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NOTATIONS.

We use the standard (Bourbaki) notations: N D f0;1;2; : : :g; Z is the ring of integers; Q
is the field of rational numbers; R is the field of real numbers; C is the field of complex
numbers; Fq is a finite field with q elements where q is a power of a prime number. In
particular, Fp D Z=pZ for p a prime number.

For integers m and n, mjn means that m divides n, i.e., n 2mZ. Throughout the notes,
p is a prime number, i.e., p D 2;3;5;7;11; : : : ;1000000007; : : :.

Given an equivalence relation, Œ�� denotes the equivalence class containing �. The empty
set is denoted by ;. The cardinality of a set S is denoted by jS j (so jS j is the number of
elements in S when S is finite). Let I and A be sets; a family of elements of A indexed by
I , denoted .ai /i2I , is a function i 7! ai WI ! A.1

Rings are required to have an identity element 1, and homomorphisms of rings are
required to take 1 to 1. An element a of a ring is a unit if it has an inverse (element b such
that ab D 1D ba). The identity element of a ring is required to act as 1 on a module over
the ring.
X � Y X is a subset of Y (not necessarily proper);
X

def
D Y X is defined to be Y , or equals Y by definition;

X � Y X is isomorphic to Y ;
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism);

PREREQUISITES

An undergraduate “abstract algebra” course.

COMPUTER ALGEBRA PROGRAMS

GAP is an open source computer algebra program, emphasizing computational group theory.
To get started with GAP, I recommend going to Alexander Hulpke’s page here where you will
find versions of GAP for both Windows and Macs and a guide “Abstract Algebra in GAP”.
The Sage page here provides a front end for GAP and other programs. I also recommend N.
Carter’s “Group Explorer” here for exploring the structure of groups of small order. Earlier
versions of these notes (v3.02) described how to use Maple for computations in group theory.
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I thank the following for providing corrections and comments for earlier versions of these
notes: V.V. Acharya; Yunghyun Ahn; Tony Bruguier; Dustin Clausen; Benoı̂t Claudon; Keith
Conrad; Demetres Christofides; Adam Glesser; Darij Grinberg; Sylvan Jacques; Martin
Klazar; Mark Meckes; Victor Petrov; Diego Silvera; Efthymios Sofos; Dave Simpson;
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Chapman, Steve Dalton, Leonid Positselski, Noah Snyder, Richard Stanley, Qiaochu Yuan,
and others (a reference monnnn means http://mathoverflow.net/questions/nnnn/
and a reference sxnnnn means http://math.stackexchange.com/questions/nnnn/).

1A family should be distinguished from a set. For example, if f is the function Z! Z=3Z sending an
integer to its equivalence class, then ff .i/ j i 2 Zg is a set with three elements whereas .f .i//i2Z is family with
an infinite index set.
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The theory of groups of finite order may be said to date from the time of Cauchy. To
him are due the first attempts at classification with a view to forming a theory from a
number of isolated facts. Galois introduced into the theory the exceedingly important
idea of a [normal] sub-group, and the corresponding division of groups into simple
and composite. Moreover, by shewing that to every equation of finite degree there
corresponds a group of finite order on which all the properties of the equation depend,
Galois indicated how far reaching the applications of the theory might be, and thereby
contributed greatly, if indirectly, to its subsequent developement.

Many additions were made, mainly by French mathematicians, during the middle
part of the [nineteenth] century. The first connected exposition of the theory was
given in the third edition of M. Serret’s “Cours d’Algèbre Supérieure,” which was
published in 1866. This was followed in 1870 by M. Jordan’s “Traité des substitutions
et des équations algébriques.” The greater part of M. Jordan’s treatise is devoted to a
developement of the ideas of Galois and to their application to the theory of equations.

No considerable progress in the theory, as apart from its applications, was made
till the appearance in 1872 of Herr Sylow’s memoir “Théorèmes sur les groupes de
substitutions” in the fifth volume of the Mathematische Annalen. Since the date of this
memoir, but more especially in recent years, the theory has advanced continuously.

W. Burnside, Theory of Groups of Finite Order, 1897.

Galois introduced the concept of a normal subgroup in 1832, and Camille Jordan in the
preface to his Traité. . . in 1870 flagged Galois’ distinction between groupes simples
and groupes composées as the most important dichotomy in the theory of permutation
groups. Moreover, in the Traité, Jordan began building a database of finite simple
groups — the alternating groups of degree at least 5 and most of the classical projective
linear groups over fields of prime cardinality. Finally, in 1872, Ludwig Sylow published
his famous theorems on subgroups of prime power order.

R. Solomon, Bull. Amer. Math. Soc., 2001.

Why are the finite simple groups classifiable?

It is unlikely that there is any easy reason why a classification is possible, unless
someone comes up with a completely new way to classify groups. One problem, at
least with the current methods of classification via centralizers of involutions, is that
every simple group has to be tested to see if it leads to new simple groups containing it
in the centralizer of an involution. For example, when the baby monster was discovered,
it had a double cover, which was a potential centralizer of an involution in a larger
simple group, which turned out to be the monster. The monster happens to have no
double cover so the process stopped there, but without checking every finite simple
group there seems no obvious reason why one cannot have an infinite chain of larger
and larger sporadic groups, each of which has a double cover that is a centralizer of
an involution in the next one. Because of this problem (among others), it was unclear
until quite late in the classification whether there would be a finite or infinite number of
sporadic groups.

Richard Borcherds, mo38161.



CHAPTER 1
Basic Definitions and Results

The axioms for a group are short and natural. . . .
Yet somehow hidden behind these axioms is the
monster simple group, a huge and extraordinary
mathematical object, which appears to rely on nu-
merous bizarre coincidences to exist. The axioms
for groups give no obvious hint that anything like
this exists.
Richard Borcherds, in Mathematicians 2009.

Group theory is the study of symmetries.

Definitions and examples

DEFINITION 1.1 A group is a set G together with a binary operation

.a;b/ 7! a�bWG�G!G

satisfying the following conditions:

G1: (associativity) for all a;b;c 2G,

.a�b/� c D a� .b � c/I

G2: (existence of a neutral element) there exists an element e 2G such that

a� e D aD e �a (1)

for all a 2G;
G3: (existence of inverses) for each a 2G, there exists an a0 2G such that

a�a0 D e D a0 �a:

We usually abbreviate .G;�/ to G. Also, we usually write ab for a � b and 1 for e; al-
ternatively, we write aC b for a � b and 0 for e. In the first case, the group is said to be
multiplicative, and in the second, it is said to be additive.

1.2 In the following, a;b; : : : are elements of a group G.

7



8 1. BASIC DEFINITIONS AND RESULTS

(a) An element e satisfying (1) is called a neutral element. If e0 is a second such element,
then e0 D e � e0 D e. In fact, e is the unique element of G such that e � e D e (apply
G3).

(b) If b �aD e and a� c D e, then

b D b � e D b � .a� c/D .b �a/� c D e � c D c:

Hence the element a0 in (G3) is uniquely determined by a. We call it the inverse of a,
and denote it a�1 (or the negative of a, and denote it �a).

