 −1

2 1 0 1
1 1 1 1

 =

1 0 1 −1
1 1 1 1
2 1 0 1


Switching rows 2 and 3 of A.
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Jonathan Nilsson (Linköping University) TATA53 Lecture 2 23 / 32



Row operations as matrix products

E1A =

 1 0 0
−2 1 0

0 0 1


1 0 1 −1

2 1 0 1
1 1 1 1

 =

1 0 1 −1
0 1 −2 3
1 1 1 1


Adding (−2) times the first row to the second row of A.

E2A =

3 0 0
0 1 0
0 0 1


1 0 1 −1

2 1 0 1
1 1 1 1

 =

3 0 3 −3
2 1 0 1
1 1 1 1


Multiplying the first row of A by 3.

E3A =

1 0 0
0 0 1
0 1 0


1 0 1 −1

2 1 0 1
1 1 1 1

 =

1 0 1 −1
1 1 1 1
2 1 0 1


Switching rows 2 and 3 of A.
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Elementary matrices

Elementary matrix Corresponding row operation
1

1
1
λ

. . .
1

 = I + λeij Add λ times row j to row i

(λ in position (i , j))
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Elementary matrices

Elementary matrix Corresponding row operation

1
. . .

λ
. . .

1


= I + (λ − 1)eii Multiply row i by a nonzero scalar λ

(identity except λ ̸= 0 on position (i , i))
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Elementary matrices

Elementary matrix Corresponding row operation

1
. . .1

0 1
1. . .1

1 0
1. . .

1


Switching rows i and j

= I − eii − ejj + eij + eji
(I but with rows i and j switched)
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Products of elementary matrices

Note that all elementary matrices are invertible, and the inverse is also an invertible matrix.

Theorem
Every invertible matrix is the product of elementary matrices.

Proof: Perform row operations on A until it becomes the identity matrix. If the row operations
correspond to elementary matrices E1, . . . , En we get

En · · · E2E1A = I ⇔ A = E−1
1 E−1

2 · · · E−1
n .
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Part VII

LU-decompostion
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LU-decomposition

Definition
An LU-decomposition, or an LU-factorization of A ∈ Matm×n(F) is a factorization

A = LU

where
• L is lower triangular m × m-matrix
• U is an upper triangular m × n-matrix

Example:  1 1 3
2 4 7

−1 1 0

 =

 1 0 0
2 1 0

−1 1 1


1 1 3

0 2 1
0 0 2
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The algorithm

Example
Find an LU factorization of

A =

 1 1 1 1
1 3 3 −1

−2 2 −1 5

 .

Idea: Reduce A to REF by standard row operations, the resulting matrix is upper triangular:

En · · · E2E1A = U ⇔ A = LU = (En · · · E2E1)−1U,

where L = (En · · · E2E1)−1 = E−1
1 E−1

2 · · · E−1
n is lower triangular since we only add higher rows

to lower rows to achieve the REF.
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LDU-decomposition

Definition
An LDU-decomposition, or an LDU-factorization of A ∈ Matm×n(F) is a factorization

A = LDU

• L is lower triangular m × m-matrix with ones on the diagonal
• D is a diagonal m × m-matrix
• U is an upper triangular m × n-matrix with ones on the diagonal

This can be obtained from the LU-factorization by factoring U = DU ′ by dividing out the
leading coefficients of each row of U.
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Application

Suppose that we want to solve a large linear system Ax = b many times for different right
sides b.

By LU-factoring A we see that

Ax = b ⇔ LUx = b ⇔ Ly = b and Ux = y .

So we can solve two triangular systems instead with back-substitution, this is significantly
faster for large matrices A.
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