TATA53 Lecture 2 Linear Algebra Honours course

Jonathan Nilsson

Linköping University

Part I

Direct sum

Let U_1 and U_2 be subspaces of V. If every $v \in V$ can be expressed uniquely as

 $v = u_1 + u_2$ where $u_1 \in U_1, u_2 \in U_2$,

then we write $V = U_1 \oplus U_2$.

Let U_1 and U_2 be subspaces of V. If every $v \in V$ can be expressed uniquely as

 $v = u_1 + u_2$ where $u_1 \in U_1, u_2 \in U_2$,

then we write $V = U_1 \oplus U_2$.

With respect to this direct sum we can project vectors onto subspaces, if $v = u_1 + u_2$ we write

$$P_{U_1}(v) = u_1$$
 and $P_{U_2}(v) = u_2$.

In this example we have $P_{U_1}(5,2) = (3,0)$ and $P_{U_2}(5,2) = (2,2)$.

Let U_1, U_2 be subspaces of V. Then $V = U_1 \oplus U_2$ if and only if

 $U_1 + U_2 = V$ and $U_1 \cap U_2 = \{0\}.$

Let U_1, U_2 be subspaces of V. Then $V = U_1 \oplus U_2$ if and only if

 $U_1 + U_2 = V$ and $U_1 \cap U_2 = \{0\}.$

Where $U_1 + U_2 = \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}.$

Let U_1, U_2 be subspaces of V. Then $V = U_1 \oplus U_2$ if and only if

 $U_1 + U_2 = V$ and $U_1 \cap U_2 = \{0\}.$

Where $U_1 + U_2 = \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}.$

Example

Consider the vector space $\operatorname{Mat}_n(\mathbb{R})$ and consider the subspaces $S = \{A \in \operatorname{Mat}_n(\mathbb{R}) | A^T = A\}$ (symmetric matrices) $S' = \{A \in \operatorname{Mat}_n(\mathbb{R}) | A^T = -A\}$ (skew-symmetric matrices) Is $\operatorname{Mat}_n(\mathbb{R}) = S \oplus S'$?

Let V and W be vector spaces over the same field \mathbb{F} . We define the **external direct sum** as the \mathbb{F} -vector space

$$V\oplus W=V imes W=\{(v,w)\mid v\in V,w\in W\}$$

equipped with the natural addition and scalar multiplication:

$$(\mathbf{v},\mathbf{w})+(\mathbf{v}',\mathbf{w}'):=(\mathbf{v}+\mathbf{v}',\mathbf{w}+\mathbf{w}')\qquad\lambda(\mathbf{v},\mathbf{w})=(\lambda\mathbf{v},\lambda\mathbf{w}).$$

Let V and W be vector spaces over the same field \mathbb{F} . We define the **external direct sum** as the \mathbb{F} -vector space

$$V\oplus W=V imes W=\{(v,w)\mid v\in V,w\in W\}$$

equipped with the natural addition and scalar multiplication:

$$(\mathbf{v},\mathbf{w})+(\mathbf{v}',\mathbf{w}'):=(\mathbf{v}+\mathbf{v}',\mathbf{w}+\mathbf{w}')\qquad\lambda(\mathbf{v},\mathbf{w})=(\lambda\mathbf{v},\lambda\mathbf{w}).$$

Note that $\dim(V \oplus W) = \dim(V) + \dim(W)$.

Part II

Quotient spaces

Let U be a subspace of a vector space V. For each vector $v \in V$ we define the corresponding affine subset of V as

$$v+U=\{v+u\mid u\in U\}.$$

Let *U* be a subspace of a vector space *V*. For each vector $v \in V$ we define the corresponding **affine subset** of *V* as

$$v+U=\{v+u\mid u\in U\}.$$

Geometrically, v + U looks like U but translated away from the origin by a vector V.

Let U be a subspace of a vector space V. For each vector $v \in V$ we define the corresponding **affine subset** of V as

$$v+U=\{v+u\mid u\in U\}.$$

Geometrically, v + U looks like U but translated away from the origin by a vector V.