(c) Note that (G1) shows that the product of any ordered triple a1, a2, a3 of elements of
G is unambiguously defined: whether we form a1a2 first and then .a1a2/a3, or a2a3
first and then a1.a2a3/, the result is the same. In fact, (G1) implies that the product of
any ordered n-tuple a1, a2,. . . , an of elements of G is unambiguously defined. We
prove this by induction on n. In one multiplication, we might end up with

.a1 � � �ai /.aiC1 � � �an/ (2)

as the final product, whereas in another we might end up with

.a1 � � �aj /.ajC1 � � �an/: (3)

Note that the expression within each pair of parentheses is well defined because of the
induction hypotheses. Thus, if i D j , (2) equals (3). If i ¤ j , we may suppose i < j .
Then

.a1 � � �ai /.aiC1 � � �an/D .a1 � � �ai /
�
.aiC1 � � �aj /.ajC1 � � �an/

�
.a1 � � �aj /.ajC1 � � �an/D

�
.a1 � � �ai /.aiC1 � � �aj /

�
.ajC1 � � �an/

and the expressions on the right are equal because of (G1).
(d) The inverse of a1a2 � � �an is a�1n a�1n�1 � � �a

�1
1 , i.e., the inverse of a product is the

product of the inverses in the reverse order.
(e) (G3) implies that the cancellation laws hold in groups,

ab D ac H) b D c; baD ca H) b D c

(multiply on left or right by a�1). Conversely, if G is finite, then the cancellation laws
imply (G3): the map x 7! axWG!G is injective, and hence (by counting) bijective;
in particular, e is in the image, and so a has a right inverse; similarly, it has a left
inverse, and the argument in (b) above shows that the two inverses are equal.

Two groups .G;�/ and .G0;�0/ are isomorphic if there exists a one-to-one correspon-
dence a$ a0, G$G0, such that .a�b/0 D a0 �0 b0 for all a;b 2G.

The order jGj of a group G is its cardinality. A finite group whose order is a power of a
prime p is called a p-group.

For an element a of a group G, define

an D

8<:
aa � � �a n > 0 .n copies of a/
e nD 0

a�1a�1 � � �a�1 n < 0 (jnj copies of a�1)



Definitions and examples 9

The usual rules hold:

aman D amCn; .am/n D amn; all m;n 2 Z: (4)

It follows from (4) that the set
fn 2 Z j an D eg

is an ideal in Z, and so equals mZ for some integer m � 0. When mD 0, an ¤ e unless
nD 0, and a is said to have infinite order. When m¤ 0, it is the smallest integer m > 0
such that am D e, and a is said to have finite order m. In this case, a�1 D am�1, and

an D e ” mjn:

EXAMPLES

1.3 Let C1 be the group .Z;C/, and, for an integerm� 1, let Cm be the group .Z=mZ;C/.

1.4 Permutation groups. Let S be a set and let Sym.S/ be the set of bijections ˛WS ! S .
We define the product of two elements of Sym.S/ to be their composite:

˛ˇ D ˛ ıˇ:

In other words, .˛ˇ/.s/D ˛.ˇ.s// for all s 2 S . For any ˛;ˇ; 2 Sym.S/ and s 2 S ,

..˛ ıˇ/ı/.s/D .˛ ıˇ/..s//D ˛.ˇ..s///D .˛ ı .ˇ ı//.s/; (5)

and so associativity holds. The identity map s 7! s is an identity element for Sym.S/, and
inverses exist because we required the elements of Sym.S/ to be bijections. Therefore
Sym.S/ is a group, called the group of symmetries of S . For example, the permutation
group on n letters Sn is defined to be the group of symmetries of the set f1; :::;ng— it has
order nŠ.

1.5 When G and H are groups, we can construct a new group G�H , called the (direct)
product of G and H . As a set, it is the cartesian product of G and H , and multiplication is
defined by

.g;h/.g0;h0/D .gg0;hh0/:

1.6 A group G is commutative (or abelian)1 if

ab D ba; all a;b 2G:

In a commutative group, the product of any finite (not necessarily ordered) family S of
elements is well defined, for example, the empty product is e. Usually, we write commutative
groups additively. With this notation, Equation (4) becomes:

maCnaD .mCn/a; m.na/Dmna:

When G is commutative,

m.aCb/DmaCmb for m 2 Z and a;b 2G,
1“Abelian group” is more common than “commutative group”, but I prefer to use descriptive names where

possible.



10 1. BASIC DEFINITIONS AND RESULTS

and so the map
.m;a/ 7!maWZ�G!G

makes A into a Z-module. In a commutative group G, the elements of finite order form a
subgroup Gtors of G, called the torsion subgroup.

1.7 Let F be a field. The n�n matrices with coefficients in F and nonzero determinant
form a group GLn.F / called the general linear group of degree n. For a finite dimensional
F -vector space V , the F -linear automorphisms of V form a group GL.V / called the general
linear group of V . Note that if V has dimension n, then the choice of a basis determines an
isomorphism GL.V /! GLn.F / sending an automorphism to its matrix with respect to the
basis.

1.8 Let V be a finite dimensional vector space over a field F . A bilinear form on V is a
mapping �WV �V ! F that is linear in each variable. An automorphism of such a � is an
isomorphism ˛WV ! V such that

�.˛v;˛w/D �.v;w/ for all v;w 2 V: (6)

The automorphisms of � form a group Aut.�/. Let e1; : : : ; en be a basis for V , and let

P D .�.ei ; ej //1�i;j�n

be the matrix of �. The choice of the basis identifies Aut.�/ with the group of invertible
matrices A such that2

AT
�P �AD P . (7)

When � is symmetric, i.e.,

�.v;w/D �.w;v/ all v;w 2 V;

and nondegenerate, Aut.�/ is called the orthogonal group of �.
When � is skew-symmetric, i.e.,

�.v;w/D��.w;v/ all v;w 2 V;

and nondegenerate, Aut.�/ is called the symplectic group of �. In this case, there exists a
basis for V for which the matrix of � is

J2m D

�
0 Im
�Im 0

�
; 2mD n;

2When we use the basis to identify V with F n, the pairing � becomes a1

:::
an

!
;

0@ b1

:::
bn

1A 7! .a1; : : : ;an/ �P �

0@ b1

:::
bn

1A :
If A is the matrix of ˛ with respect to the basis, then ˛ corresponds to the map

 a1

:::
an

!
7! A

 a1

:::
an

!
:Therefore,

(6) becomes the statement that

.a1; : : : ;an/ �A
T
�P �A �

0@ b1

:::
bn

1AD .a1; : : : ;an/ �P �
0@ b1

:::
bn

1A for all

 a1

:::
an

!
;

0@ b1

:::
bn

1A 2 F n:
On examining this statement on the standard basis vectors for F n, we see that it is equivalent to (7).
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and the group of invertible matrices A such that

ATJ2mAD J2m

is called the symplectic group Sp2m.

