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Let U; and U, be subspaces of V. If every v € V' can be expressed uniquely as
v =uy + up where u; € Uy, up € Uy,

then we write V = U; & Us.



Let U; and U, be subspaces of V. If every v € V' can be expressed uniquely as
v =uy + up where u; € Uy, up € Uy,

then we write V = U; & Us.
With respect to this direct sum we can project vectors onto subspaces, if v = u; + up we write

PU1(V) = and PUz(V) = uy.



U, = span((1,1))

Ui = span((1,0))




U, = span((1,1))

(5,2)

Ui = span((1,0))




Uz = span((1,1))

(5,2)

Ui = span((1,0))

In this example we have Py, (5,2) = (3,0) and Py, (5,2) = (2,2).




Let Ui, U> be subspaces of V. Then V = U; & U if and only if

Ui+ U=V and U10U2={0}.




Let Ui, U> be subspaces of V. Then V = U; & U if and only if

Ui+ U=V and U10U2={0}.

Where U; + Uy = {Ul + uo | um € Up,up € U2}.



Let Uy, U> be subspaces of V. Then V = U; @ U, if and only if

U+ U,=V and UlﬂUQZ{O}.

Where U; + Uy = {Ul + up ’ um € Up,up € UQ}.

Consider the vector space Mat,(R) and consider the subspaces
S = {A € Mat,(R)|AT = A} (symmetric matrices)

S" = {A € Mat,(R)|AT = —A} (skew-symmetric matrices)

Is Mat,(R) =S @ S'?
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Definition
Let V and W be vector spaces over the same field F. We define the external direct sum as
the [F-vector space

VeW=VxW={(v,w)|veV,we W}

equipped with the natural addition and scalar multiplication:

(viw)+ (VW) :=(v+V,w+w) A(v, w) = (Av, Aw).




Definition
Let V and W be vector spaces over the same field F. We define the external direct sum as
the [F-vector space

VeW=VxW={(v,w)|veV,we W}

equipped with the natural addition and scalar multiplication:

(viw)+ (VW) :=(v+V,w+w) A(v, w) = (Av, Aw).

Note that dim(V & W) = dim(V) 4 dim(W).
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Let U be a subspace of a vector space V. For each vector v € V we define the corresponding
affine subset of V as
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Definition
Let U be a subspace of a vector space V. For each vector v € V we define the corresponding
affine subset of V as

v+U={v+u|luec U}

Geometrically, v + U looks like U but translated away from the origin by a vector V.



Definition
Let U be a subspace of a vector space V. For each vector v € V we define the corresponding
affine subset of V as

v+U={v+ul|ue U}

Geometrically, v + U looks like U but translated away from the origin by a vector V.
Definition
Let U be a subspace of a vector space V. The set of all affine subsets

V/U={v+U|veV}
is also called the quotient space of V by U. V//U is a vector space under the operations

(v+U)+(w+U)=(v+w)+U ANv+U)=Av+U.




Definition
Let U be a subspace of a vector space V. For each vector v € V we define the corresponding
affine subset of V as

v+U={v+ul|ue U}

Geometrically, v + U looks like U but translated away from the origin by a vector V.

Definition

Let U be a subspace of a vector space V. The set of all affine subsets
V/U={v+U|veV}
is also called the quotient space of V by U. V//U is a vector space under the operations

(v+U)+(w+U)=(v+w)+U ANv+U)=Av+U.

Note that dimi V‘ U: = dimi Vi — dimi Ui.
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Let V and W be vector spaces over the same field F. A map F : V — W is called linear if

Flu+v)=F(u)+ F(v) and F(Av)=AF(v) forallu,veV, XeF.




Let V and W be vector spaces over the same field F. A map F : V — W is called linear if

Flu+v)=F(u)+ F(v) and F(Av)=AF(v) forallu,veV, XeF.

Let B = (vi,...,vy) be a basis for V, let B’ = (w1,...,wy) be a basis for W. Then

F(Aivi+ - Aavn) = MF(v1) + - - - ApF(vp).



Let V and W be vector spaces over the same field F. A map F : V — W is called linear if

Flu+v)=F(u)+ F(v) and F(Av)=AF(v) forallu,veV, XeF.