Definition

Let U be a subspace of a vector space V. The set of all affine subsets

 $V/U := \{v + U \mid v \in V\}$

is also called the **quotient space** of V by U. V/U is a vector space under the operations

$$(v+U)+(w+U)=(v+w)+U$$
 $\lambda(v+U)=\lambda v+U.$

Let U be a subspace of a vector space V. For each vector $v \in V$ we define the corresponding **affine subset** of V as

$$v+U=\{v+u\mid u\in U\}.$$

Geometrically, v + U looks like U but translated away from the origin by a vector V.

Definition

Let U be a subspace of a vector space V. The set of all affine subsets

 $V/U := \{v + U \mid v \in V\}$

is also called the **quotient space** of V by U. V/U is a vector space under the operations

$$(v+U)+(w+U)=(v+w)+U$$
 $\lambda(v+U)=\lambda v+U.$

Note that $\dim(V/U) = \dim(V) - \dim(U)$.

Jonathan Nilsson (Linköping University)

Part III

Linear maps

Let V and W be vector spaces over the same field \mathbb{F} . A map $F: V \to W$ is called **linear** if

F(u+v) = F(u) + F(v) and $F(\lambda v) = \lambda F(v)$ for all $u, v \in V, \lambda \in \mathbb{F}$.

Let V and W be vector spaces over the same field \mathbb{F} . A map $F: V \to W$ is called **linear** if

$$F(u+v)=F(u)+F(v) \hspace{1em} ext{and} \hspace{1em} F(\lambda v)=\lambda F(v) \hspace{1em} ext{for all } u,v\in V, \hspace{1em} \lambda\in \mathbb{F}.$$

Let $\mathcal{B} = (v_1, \ldots, v_n)$ be a basis for V, let $\mathcal{B}' = (w_1, \ldots, w_m)$ be a basis for W. Then

$$F(\lambda_1 v_1 + \cdots + \lambda_n v_n) = \lambda_1 F(v_1) + \cdots + \lambda_n F(v_n).$$

Let V and W be vector spaces over the same field \mathbb{F} . A map $F: V \to W$ is called **linear** if

$${\sf F}(u+v)={\sf F}(u)+{\sf F}(v) \quad {
m and} \quad {\sf F}(\lambda v)=\lambda {\sf F}(v) \quad {
m for \ all} \ u,v\in V, \ \lambda\in \mathbb{F}.$$

Let $\mathcal{B} = (v_1, \ldots, v_n)$ be a basis for V, let $\mathcal{B}' = (w_1, \ldots, w_m)$ be a basis for W. Then

$$F(\lambda_1 v_1 + \cdots + \lambda_n v_n) = \lambda_1 F(v_1) + \cdots + \lambda_n F(v_n).$$

Express each $F(v_i)$ in the basis \mathcal{B}' and put these coordinate vectors as columns in a matrix:

$$A = [F]_{\mathcal{B}',\mathcal{B}} = \begin{pmatrix} | & | & | \\ F(v_1) & F(v_2) & \cdots & F(v_n) \\ | & | & | \end{pmatrix} \in \operatorname{Mat}_{m \times n}(\mathbb{F})$$

Let V and W be vector spaces over the same field \mathbb{F} . A map $F: V \to W$ is called **linear** if

$${\sf F}(u+v)={\sf F}(u)+{\sf F}(v) \quad {
m and} \quad {\sf F}(\lambda v)=\lambda {\sf F}(v) \quad {
m for \ all} \ u,v\in V, \ \lambda\in \mathbb{F}.$$

Let $\mathcal{B} = (v_1, \ldots, v_n)$ be a basis for V, let $\mathcal{B}' = (w_1, \ldots, w_m)$ be a basis for W. Then

$$F(\lambda_1 v_1 + \cdots + \lambda_n v_n) = \lambda_1 F(v_1) + \cdots + \lambda_n F(v_n).$$

Express each $F(v_i)$ in the basis \mathcal{B}' and put these coordinate vectors as columns in a matrix:

$$A = [F]_{\mathcal{B}',\mathcal{B}} = \begin{pmatrix} | & | & | \\ F(v_1) & F(v_2) & \cdots & F(v_n) \\ | & | & | \end{pmatrix} \in \operatorname{Mat}_{m \times n}(\mathbb{F})$$

Then $F(v)_{\mathcal{B}'} = Av_{\mathcal{B}}$, so A is the matrix of F with respect to the bases \mathcal{B} and \mathcal{B}' .