REMARK 1.9 A set S together with a binary operation .a;b/ 7! a �bWS �S! S is called a
magma. When the binary operation is associative, .S; �/ is called a semigroup. The productQ

A
def
D a1 � � �an

of any sequence AD .ai /1�i�n of elements in a semigroup S is well-defined (see 1.2(c)),
and for any pair A and B of such sequences,

.
Q
A/.

Q
B/D

Q
.AtB/ . (8)

Let ; be the empty sequence, i.e., the sequence of elements in S indexed by the empty set.
What should

Q
; be? Clearly, we should have

.
Q
;/.

Q
A/D

Q
.;tA/D

Q
AD

Q
.At;/D .

Q
A/.

Q
;/ :

In other words,
Q
; should be a neutral element. A semigroup with a neutral element

is called a monoid. In a monoid, the product of any finite (possibly empty) sequence of
elements is well-defined, and (8) holds.

ASIDE 1.10 (a) The group conditions (G2,G3) can be replaced by the following weaker conditions
(existence of a left neutral element and left inverses): (G20) there exists an e such that e �aD a for
all a; (G30) for each a 2G, there exists an a0 2G such that a0 �aD e. To see that these imply (G2)
and (G3), let a 2G, and apply (G30) to find a0 and a00 such that a0 �aD e and a00 �a0 D e. Then

a�a0 D e � .a�a0/D .a00 �a0/� .a�a0/D a00 �
�
.a0 �a/�a0

�
D a00 �a0 D e;

whence (G3), and
aD e �aD .a�a0/�aD a� .a0 �a/D a� e;

whence (G2).
(b) A group can be defined to be a set G with a binary operation � satisfying the following

conditions: (g1) � is associative; (g2) G is nonempty; (g3) for each a 2 G, there exists an a0 2 G
such that a0 �a is neutral. As there is at most one neutral element in a set with an associative binary
operation, these conditions obviously imply those in (a). They are minimal in the sense that there
exist sets with a binary operation satisfying any two of them but not the third. For example, .N;C/
satisfies (g1) and (g2) but not (g3); the empty set satisfies (g1) and (g3) but not (g2); the set of 2�2
matrices with coefficents in a field and with A�B D AB �BA satisfies (g2) and (g3) but not (g1).

Multiplication tables

A binary operation on a finite set can be described by its multiplication table:

e a b c : : :

e ee ea eb ec : : :

a ae a2 ab ac : : :

b be ba b2 bc : : :

c ce ca cb c2 : : :
:::

:::
:::

:::
:::
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The element e is an identity element if and only if the first row and column of the table
simply repeat the elements. Inverses exist if and only if each element occurs exactly once
in each row and in each column (see 1.2e). If there are n elements, then verifying the
associativity law requires checking n3 equalities.

For the multiplication table of S3, see the front page. Note that each colour occurs
exactly once in each row and and each column.

This suggests an algorithm for finding all groups of a given finite order n, namely, list
all possible multiplication tables and check the axioms. Except for very small n, this is not
practical! The table has n2 positions, and if we allow each position to hold any of the n
elements, then that gives a total of nn

2

possible tables very few of which define groups. For
example, there are 864D 6277101735386680763835789423207666416102355444464
034512896 binary operations on a set with 8 elements, but only five isomorphism classes of
groups of order 8 (see 4.21).

Subgroups

PROPOSITION 1.11 Let S be a nonempty subset of a group G. If

S1: a;b 2 S H) ab 2 S , and
S2: a 2 S H) a�1 2 S;

then the binary operation on G makes S into a group.

PROOF. (S1) implies that the binary operation on G defines a binary operation S �S ! S

on S , which is automatically associative. By assumption S contains at least one element a,
its inverse a�1, and the product e D aa�1. Finally (S2) shows that the inverses of elements
in S lie in S . 2

A nonempty subset S satisfying (S1) and (S2) is called a subgroup of G. When S is
finite, condition (S1) implies (S2): let a 2 S ; then fa;a2; : : :g � S , and so a has finite order,
say an D e; now a�1 D an�1 2 S . The example .N;C/� .Z;C/ shows that (S1) does not
imply (S2) when S is infinite.

EXAMPLE 1.12 The centre of a group G is the subset

Z.G/D fg 2G j gx D xg for all x 2Gg:

It is a subgroup of G.

PROPOSITION 1.13 An intersection of subgroups of G is a subgroup of G:

PROOF. It is nonempty because it contains e, and (S1) and (S2) obviously hold. 2

REMARK 1.14 It is generally true that an intersection of subobjects of an algebraic object
is a subobject. For example, an intersection of subrings of a ring is a subring, an intersection
of submodules of a module is a submodule, and so on.

PROPOSITION 1.15 For any subset X of a group G, there is a smallest subgroup of G
containingX . It consists of all finite products of elements ofX and their inverses (repetitions
allowed).
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PROOF. The intersection S of all subgroups of G containing X is again a subgroup con-
taining X , and it is evidently the smallest such group. Clearly S contains with X , all finite
products of elements of X and their inverses. But the set of such products satisfies (S1) and
(S2) and hence is a subgroup containing X . It therefore equals S . 2

The subgroup S given by the proposition is denoted hXi, and is called the subgroup
generated byX . For example, h;i D feg. If every element ofX has finite order, for example,
if G is finite, then the set of all finite products of elements of X is already a group and so
equals hXi.

We say that X generates G if G D hXi, i.e., if every element of G can be written as a
finite product of elements from X and their inverses. Note that the order of an element a of
a group is the order of the subgroup hai it generates.

EXAMPLES

1.16 The cyclic groups. A group is said to be cyclic if it is generated by a single element,
i.e., if G D hri for some r 2G. If r has finite order n, then

G D fe;r; r2; :::; rn�1g � Cn; r i $ i mod n;

and G can be thought of as the group of rotational symmetries about the centre of a regular
polygon with n-sides. If r has infinite order, then

G D f: : : ; r�i ; : : : ; r�1; e; r; : : : ; r i ; : : :g � C1; r i $ i:

Thus, up to isomorphism, there is exactly one cyclic group of order n for each n �1. In
future, we shall loosely use Cn to denote any cyclic group of order n (not necessarily Z=nZ
or Z).

1.17 The dihedral groups Dn.3 For n � 3, Dn is the group of symmetries of a regular
polygon with n-sides.4 Number the vertices 1; : : : ;n in the counterclockwise direction. Let r
be the rotation through 2�=n about the centre of polygon (so i 7! iC1 mod n/, and let s
be the reflection in the line (= rotation about the line) through the vertex 1 and the centre of
the polygon (so i 7! nC2� i mod n). For example, the pictures

�

1

2 3

r

s

s D

�
1$ 1

2$ 3

r D 1! 2! 3! 1

�

1

2

3

4

r

s

s D

8<:
1$ 1

2$ 4

3$ 3

r D 1! 2! 3! 4! 1

3This group is denoted D2n or Dn depending on whether the author is viewing it abstractly or concretely as
the symmetries of an n-polygon (or perhaps on whether the author is a group theorist or not; see mo48434).