Let B=(v1,...,Vy,) be a basis for V, let B = (wy, ..., wp) be a basis for W. Then
F(Aivi+ - Aavn) = MF(v1) + - - - ApF(vp).
Express each F(v;) in the basis B’ and put these coordinate vectors as columns in a matrix:

| |
A=[F]B/,B= F(Vl) F(VQ) F(V,,) EMath,,(IF)



Let V and W be vector spaces over the same field F. A map F : V — W is called linear if

Flu+v)=F(u)+ F(v) and F(Av)=AF(v) forallu,veV, XeF.

Let B=(v1,...,Vy,) be a basis for V, let B = (wy, ..., wp) be a basis for W. Then
F(Aivi+ - Aavn) = MF(v1) + - - - ApF(vp).
Express each F(v;) in the basis B’ and put these coordinate vectors as columns in a matrix:

| |
A=[F]B/,B= F(Vl) F(VQ) F(V,,) EMath,,(IF)

Then F(v)p = Avg, so A is the matrix of F with respect to the bases B and 5'.
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Definition

Let F: V — W be a linear map (or matrix). We define
¢ Ker(F) ={v € V| F(v) = 0}, the kernel or nullspace of F.
¢ Im(F) ={F(v)| v € V}, the image of F.




Definition

Let F: V — W be a linear map (or matrix). We define
¢ Ker(F) ={v € V| F(v) = 0}, the kernel or nullspace of F.
¢ Im(F) ={F(v)| v € V}, the image of F.

Then Ker(F) is a subspace of V' and Im(F) is a subspace of W.



Definition

Let F: V — W be a linear map (or matrix). We define
¢ Ker(F) ={v € V| F(v) = 0}, the kernel or nullspace of F.
¢ Im(F) ={F(v)| v € V} the image of F.

Then Ker(F) is a subspace of V' and Im(F) is a subspace of W.

Rank nullity theorem (dimension theorem)

dim(Ker(F)) + dim(Im(F)) = dim(V).

dim(Im(F)) is called the rank of F.



The inverse to a linear map F: V — W is a linear map G : W — V such that
G(F(v))=vforall ve Vand F(G(w)) = w for all w € W.

We write G = F~1 if such a map exists.
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Matmxn(F) = the F-vector space of m x n-matrices with coefficients in F.



Matmxn(F) = the F-vector space of m x n-matrices with coefficients in F.

Standard basis: ej; € Matmyxn(F) - matrix with a single 1 in position (i, ), for example:

0 2 5
0 0 —3| =2e1p+ 5e13 — 3eps.
00 0



Matmxn(F) = the F-vector space of m x n-matrices with coefficients in F.

Standard basis: ej; € Matmyxn(F) - matrix with a single 1 in position (i, ), for example:

0 2 5
0 0 —3| =2e1p+ 5e13 — 3eps.
00 0

For a matrix A = (a;);; = >_, ; ajje;; we define
© AT = (aj;); the transpose of A
¢ A* = (3j);; the Hermitian conjugate (conjugate-transpose) of A (when F = C)



A matrix A = (aj;) € Matmxn(F) is called

¢ Diagonal if a;; = 0 whenever | # j

¢ Upper triangular if a; = 0 whenever i > j
(strictly upper triangular if a; = 0 also)

© Lower triangular if aj = 0 whenever j >/
(strictly lower triangular if a; = 0 also)

¢ Symmetric if aj = aj;
(skew-symmetric if a;; = —aji)

¢ Hermitian a; = 3 (when F = C)
(skew-Hermitian if a;j = —3j;)



The standard basis-matrices multiply as

ey ifj=k 5
€jj€kl = . = 0jke€jl.
Y 0 otherwise I



The standard basis-matrices multiply as

ey ifj=k
ejex = = Ojkeir.
Y 0 otherwise I

Let A= (a;) = 30;; aijeij € Matyxn(F) and let B = (bj) = 3=, ; bijejj € Matpyx(F). Then

n
AB = (Z a,-,b,j)ij S Matmxk(]F).
r=1



The trace of a n X n-matrix i
- rix is the sum of the dia :
gonal elements: tr(A) = Y }_q akk-