Let $F: V \to W$ be a linear map (or matrix). We define

- $\operatorname{Ker}(F) = \{ v \in V \mid F(v) = 0 \}$, the **kernel** or **nullspace** of *F*.
- $\operatorname{Im}(F) = \{F(v) \mid v \in V\}$, the **image** of F.

Let $F: V \to W$ be a linear map (or matrix). We define

- $\operatorname{Ker}(F) = \{ v \in V \mid F(v) = 0 \}$, the **kernel** or **nullspace** of *F*.
- $\operatorname{Im}(F) = \{F(v) \mid v \in V\}$, the **image** of F.

Then Ker(F) is a subspace of V and Im(F) is a subspace of W.

Let $F: V \to W$ be a linear map (or matrix). We define

- $\operatorname{Ker}(F) = \{ v \in V \mid F(v) = 0 \}$, the **kernel** or **nullspace** of *F*.
- $\operatorname{Im}(F) = \{F(v) \mid v \in V\}$, the image of F.

Then Ker(F) is a subspace of V and Im(F) is a subspace of W.

Rank nullity theorem (dimension theorem)

 $\dim(\operatorname{Ker}(F)) + \dim(\operatorname{Im}(F)) = \dim(V).$

 $\dim(\operatorname{Im}(F))$ is called the **rank** of *F*.

The **inverse** to a linear map $F: V \to W$ is a linear map $G: W \to V$ such that

$$G(F(v)) = v$$
 for all $v \in V$ and $F(G(w)) = w$ for all $w \in W$.

We write $G = F^{-1}$ if such a map exists.

Part IV

Matrices

 $\operatorname{Mat}_{m \times n}(\mathbb{F}) = \text{the } \mathbb{F}\text{-vector space of } m \times n\text{-matrices with coefficients in } \mathbb{F}.$

 $\operatorname{Mat}_{m \times n}(\mathbb{F}) = \operatorname{the} \mathbb{F}$ -vector space of $m \times n$ -matrices with coefficients in \mathbb{F} .

Standard basis: $e_{ij} \in Mat_{m \times n}(\mathbb{F})$ - matrix with a single 1 in position (i, j), for example:

$$egin{pmatrix} 0 & 2 & 5 \ 0 & 0 & -3 \ 0 & 0 & 0 \end{pmatrix} = 2e_{12} + 5e_{13} - 3e_{23}.$$

 $\operatorname{Mat}_{m \times n}(\mathbb{F}) = \text{the } \mathbb{F}\text{-vector space of } m \times n\text{-matrices with coefficients in } \mathbb{F}.$

Standard basis: $e_{ij} \in Mat_{m \times n}(\mathbb{F})$ - matrix with a single 1 in position (i, j), for example:

$$\begin{pmatrix} 0 & 2 & 5 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{pmatrix} = 2e_{12} + 5e_{13} - 3e_{23}.$$

For a matrix $A = (a_{ij})_{ij} = \sum_{i,j} a_{ij} e_{ij}$ we define

- $A^T = (a_{ji})_{ij}$ the **transpose** of A
- $A^* = (\overline{a_{ji}})_{ij}$ the **Hermitian conjugate** (conjugate-transpose) of A (when $\mathbb{F} = \mathbb{C}$)

A matrix $A = (a_{ij}) \in \operatorname{Mat}_{m \times n}(\mathbb{F})$ is called