4More formally, Dn can be defined to be the subgroup of Sn generated by r W i 7! i C 1 (mod n/ and
sW i 7! nC2� i (mod n). Then all the statements concerning Dn can proved without appealing to geometry.
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illustrate the groups D3 and D4. In the general case

rn D eI s2 D eI srs D r�1 (so sr D rn�1s/:

These equalites imply that

Dn D fe;r; :::; r
n�1; s; rs; :::; rn�1sg;

and it is clear from the geometry that the elements of the set are distinct, and so jDnj D 2n.
Let t be the reflection in the line through the midpoint of the side joining the vertices 1

and 2 and the centre of the polygon (so i 7! nC3� i mod n/. Then r D ts, because

i
s
7! nC2� i

t
7! nC3� .nC2� i/D iC1 mod n:

Hence Dn D hs; ti and

s2 D e; t2 D e; .ts/n D e D .st/n:

We define D1 to be C2 D f1;rg and D2 to be C2�C2 D f1;r; s; rsg. The group D2
is also called the Klein Viergruppe or, more simply, the 4-group. Note that D3 is the full
group of permutations of f1;2;3g. It is the smallest noncommutative group.

By adding a tick at each vertex of a regular polygon, we can reduce its symmetry group
from Dn to Cn. By adding a line from the centre of the polygon to the vertex 1, we reduce
its symmetry group to hsi. Physicist like to say that we have “broken the symmetry”.

1.18 The quaternion group Q: Let aD
�

0
p
�1

p
�1 0

�
and b D

�
0 1
�1 0

�
. Then

a4 D e; a2 D b2; bab�1 D a3 (so baD a3b).

The subgroup of GL2.C/ generated by a and b is

QD fe;a;a2;a3;b;ab;a2b;a3bg:

The groupQ can also be described as the subset f˙1;˙i;˙j;˙kg of the quaternion algebra
H. Recall that

HD R1˚Ri˚Rj ˚Rk

with the multiplication determined by

i2 D�1D j 2; ij D k D�j i:

The map i 7! a, j 7! b extends uniquely to a homomorphism H!M2.C/ of R-algebras,
which maps the group hi;j i isomorphically onto ha;bi.

1.19 Recall that Sn is the permutation group on f1;2; :::;ng. A transposition is a permu-
tation that interchanges two elements and leaves all other elements unchanged. It is not
difficult to see that Sn is generated by transpositions (see (4.26) below for a more precise
statement).
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Groups of small order
[For] nD 6, there are three groups, a group C6,
and two groups C2�C3 and S3.
Cayley, American J. Math. 1 (1878), p. 51.

For each prime p, there is only one group of order p, namely Cp (see 1.28 below). In the
following table, cCnD t means that there are c commutative groups and n noncommutative
groups (up to isomorphism, of course).

jGj cCnD t Groups Ref.

4 2C0D 2 C4, C2�C2 4.18

6 1C1D 2 C6; S3 4.23

8 3C2D 5 C8, C2�C4 , C2�C2�C2; Q, D4 4.21

9 2C0D 2 C9, C3�C3 4.18

10 1C1D 2 C10; D5 5.14

12 2C3D 5 C12, C2�C6; C2�S3, A4, C4ÌC3 5.16

14 1C1D 2 C14; D7 5.14

15 1C0D 1 C15 5.14

16 5C9D 14 See Wild 2005

18 2C3D 5 C18, C3�C6; D9; S3�C3, .C3�C3/ÌC2
20 2C3D 5 C20,C2�C10;D10,C5ÌC4,ha;b ja5 D b2 D c2 D abci

21 1C1D 2 C21; ha;b j a3 D b7 D 1, baD ab2i

22 1C1D 2 C22; D11 5.14

24 3C12D15 groupprops.subwiki.org/wiki/Groups of order 24

Here ha;b ja5 D b2 D c2 D abci is the group with generators a and b and relations a5 D
b2 D c2 D abc (see Chapter 2). It is the dicyclic group.

Roughly speaking, the more high powers of primes divide n, the more groups of order n
there should be. In fact, if f .n/ is the number of isomorphism classes of groups of order n,
then

f .n/� n.
2

27
Co.1//e.n/2

where e.n/ is the largest exponent of a prime dividing n and o.1/! 0 as e.n/!1 (see
Pyber 1993).

By 2001, a complete irredundant list of groups of order � 2000 had been found — up to
isomorphism, there are exactly 49,910,529,484 (Besche et al. 2001).5

5In fact Besche et al. did not construct the groups of order 1024 individually, but it is known that there are
49487365422 groups of that order. The remaining 423164062 groups of order up to 2000 (of which 408641062
have order 1536) are available as libraries in GAP and Magma. I would guess that 2048 is the smallest number
such that the exact number of groups of that order is unknown (Derek Holt, mo46855; Nov 21, 2010).
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Homomorphisms

DEFINITION 1.20 A homomorphism from a group G to a second G0 is a map ˛WG!G0

such that ˛.ab/D ˛.a/˛.b/ for all a;b 2G. An isomorphism is a bijective homomorphism.

For example, the determinant map detWGLn.F /! F � is a homomorphism.

1.21 Let ˛ be a homomorphism. For any elements a1; : : : ;am of G,

˛.a1 � � �am/D ˛.a1.a2 � � �am//

D ˛.a1/˛.a2 � � �am/

� � �

D ˛.a1/ � � �˛.am/,

and so homomorphisms preserve all products. In particular, for m� 1,

˛.am/D ˛.a/m: (9)

Moreover ˛.e/D ˛.ee/D ˛.e/˛.e/, and so ˛.e/D e (apply 1.2a). Also

aa�1 D e D a�1a H) ˛.a/˛.a�1/D e D ˛.a�1/˛.a/;

and so ˛.a�1/D ˛.a/�1. It follows that (9) holds for all m 2 Z, and so a homomorphism of
commutative groups is also a homomorphism of Z-modules.

As we noted above, each row of the multiplication table of a group is a permutation of
the elements of the group. As Cayley pointed out, this allows one to realize the group as a
group of permutations.

THEOREM 1.22 (CAYLEY) There is a canonical injective homomorphism

˛WG! Sym.G/:

PROOF. For a 2G, define aLWG!G to be the map x 7! ax (left multiplication by a). For
x 2G,

.aL ıbL/.x/D aL.bL.x//D aL.bx/D abx D .ab/L.x/;

and so .ab/L D aL ıbL. As eL D id, this implies that

aL ı .a
�1/L D idD .a�1/L ıaL;

and so aL is a bijection, i.e., aL 2 Sym.G/. Hence a 7! aL is a homomorphism G !

Sym.G/, and it is injective because of the cancellation law. 2

COROLLARY 1.23 A finite group of order n can be realized as a subgroup of Sn.