The trace of a n x n-matrix is the sum of the diagonal elements: tr(A) = >"7_; akk-

tr(AB) = tr(BA) whenever both products are defined. I




The trace of a n x n-matrix is the sum of the diagonal elements: tr(A) = >"7_; akk-

tr(AB) = tr(BA) whenever both products are defined. l

110
011

11
For example, with A = < > and B= |1 2| we have
1 3

tr(AB) = tr (g g) =7 and tr(BA) = tr

el
E-N OV O]
w N =
Il
\I



The trace of a n x n-matrix is the sum of the diagonal elements: tr(A) = >"7_; akk-

tr(AB) = tr(BA) whenever both products are defined. l

110
011

11
For example, with A = < ) and B= |1 2| we have
1 3

s 3 1 21
tr(AB) = tr =7and tr(BA)=tr|1 3 2| =T7.
25 1 4 3

It follows that tr(S™1AS) = tr(SS~1A) = tr(A), so the trace is basis-independent.



A matrix A is called nilpotent if A” = 0 for some n.



Nilpotent matrices

A matrix A is called nilpotent if A” = 0 for some n.

0100 0010 0001
oo 10 , |looo1 s |looo o .,
A=looo 1| *Tlooool *Tloooof 47O

0000 0000 0000
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Nilpotent matrices

A matrix A is called nilpotent if A” = 0 for some n.

0100 0010 0001
oo 10 , |looo1 s |looo o .,
A=looo 1| *Tlooool *Tloooof 47O

0000 0000 0000

Similarly, a linear map F : V — V is called nilpotent if F”7 = 0 for some n.
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It is sometimes useful to consider a matrix as a matrix with matrix-coefficients:

Al 3/ 3 2
—<0 2A> where A—(l 1).




It is sometimes useful to consider a matrix as a matrix with matrix-coefficients:

Al 3/ 3 2
—(0 2A> where A—(l 1).

This can simplify calculations, for example:

2 _ [Al3 A3\ ([ A-A+31-0]|A-3/+3]-2A
“\0]2A 0/2A ) "\ 0-A+2A-0|0-3/+2A-2A
11 8|27 18

([ A]9A Y [ 4 3]9 9

L0 ]4A ) | O 0‘44 32

0 0|16 12
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1192 138 @07002
0l@41 25 020 01
A=l 0 0 0/(® 1 9 B=110 0 o/ o 2
0 00 0|33 0 00 0|11
0 000 00O 0 000 00

A'is in row echelon form (REF) - first nonzero element in each row is to the left of first
nonzero element in rows below. Zero-rows at bottom. The encircled elements are pivots.
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0 00 0|33 0 00 0|11
0 000 00O 0 000 00

A'is in row echelon form (REF) - first nonzero element in each row is to the left of first
nonzero element in rows below. Zero-rows at bottom. The encircled elements are pivots.
B is in reduced row echelon form (RREF) - also pivots are 1 and have zeros above them.



1192 138 @07002
0l@41 25 020 01
A=l 0 0 0/(® 1 9 B=110 0 o/ o 2
0 00 0|33 0 00 0|11
0 000 00O 0 000 00

A'is in row echelon form (REF) - first nonzero element in each row is to the left of first
nonzero element in rows below. Zero-rows at bottom. The encircled elements are pivots.
B is in reduced row echelon form (RREF) - also pivots are 1 and have zeros above them.

Every A € Mat,xn(F) can be reduced to RREF by row operations. The RREF is unique. I




1192 138 @07002
0l@41 25 020 01
A=l 0 0 0/(® 1 9 B=110 0 o/ o 2
0 00 0|33 0 00 0|11
0 000 00O 0 000 00

A'is in row echelon form (REF) - first nonzero element in each row is to the left of first
nonzero element in rows below. Zero-rows at bottom. The encircled elements are pivots.
B is in reduced row echelon form (RREF) - also pivots are 1 and have zeros above them.

Every A € Mat,xn(F) can be reduced to RREF by row operations. The RREF is unique. I

Note that Ker(A) = Ker(B) when the matrices are row equivalent.
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1 00 101 -1 10 1 -1
EfA=]1-2 10|21 0 1]=]01 -2 3
0 01 111 1 11 1 1

Adding (—2) times the first row to the second row of A.



Adding (—2) times the first row to the second row of A.