- **Diagonal** if $a_{ij} = 0$ whenever $i \neq j$
- **Upper triangular** if $a_{ij} = 0$ whenever i > j (strictly upper triangular if $a_{ii} = 0$ also)
- Lower triangular if $a_{ij} = 0$ whenever j > i(strictly lower triangular if $a_{ii} = 0$ also)
- Symmetric if a_{ij} = a_{ji} (skew-symmetric if a_{ij} = -a_{ji})
- Hermitian a_{ij} = ā_{ji} (when 𝑘 = 𝔅) (skew-Hermitian if a_{ij} = −ā_{ji})

The standard basis-matrices multiply as

$$e_{ij}e_{kl} = \begin{cases} e_{il} & \text{if } j = k \\ 0 & \text{otherwise} \end{cases} = \delta_{jk}e_{il}.$$

The standard basis-matrices multiply as

$$e_{ij}e_{kl} = egin{cases} e_{il} & ext{if } j = k \ 0 & ext{otherwise} \end{bmatrix} = \delta_{jk}e_{il}.$$

Let $A = (a_{ij}) = \sum_{i,j} a_{ij} e_{ij} \in \operatorname{Mat}_{m \times n}(\mathbb{F})$ and let $B = (b_{ij}) = \sum_{i,j} b_{ij} e_{ij} \in \operatorname{Mat}_{n \times k}(\mathbb{F})$. Then

$$AB = \left(\sum_{r=1}^{n} a_{ir} b_{rj}\right)_{ij} \in \operatorname{Mat}_{m \times k}(\mathbb{F}).$$

tr(AB) = tr(BA) whenever both products are defined.

Theorem

 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ whenever both products are defined.

For example, with
$$A=egin{pmatrix} 1&1&0\\0&1&1 \end{pmatrix}$$
 and $B=egin{pmatrix} 1&1\\1&2\\1&3 \end{pmatrix}$ we have

$$\operatorname{tr}(AB) = \operatorname{tr}\begin{pmatrix} 2 & 3\\ 2 & 5 \end{pmatrix} = 7 \text{ and } \operatorname{tr}(BA) = \operatorname{tr}\begin{pmatrix} 1 & 2 & 1\\ 1 & 3 & 2\\ 1 & 4 & 3 \end{pmatrix} = 7.$$

Theorem

 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ whenever both products are defined.

For example, with
$$A=egin{pmatrix} 1&1&0\\ 0&1&1 \end{pmatrix}$$
 and $B=egin{pmatrix} 1&1\\ 1&2\\ 1&3 \end{pmatrix}$ we have

$$tr(AB) = tr\begin{pmatrix} 2 & 3\\ 2 & 5 \end{pmatrix} = 7 \text{ and } tr(BA) = tr\begin{pmatrix} 1 & 2 & 1\\ 1 & 3 & 2\\ 1 & 4 & 3 \end{pmatrix} = 7.$$

It follows that $tr(S^{-1}AS) = tr(SS^{-1}A) = tr(A)$, so the trace is basis-independent.

A matrix A is called **nilpotent** if $A^n = 0$ for some n.

A matrix A is called **nilpotent** if $A^n = 0$ for some n.

A matrix A is called **nilpotent** if $A^n = 0$ for some n.

Similarly, a linear map $F: V \to V$ is called nilpotent if $F^n = 0$ for some n.

Block matrices

It is sometimes useful to consider a matrix as a matrix with matrix-coefficients:

$$X = \begin{pmatrix} 3 & 2 & | & 3 & 0 \\ 1 & 1 & | & 0 & 3 \\ \hline 0 & 0 & | & 6 & 4 \\ 0 & 0 & | & 2 & 2 \end{pmatrix} = \begin{pmatrix} A & | & 3I \\ \hline 0 & | & 2A \end{pmatrix} \quad \text{where} \quad A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}.$$