PROOF. List the elements of the group as a1; : : : ;an. 2

Unfortunately, unless n is small, Sn is too large to be manageable. We shall see later
(4.22) that G can often be embedded in a permutation group of much smaller order than nŠ.
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Cosets

For a subset S of a group G and an element a of G, we let

aS D fas j s 2 Sg

SaD fsa j s 2 Sg:

Because of the associativity law, a.bS/D .ab/S , and so we can denote this set unambigu-
ously by abS:

When H is a subgroup of G, the sets of the form aH are called the left cosets of H
in G, and the sets of the form Ha are called the right cosets of H in G. Because e 2H ,
aH DH if and only if a 2H .

EXAMPLE 1.24 Let G D .R2;C/, and let H be a subspace of dimension 1 (line through
the origin). Then the cosets (left or right) of H are the lines aCH parallel to H .

PROPOSITION 1.25 Let H be a subgroup of a group G.
(a) An element a of G lies in a left coset C of H if and only if C D aH:
(b) Two left cosets are either disjoint or equal.
(c) aH D bH if and only if a�1b 2H:
(d) Any two left cosets have the same number of elements (possibly infinite).

PROOF. (a) Certainly a 2 aH . Conversely, if a lies in the left coset bH , then a D bh for
some h, and so

aH D bhH D bH:

(b) If C and C 0 are not disjoint, then they have a common element a, and C D aH and
C 0 D aH by (a).

(c) If a�1b 2 H , then H D a�1bH , and so aH D aa�1bH D bH . Conversely, if
aH D bH , then H D a�1bH , and so a�1b 2H .

(d) The map .ba�1/LWah 7! bh is a bijection aH ! bH: 2

The index .G WH/ of H in G is defined to be the number of left cosets of H in G.6 For
example, .G W 1/ is the order of G.

As the left cosets of H in G cover G, (1.25b) shows that they form a partition G. In
other words, the condition “a and b lie in the same left coset” is an equivalence relation on
G.

THEOREM 1.26 (LAGRANGE) If G is finite, then

.G W 1/D .G WH/.H W 1/:

In particular, the order of every subgroup of a finite group divides the order of the group.

PROOF. The left cosets of H in G form a partition of G, there are .G WH/ of them, and
each left coset has .H W 1/ elements. 2

COROLLARY 1.27 The order of each element of a finite group divides the order of the
group.

6More formally, .G WH/ is the cardinality of the set faH j a 2Gg.
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PROOF. Apply Lagrange’s theorem to H D hgi, recalling that .H W 1/D order.g/. 2

EXAMPLE 1.28 If G has order p, a prime, then every element of G has order 1 or p. But
only e has order 1, and so G is generated by any element a¤ e. In particular, G is cyclic
and so G � Cp. This shows, for example, that, up to isomorphism, there is only one group
of order 1;000;000;007 (because this number is prime). In fact there are only two groups of
order 1;000;000;014;000;000;049 (see 4.18).

1.29 For a subset S of G, let S�1 D fg�1 j g 2 Sg. Then .aH/�1 is the right cosetHa�1,
and .Ha/�1 D a�1H . Therefore S 7! S�1 defines a one-to-one correspondence between
the set of left cosets and the set of right cosets under which aH $Ha�1. Hence .G WH/ is
also the number of right cosets of H in G: But, in general, a left coset will not be a right
coset (see 1.34 below).

1.30 Lagrange’s theorem has a partial converse: if a prime p divides mD .G W 1/, then G
has an element of order p (Cauchy’s theorem 4.13); if a prime power pn divides m, then G
has a subgroup of order pn (Sylow’s theorem 5.2). However, note that the 4-group C2�C2
has order 4, but has no element of order 4, and A4 has order 12, but has no subgroup of order
6 (see Exercise 4-15).

More generally, we have the following result.

PROPOSITION 1.31 For any subgroups H �K of G,

.G WK/D .G WH/.H WK/

(meaning either both are infinite or both are finite and equal).

PROOF. Write G D
F
i2I giH (disjoint union), and H D

F
j2J hjK (disjoint union). On

multiplying the second equality by gi , we find that giH D
F
j2J gihjK (disjoint union),

and so G D
F
i;j2I�J gihjK (disjoint union). This shows that

.G WK/D jI jjJ j D .G WH/.H WK/: 2

Normal subgroups

When S and T are two subsets of a group G, we let

ST D fst j s 2 S , t 2 T g:

Because of the associativity law, R.ST /D .RS/T , and so we can denote this set unambigu-
ously as RST .

A subgroup N of G is normal, denoted N GG, if gNg�1 DN for all g 2G.

REMARK 1.32 To show that N is normal, it suffices to check that gNg�1 � N for all g,
because multiplying this inclusion on the left and right with g�1 and g respectively gives
the inclusion N � g�1Ng, and rewriting this with g�1 for g gives that N � gNg�1 for all
g. However, the next example shows that there can exist a subgroup N of a group G and an
element g of G such that gNg�1 �N but gNg�1 ¤N .
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EXAMPLE 1.33 Let G D GL2.Q/, and let H D
˚�
1 n
0 1

� ˇ̌
n 2 Z

	
. Then H is a subgroup of

G; in fact H ' Z. Let g D
�
5 0
0 1

�
. Then

g

�
1 n

0 1

�
g�1 D

�
5 0

0 1

��
1 n

0 1

��
5�1 0

0 1

�
D

�
1 5n

0 1

�
:

Hence gHg�1 ¦H (and g�1Hg 6�H ).

PROPOSITION 1.34 A subgroup N of G is normal if and only if every left coset of N in G
is also a right coset, in which case, gN DNg for all g 2G:

PROOF. Clearly,
gNg�1 DN ” gN DNg:

Thus, if N is normal, then every left coset is a right coset (in fact, gN DNg). Conversely, if
the left coset gN is also a right coset, then it must be the right coset Ng by (1.25a). Hence
gN DNg, and so gNg�1 DN . 2

1.35 The proposition says that, in order for N to be normal, we must have that for all
g 2 G and n 2 N , there exists an n0 2 N such that gnD n0g (equivalently, for all g 2 G
and n 2N , there exists an n0 such that ng D gn0). In other words, to say that N is normal
amounts to saying that an element of G can be moved past an element of N at the cost of
replacing the element of N by another element of N .

EXAMPLE 1.36 (a) Every subgroup of index two is normal. Indeed, let g 2GXH . Then
G DH tgH (disjoint union). Hence gH is the complement of H in G. Similarly, Hg is
the complement of H in G, and so gH DHg:

(b) Consider the dihedral group

Dn D fe;r; : : : ; r
n�1; s; : : : ; rn�1sg:

Then Cn D fe;r; : : : ; rn�1g has index 2, and hence is normal. For n� 3 the subgroup fe;sg
is not normal because r�1sr D rn�2s … fe;sg.

(c) Every subgroup of a commutative group is normal (obviously), but the converse
is false: the quaternion group Q is not commutative, but every subgroup is normal (see
Exercise 1-1).