— O

O

—~ N —

o O

o = O

o O o

EA =



1 00 101 -1
EfA=]1-2 1 0|2 1 0 1
0 01 111 1

Adding (—2) times the first row to the second row of A.

3 00\/101 -1
EEA=10 1 0]|2 1 0 1
00 1/\1 11 1
Multiplying the first row of A by 3.

=

=N W

—_



Adding (—2) times the first row to the second row of A.

— O

O

—~ N —

o O

o = O

o O o

EA =

Multiplying the first row of A by 3.

— O

O =

— N —

o — O

o o -

— O O

E3A =



EA= |-

1
2
0

Adding (—2) times the first row to the second row of A.

o = O
= O O

10
21
11

3 00)\/10
EEA=10 1 02 1
0 0 1/\11
Multiplying the first row of A by 3.
1 0 0\ /1 O
EsA=10 0 1|2 1
0 1 0/\1 1

Switching rows 2 and 3 of A.

1
0
1

1
0
1

=

-1
1| =
1

=

-1 3
11=12
1 1

-1 1
11 =11
1 2

o



Elementary matrix Corresponding row operation

= I+ Xej | Add A times row j to row i

A
1
(X in position (i,}))




Elementary matrix Corresponding row operation
1
A =14+ (N—1)e; | Multiply row i by a nonzero scalar A
1
(identity except A # 0 on position (7, 1))




Elementary matrix Corresponding row operation

Switching rows i and j

=l—ei—¢jtejte;
(! but with rows i and j switched)




Note that all elementary matrices are invertible, and the inverse is also an invertible matrix.

Every invertible matrix is the product of elementary matrices. I
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Note that all elementary matrices are invertible, and the inverse is also an invertible matrix.

_

Every invertible matrix is the product of elementary matrices.

Proof: Perform row operations on A until it becomes the identity matrix. If the row operations
correspond to elementary matrices Eq, ..., E, we get

E, - BEEIA=1 & A=E1'E;'-EL

n
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Definition

An LU-decomposition, or an LU-factorization of A € Mat,xn,(IF) is a factorization
A=LU

where
¢ L is lower triangular m X m-matrix

¢ U is an upper triangular m x n-matrix




Definition
An LU-decomposition, or an LU-factorization of A € Mat,xn,(IF) is a factorization

A=LU

where
¢ L is lower triangular m X m-matrix
¢ U is an upper triangular m x n-matrix

Example:
11 3 1 0 0\ (1 1 3
2 4 7= 210110 21
-1 10 -1 1 1/ \0 0 2



The algorithm

Find an LU factorization of

11 1 1
A= 13 3 -1
-2 2 -1 5

Jonathan Nilsson (Linképing University) TATAS53 Lecture 2 30/32



The algorithm

Find an LU factorization of

11 1 1
A= 13 3 -1
-2 2 -1 5

Idea: Reduce A to REF by standard row operations, the resulting matrix is upper triangular:
E,- - BEA=UsA=LU=(E, - BEE)U,

where L = (E,--- BE) = E[YES Y- Ey

—Lis lower triangular since we only add higher rows
to lower rows to achieve the REF.
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Definition

An LDU-decomposition, or an LDU-factorization of A € Mat,x,(FF) is a factorization

A=LDU

¢ L is lower triangular m X m-matrix with ones on the diagonal

¢ D is a diagonal m x m-matrix

© U is an upper triangular m X n-matrix with ones on the diagonal




Definition

An LDU-decomposition, or an LDU-factorization of A € Mat,x,(FF) is a factorization

A=LDU

¢ L is lower triangular m X m-matrix with ones on the diagonal

¢ D is a diagonal m x m-matrix

© U is an upper triangular m X n-matrix with ones on the diagonal

This can be obtained from the LU-factorization by factoring U = DU’ by dividing out the
leading coefficients of each row of U.



Suppose that we want to solve a large linear system Ax = b many times for different right
sides b.



Suppose that we want to solve a large linear system Ax = b many times for different right
sides b.
By LU-factoring A we see that

Ax=b & LUx=b & Ly=>b and Ux=y.



Suppose that we want to solve a large linear system Ax = b many times for different right
sides b.
By LU-factoring A we see that

Ax=b & LUx=b & Ly=>b and Ux=y.

So we can solve two triangular systems instead with back-substitution, this is significantly
faster for large matrices A.
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