Block matrices

It is sometimes useful to consider a matrix as a matrix with matrix-coefficients:

$$X = \begin{pmatrix} 3 & 2 & | & 3 & 0 \\ 1 & 1 & | & 0 & 3 \\ \hline 0 & 0 & | & 6 & 4 \\ 0 & 0 & | & 2 & 2 \end{pmatrix} = \begin{pmatrix} A & | & 3I \\ \hline 0 & | & 2A \end{pmatrix} \quad \text{where} \quad A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}.$$

This can simplify calculations, for example:

$$X^{2} = \left(\begin{array}{c|c} A & 3I \\ \hline 0 & 2A \end{array}\right) \left(\begin{array}{c|c} A & 3I \\ \hline 0 & 2A \end{array}\right) = \left(\begin{array}{c|c} A \cdot A + 3I \cdot 0 & A \cdot 3I + 3I \cdot 2A \\ \hline 0 \cdot A + 2A \cdot 0 & 0 \cdot 3I + 2A \cdot 2A \end{array}\right)$$
$$= \left(\begin{array}{c|c} A^{2} & 9A \\ \hline 0 & 4A^{2} \end{array}\right) = \left(\begin{array}{c|c} 11 & 8 & 27 & 18 \\ 4 & 3 & 9 & 9 \\ \hline 0 & 0 & 44 & 32 \\ 0 & 0 & 16 & 12 \end{array}\right).$$

TATA53 Lecture 2

Part V

Echelon forms

$$A = \begin{pmatrix} 1 & 1 & 9 & 2 & 1 & 8 \\ 0 & 2 & 4 & 1 & 2 & 5 \\ 0 & 0 & 0 & 4 & 1 & 9 \\ 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 7 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 9 & 2 & 1 & 8 \\ 0 & 2 & 4 & 1 & 2 & 5 \\ 0 & 0 & 0 & 4 & 1 & 9 \\ 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 7 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

A is in row echelon form (REF) - first nonzero element in each row is to the left of first nonzero element in rows below. Zero-rows at bottom. The encircled elements are **pivots**.

$$A = \begin{pmatrix} 1 & 1 & 9 & 2 & 1 & 8 \\ 0 & 2 & 4 & 1 & 2 & 5 \\ 0 & 0 & 0 & 4 & 1 & 9 \\ 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 7 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

A is in **row echelon form** (REF) - first nonzero element in each row is to the left of first nonzero element in rows below. Zero-rows at bottom. The encircled elements are **pivots**. B is in **reduced row echelon form** (RREF) - also pivots are 1 and have zeros above them.

$$A = \begin{pmatrix} 1 & 1 & 9 & 2 & 1 & 8 \\ 0 & 2 & 4 & 1 & 2 & 5 \\ 0 & 0 & 0 & 4 & 1 & 9 \\ 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 7 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

A is in row echelon form (REF) - first nonzero element in each row is to the left of first nonzero element in rows below. Zero-rows at bottom. The encircled elements are **pivots**. B is in reduced row echelon form (RREF) - also pivots are 1 and have zeros above them.

Theorem

Every $A \in Mat_{m \times n}(\mathbb{F})$ can be reduced to RREF by row operations. The RREF is unique.

$$A = \begin{pmatrix} 1 & 1 & 9 & 2 & 1 & 8 \\ 0 & 2 & 4 & 1 & 2 & 5 \\ 0 & 0 & 0 & 4 & 1 & 9 \\ 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 7 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

A is in row echelon form (REF) - first nonzero element in each row is to the left of first nonzero element in rows below. Zero-rows at bottom. The encircled elements are **pivots**. B is in reduced row echelon form (RREF) - also pivots are 1 and have zeros above them.

Theorem

Every $A \in Mat_{m \times n}(\mathbb{F})$ can be reduced to RREF by row operations. The RREF is unique.

Note that Ker(A) = Ker(B) when the matrices are row equivalent.