A group G is said to be simple if it has no normal subgroups other than G and feg. Such
a group can still have lots of nonnormal subgroups — in fact, the Sylow theorems (Chapter
5) imply that every finite group has nontrivial subgroups unless it is cyclic of prime order.

PROPOSITION 1.37 If H and N are subgroups of G and N is normal, then HN is a
subgroup of G. If H is also normal, then HN is a normal subgroup of G.

PROOF. The set HN is nonempty, and

.h1n1/.h2n2/
1.35
D h1h2n

0
1n2 2HN;

and so it is closed under multiplication. Since

.hn/�1 D n�1h�1
1.35
D h�1n0 2HN
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it is also closed under the formation of inverses, and so HN is a subgroup. If both H and N
are normal, then

gHNg�1 D gHg�1 �gNg�1 DHN

for all g 2G. 2

An intersection of normal subgroups of a group is again a normal subgroup (cf. 1.14).
Therefore, we can define the normal subgroup generated by a subset X of a group G to
be the intersection of the normal subgroups containing X . Its description in terms of X
is a little complicated. We say that a subset X of a group G is normal (or closed under
conjugation) if gXg�1 �X for all g 2G.

LEMMA 1.38 If X is normal, then the subgroup hXi generated by it is normal.

PROOF. The map “conjugation by g”, a 7! gag�1, is a homomorphismG!G. If a 2 hXi,
say, aD x1 � � �xm with each xi or its inverse in X , then

gag�1 D .gx1g
�1/ � � �.gxmg

�1/.

As X is closed under conjugation, each gxig�1 or its inverse lies in X , and so ghXig�1 �
hXi. 2

LEMMA 1.39 For any subset X of G, the subset
S
g2G gXg

�1 is normal, and it is the
smallest normal set containing X .

PROOF. Obvious. 2

On combining these lemmas, we obtain the following proposition.

PROPOSITION 1.40 The normal subgroup generated by a subsetX ofG is h
S
g2G gXg

�1i.

Kernels and quotients

The kernel of a homomorphism ˛WG!G0 is

Ker.˛/D fg 2Gj ˛.g/D eg:

If ˛ is injective, then Ker.˛/D feg. Conversely, if Ker.˛/D feg, then ˛ is injective, because

˛.g/D ˛.g0/ H) ˛.g�1g0/D e H) g�1g0 D e H) g D g0.

PROPOSITION 1.41 The kernel of a homomorphism is a normal subgroup.

PROOF. It is obviously a subgroup, and if a 2 Ker.˛/, so that ˛.a/D e, and g 2G, then

˛.gag�1/D ˛.g/˛.a/˛.g/�1 D ˛.g/˛.g/�1 D e:

Hence gag�1 2 Ker.˛/. 2

For example, the kernel of the homomorphism detWGLn.F /! F � is the group of n�n
matrices with determinant 1 — this group SLn.F / is called the special linear group of
degree n.
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PROPOSITION 1.42 Every normal subgroup occurs as the kernel of a homomorphism. More
precisely, if N is a normal subgroup of G, then there is a unique group structure on the set
G=N of cosets ofN inG for which the natural map a 7! Œa�WG!G=N is a homomorphism.

PROOF. Write the cosets as left cosets, and define .aN /.bN /D .ab/N . We have to check
(a) that this is well-defined, and (b) that it gives a group structure on the set of cosets. It will
then be obvious that the map g 7! gN is a homomorphism with kernel N .

(a). Let aN D a0N and bN D b0N ; we have to show that abN D a0b0N . But

abN D a.bN /D a.b0N/
1.34
D aNb0 D a0Nb0

1.34
D a0b0N:

(b). The product is certainly associative, the coset N is an identity element, and a�1N
is an inverse for aN . 2

The group G=N is called the7 quotient of G by N .
Propositions 1.41 and 1.42 show that the normal subgroups are exactly the kernels of

homomorphisms.

PROPOSITION 1.43 The map a 7! aN WG ! G=N has
the following universal property: for any homomorphism
˛WG!G0 of groups such that ˛.N /D feg, there exists a
unique homomorphism G=N !G0 making the diagram at
right commute:

G G=N

G0:

a 7! aN

˛

PROOF. Note that for n 2N , ˛.gn/D ˛.g/˛.n/D ˛.g/, and so ˛ is constant on each left
coset gN of N in G. It therefore defines a map

N̨ WG=N !G0; N̨ .gN /D ˛.g/;

and N̨ is a homomorphism because

N̨ ..gN / � .g0N//D N̨ .gg0N/D ˛.gg0/D ˛.g/˛.g0/D N̨ .gN / N̨ .g0N/.

The uniqueness of N̨ follows from the surjectivity of G!G=N . 2

EXAMPLE 1.44 (a) Consider the subgroup mZ of Z. The quotient group Z=mZ is a cyclic
group of order m.

(b) Let L be a line through the origin in R2. Then R2=L is isomorphic to R (because it
is a one-dimensional vector space over R).

(c) For n� 2, the quotient Dn=hri D fNe; Nsg (cyclic group of order 2).

Theorems concerning homomorphisms

The theorems in this subsection are sometimes called the isomorphism theorems (first,
second, . . . , or first, third, . . . , or . . . ).

7Some authors say “factor” instead of “quotient”, but this can be confused with “direct factor”.
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FACTORIZATION OF HOMOMORPHISMS

Recall that the image of a map ˛WS ! T is ˛.S/D f˛.s/ j s 2 Sg.

THEOREM 1.45 (HOMOMORPHISM THEOREM) For any homomorphism ˛WG ! G0 of
groups, the kernel N of ˛ is a normal subgroup of G, the image I of ˛ is a subgroup of G0,
and ˛ factors in a natural way into the composite of a surjection, an isomorphism, and an
injection:

G G0

G=N I:

˛

g 7!gN surjective

gN 7!˛.g/

isomorphism

injective

PROOF. We have already seen (1.41) that the kernel is a normal subgroup of G. If b D ˛.a/
and b0 D ˛.a0/, then bb0 D ˛.aa0/ and b�1 D ˛.a�1/, and so I def

D ˛.G/ is a subgroup of
G0. The universal property of quotients (1.43) shows that the map x 7! ˛.x/WG! I defines
a homomorphism N̨ WG=N ! I with N̨ .gN / D ˛.g/. The homomorphism N̨ is certainly
surjective, and if N̨ .gN /D e, then g 2Ker.˛/DN , and so N̨ has trivial kernel. This implies
that it is injective (p. 20). 2

THE ISOMORPHISM THEOREM

THEOREM 1.46 (ISOMORPHISM THEOREM) Let H be a subgroup of G and N a normal
subgroup of G. Then HN is a subgroup of G, H \N is a normal subgroup of H , and the
map

h.H \N/ 7! hN WH=H \N !HN=N

is an isomorphism.