Part VI

Elementary matrices

$$E_1 A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$E_1 A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Adding (-2) times the first row to the second row of A.

$$E_1 A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Adding (-2) times the first row to the second row of A.

$$E_2 A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 3 & -3 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$E_1 A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Adding (-2) times the first row to the second row of A.

$$E_2 A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 3 & -3 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Multiplying the first row of A by 3.

$$E_1 A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Adding (-2) times the first row to the second row of A.

$$E_2 A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 3 & -3 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Multiplying the first row of A by 3.

$$E_{3}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 \end{pmatrix}$$

$$E_1 A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Adding (-2) times the first row to the second row of A.

$$E_2 A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 3 & -3 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Multiplying the first row of A by 3.

$$E_{3}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 \end{pmatrix}$$

Switching rows 2 and 3 of A.

Jonathan Nilsson (Linköping University)

Note that all elementary matrices are invertible, and the inverse is also an invertible matrix.

Theorem

Every invertible matrix is the product of elementary matrices.

Note that all elementary matrices are invertible, and the inverse is also an invertible matrix.

Theorem

Every invertible matrix is the product of elementary matrices.

Proof: Perform row operations on A until it becomes the identity matrix. If the row operations correspond to elementary matrices E_1, \ldots, E_n we get

$$E_n \cdots E_2 E_1 A = I \quad \Leftrightarrow \quad A = E_1^{-1} E_2^{-1} \cdots E_n^{-1}.$$

Part VII

LU-decompostion

An **LU-decomposition**, or an **LU-factorization** of $A \in Mat_{m \times n}(\mathbb{F})$ is a factorization

A = LU

where

- L is lower triangular $m \times m$ -matrix
- U is an upper triangular $m \times n$ -matrix

An LU-decomposition, or an LU-factorization of $A \in Mat_{m \times n}(\mathbb{F})$ is a factorization

A = LU

where

- L is lower triangular $m \times m$ -matrix
- U is an upper triangular $m \times n$ -matrix

Example:

$$egin{pmatrix} 1 & 1 & 3 \ 2 & 4 & 7 \ -1 & 1 & 0 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 1 & 1 \end{pmatrix} egin{pmatrix} 1 & 1 & 3 \ 0 & 2 & 1 \ 0 & 0 & 2 \end{pmatrix}$$

Example

Find an LU factorization of

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 3 & -1 \\ -2 & 2 & -1 & 5 \end{pmatrix}.$$

Example

Find an LU factorization of

$$A = egin{pmatrix} 1 & 1 & 1 & 1 \ 1 & 3 & 3 & -1 \ -2 & 2 & -1 & 5 \end{pmatrix}.$$

Idea: Reduce A to REF by standard row operations, the resulting matrix is upper triangular:

$$E_n \cdots E_2 E_1 A = U \Leftrightarrow A = LU = (E_n \cdots E_2 E_1)^{-1} U,$$

where $L = (E_n \cdots E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} \cdots E_n^{-1}$ is lower triangular since we only add higher rows to lower rows to achieve the REF.

An **LDU-decomposition**, or an **LDU-factorization** of $A \in Mat_{m \times n}(\mathbb{F})$ is a factorization

A = LDU

- L is lower triangular $m \times m$ -matrix with ones on the diagonal
- D is a diagonal $m \times m$ -matrix
- U is an upper triangular $m \times n$ -matrix with ones on the diagonal

An **LDU-decomposition**, or an **LDU-factorization** of $A \in Mat_{m \times n}(\mathbb{F})$ is a factorization

A = LDU

- L is lower triangular m imes m-matrix with ones on the diagonal
- D is a diagonal $m \times m$ -matrix
- U is an upper triangular $m \times n$ -matrix with ones on the diagonal

This can be obtained from the LU-factorization by factoring U = DU' by dividing out the leading coefficients of each row of U.

Suppose that we want to solve a large linear system Ax = b many times for different right sides b.

Suppose that we want to solve a large linear system Ax = b many times for different right sides b.

By LU-factoring A we see that

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow Ly = b$$
 and $Ux = y$.

Suppose that we want to solve a large linear system Ax = b many times for different right sides b.

By LU-factoring A we see that

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow Ly = b$$
 and $Ux = y$.

So we can solve two triangular systems instead with back-substitution, this is significantly faster for large matrices A.