PROOF. We have already seen (1.37) that HN is a subgroup. Consider the map

H !G=N; h 7! hN:

This is a homomorphism, and its kernel isH \N , which is therefore normal inH . According
to Theorem 1.45, the map induces an isomorphism H=H \N ! I where I is its image.
But I is the set of cosets of the form hN with h 2H , i.e., I DHN=N . 2

It is not necessary to assume that N be normal in G as long as hNh�1 D N for all
h 2H (i.e., H is contained in the normalizer of N — see later). Then H \N is still normal
in H , but it need not be a normal subgroup of G.

THE CORRESPONDENCE THEOREM

The next theorem shows that if NG is a quotient group of G, then the lattice of subgroups in
NG captures the structure of the lattice of subgroups of G lying over the kernel of G! NG.

THEOREM 1.47 (CORRESPONDENCE THEOREM) Let ˛WG� NG be a surjective homo-
morphism, and let N D Ker.˛/. Then there is a one-to-one correspondence

fsubgroups of G containing N g
1W1
$ fsubgroups of NGg

under which a subgroup H of G containing N corresponds to NH D ˛.H/ and a subgroup
NH of NG corresponds to H D ˛�1. NH/. Moreover, if H $ NH and H 0$ NH 0, then
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(a) NH � NH 0 ” H �H 0, in which case . NH 0 W NH/D .H 0 WH/;
(b) NH is normal in NG if and only if H is normal in G, in which case, ˛ induces an

isomorphism
G=H

'
! NG= NH:

PROOF. If NH is a subgroup of NG, then ˛�1. NH/ is easily seen to be a subgroup of G
containing N , and if H is a subgroup of G, then ˛.H/ is a subgroup of NG (see 1.45).
Clearly, ˛�1˛.H/ D HN , which equals H if and only if H � N , and ˛˛�1. NH/ D NH .
Therefore, the two operations give the required bijection. The remaining statements are
easily verified. For example, a decomposition H 0 D

F
i2I aiH of H 0 into a disjoint union

of left cosets of H gives a similar decomposition NH 0 D
F
i2I ˛.ai /

NH of NH 0. 2

COROLLARY 1.48 Let N be a normal subgroup of G; then there is a one-to-one correspon-
dence between the set of subgroups of G containing N and the set of subgroups of G=N ,
H $H=N . Moreover H is normal in G if and only if H=N is normal in G=N , in which
case the homomorphism g 7! gN WG!G=N induces an isomorphism

G=H
'
! .G=N/=.H=N/.

PROOF. This is the special case of the theorem in which ˛ is g 7! gN WG!G=N . 2

EXAMPLE 1.49 LetG DD4 and letN be its subgroup hr2i. Recall (1.17) that srs�1D r3,
and so sr2s�1 D

�
r3
�2
D r2. Therefore N is normal. The groups G and G=N have the

following lattices of subgroups:

D4 D4=hr
2i

hr2; si hri hr2; rsi hNsi hNri hNr Nsi

hsi hr2si hr2i hrsi hr3si 1

1

Direct products

Let G be a group, and let H1; : : : ;Hk be subgroups of G. We say that G is a direct product
of the subgroups Hi if the map

.h1;h2; : : : ;hk/ 7! h1h2 � � �hk WH1�H2� � � ��Hk!G

is an isomorphism of groups. This means that each element g of G can be written uniquely
in the form g D h1h2 � � �hk , hi 2Hi , and that if g D h1h2 � � �hk and g0 D h01h

0
2 � � �h

0
k

, then

gg0 D .h1h
0
1/.h2h

0
2/ � � �.hkh

0
k/:

The following propositions give criteria for a group to be a direct product of subgroups.
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PROPOSITION 1.50 A group G is a direct product of subgroups H1, H2 if and only if

(a) G DH1H2,
(b) H1\H2 D feg, and
(c) every element of H1 commutes with every element of H2.

PROOF. If G is the direct product of H1 and H2, then certainly (a) and (c) hold, and (b)
holds because, for any g 2H1\H2, the element .g;g�1/ maps to e under .h1;h2/ 7! h1h2
and so equals .e;e/.

Conversely, (c) implies that .h1;h2/ 7! h1h2 is a homomorphism, and (b) implies that it
is injective:

h1h2 D e H) h1 D h
�1
2 2H1\H2 D feg:

Finally, (a) implies that it is surjective. 2

PROPOSITION 1.51 A group G is a direct product of subgroups H1, H2 if and only if

(a) G DH1H2,
(b) H1\H2 D feg, and
(c) H1 and H2 are both normal in G.

PROOF. Certainly, these conditions are implied by those in the previous proposition, and so
it remains to show that they imply that each element h1 of H1 commutes with each element
h2 of H2. Two elements h1;h2 of a group commute if and only if their commutator

Œh1;h2�
def
D .h1h2/.h2h1/

�1

is e. But

.h1h2/.h2h1/
�1
D h1h2h

�1
1 h�12 D

�
.h1h2h

�1
1 / �h�12

h1 �
�
h2h
�1
1 h�12

� ;

which is in H2 because H2 is normal, and is in H1 because H1 is normal. Therefore (b)
implies Œh1;h2�D e. 2

PROPOSITION 1.52 A groupG is a direct product of subgroupsH1;H2; : : : ;Hk if and only
if

(a) G DH1H2 � � �Hk;
(b) for each j , Hj \ .H1 � � �Hj�1HjC1 � � �Hk/D feg, and
(c) each of H1;H2; : : : ;Hk is normal in G,

PROOF. The necessity of the conditions being obvious, we shall prove only the sufficiency.
For kD 2, we have just done this, and so we argue by induction on k. An induction argument
using (1.37) shows that H1 � � �Hk�1 is a normal subgroup of G. The conditions (a,b,c) hold
for the subgroups H1; : : : ;Hk�1 of H1 � � �Hk�1, and so the induction hypothesis shows that

.h1;h2; : : : ;hk�1/ 7! h1h2 � � �hk�1WH1�H2� � � ��Hk�1!H1H2 � � �Hk�1

is an isomorphism. The pair H1 � � �Hk�1, Hk satisfies the hypotheses of (1.51), and so

.h;hk/ 7! hhk W.H1 � � �Hk�1/�Hk!G

is also an isomorphism. The composite of these isomorphisms

H1� � � ��Hk�1�Hk
.h1;:::;hk/ 7!.h1���hk�1;hk/
������������������!H1 � � �Hk�1�Hk

.h;hk/7!hhk
���������!G

sends .h1;h2; : : : ;hk/ to h1h2 � � �hk : 2
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Commutative groups

The classification of finitely generated commutative groups is most naturally studied as part
of the theory of modules over a principal ideal domain, but, for the sake of completeness, I
include an elementary exposition here.

Let M be a commutative group, written additively. The subgroup hx1; : : : ;xki of M
generated by the elements x1; : : : ;xk consists of the sums

P
mixi , mi 2 Z. A subset

fx1; : : : ;xkg of M is a basis for M if it generates M and

m1x1C�� �Cmkxk D 0; mi 2 Z H) mixi D 0 for every i I

then
M D hx1i˚ � � �˚hxki:

LEMMA 1.53 Let x1; : : : ;xk generate M . For any c1; : : : ; ck 2 N with gcd.c1; : : : ; ck/D 1,
there exist generators y1; : : : ;yk for M such that y1 D c1x1C�� �C ckxk .

PROOF. We argue by induction on s D c1C�� �C ck . The lemma certainly holds if s D 1,
and so we assume s > 1. Then, at least two ci are nonzero, say, c1 � c2 > 0. Now

˘ fx1;x2Cx1;x3; : : : ;xkg generates M ,
˘ gcd.c1� c2; c2; c3; : : : ; ck/D 1, and
˘ .c1� c2/C c2C�� �C ck < s,

and so, by induction, there exist generators y1; : : : ;yk for M such that

y1 D .c1� c2/x1C c2.x1Cx2/C c3x3C�� �C ckxk

D c1x1C�� �C ckxk . 2

THEOREM 1.54 Every finitely generated commutative group M has a basis; hence it is a
finite direct sum of cyclic groups.

PROOF. 8We argue by induction on the number of generators of M . If M can be generated
by one element, the statement is trivial, and so we may assume that it requires at least k > 1
generators. Among the generating sets fx1; : : : ;xkg for M with k elements there is one for
which the order of x1 is the smallest possible. We shall show that M is then the direct sum
of hx1i and hx2; : : : ;xki. This will complete the proof, because the induction hypothesis
provides us with a basis for the second group, which together with x1 forms a basis for M .

If M is not the direct sum of hx1i and hx2; : : : ;xki, then there exists a relation

m1x1Cm2x2C�� �Cmkxk D 0 (10)

with m1x1 ¤ 0. After possibly changing the sign of some of the xi , we may suppose that
m1; : : : ;mk 2 N and m1 < order.x1/. Let d D gcd.m1; : : : ;mk/ > 0, and let ci D mi=d .
According to the lemma, there exists a generating set y1; : : : ;yk such that y1 D c1x1C�� �C
ckxk . But

dy1 Dm1x1Cm2x2C�� �Cmkxk D 0

and d �m1 < order.x1/, and so this contradicts the choice of fx1; : : : ;xkg. 2

8John Stillwell tells me that, for finite commutative groups, this is similar to the first proof of the theorem,
given by Kronecker in 1870.
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COROLLARY 1.55 A finite commutative group is cyclic if, for each n > 0, it contains at
most n elements of order dividing n.

PROOF. After the Theorem 1.54, we may suppose that G D Cn1
� � � � �Cnr

with ni 2 N.
If n divides ni and nj with i ¤ j , then G has more than n elements of order dividing n.
Therefore, the hypothesis implies that the ni are relatively prime. Let ai generate the i th
factor. Then .a1; : : : ;ar/ has order n1 � � �nr , and so generates G. 2

EXAMPLE 1.56 Let F be a field. The elements of order dividing n in F � are the roots of
the polynomial Xn�1. Because unique factorization holds in F ŒX�, there are at most n of
these, and so the corollary shows that every finite subgroup of F � is cyclic.

THEOREM 1.57 A nonzero finitely generated commutative group M can be expressed

M � Cn1
� � � ��Cns

�C r1 (11)

for certain integers n1; : : : ;ns � 2 and r � 0. Moreover,

(a) r is uniquely determined by M ;
(b) the ni can be chosen so that n1 � 2 and n1jn2; : : : ;ns�1jns , and then they are uniquely

determined by M ;
(c) the ni can be chosen to be powers of prime numbers, and then they are uniquely

determined by M .

The number r is called the rank of M . By r being uniquely determined by M , we mean
that in any two decompositions of M of the form (11), the number of copies of C1 will be
the same (and similarly for the ni in (b) and (c)). The integers n1; : : : ;ns in (b) are called the
invariant factors of M . Statement (c) says that M can be expressed

M � C
p

e1
1

� � � ��Cpet
t
�C r1, ei � 1, (12)

for certain prime powers pei

i (repetitions of primes allowed), and that the integers pe1

1 ; : : : ;p
et

t

are uniquely determined by M ; they are called the elementary divisors of M .
PROOF. The first assertion is a restatement of Theorem 1.54.

(a) For a prime p not dividing any of the ni ,

M=pM � .C1=pC1/
r
� .Z=pZ/r ;

and so r is the dimension of M=pM as an Fp-vector space.
(b,c) If gcd.m;n/D 1, then Cm�Cn contains an element of order mn, and so

Cm�Cn � Cmn: (13)

Use (13) to decompose the Cni
into products of cyclic groups of prime power order. Once

this has been achieved, (13) can be used to combine factors to achieve a decomposition as in
(b); for example, Cns

D
Q
C
p

ei
i

where the product is over the distinct primes among the pi
and ei is the highest exponent for the prime pi .

In proving the uniqueness statements in (b) and (c), we can replace M with its torsion
subgroup (and so assume r D 0). A prime p will occur as one of the primes pi in (12) if
and only M has an element of order p, in which case p will occur exact a times where pa
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is the number of elements of order dividing p. Similarly, p2 will divide some pei

i in (12)
if and only if M has an element of order p2, in which case it will divide exactly b of the
p
ei

i where pa�bp2b is the number of elements in M of order dividing p2. Continuing in
this fashion, we find that the elementary divisors of M can be read off from knowing the
numbers of elements of M of each prime power order.

The uniqueness of the invariant factors can be derived from that of the elementary
divisors, or it can be proved directly: ns is the smallest integer > 0 such that nsM D 0; ns�1
is the smallest integer > 0 such that ns�1M is cyclic; ns�2 is the smallest integer such that
ns�2 can be expressed as a product of two cyclic groups, and so on. 2

SUMMARY 1.58 Each finite commutative group is isomorphic to exactly one of the groups

Cn1
� � � ��Cnr

; n1jn2; : : : ;nr�1jnr :

The order of this group is n1 � � �nr . For example, each commutative group of order 90 is
isomorphic to exactly one of C90 or C3�C30 — to see this, note that the largest invariant
factor must be a factor of 90 divisible by all the prime factors of 90.

THE LINEAR CHARACTERS OF A COMMUTATIVE GROUP

Let �.C/D fz 2 C j jzj D 1g. This is an infinite group. For any integer n, the set �n.C/ of
elements of order dividing n is cyclic of order n; in fact,

�n.C/D fe2�im=n j 0�m� n�1g D f1;�; : : : ; �n�1g

where � D e2�i=n is a primitive nth root of 1.
A linear character (or just character) of a group G is a homomorphism G ! �.C/.

The homomorphism a 7! 1 is called the trivial (or principal) character.

EXAMPLE 1.59 The quadratic residue modulo p of an integer a not divisible by p is
defined by �

a

p

�
D

�
1 if a is a square in Z=pZ
�1 otherwise.

Clearly, this depends only on a modulo p, and if neither a nor b is divisible by p,
then

�
ab
p

�
D

�
a
p

��
b
p

�
(because .Z=pZ/� is cyclic). Therefore Œa� 7!

�
a
p

�
W.Z=pZ/�!

f˙1g D �2.C/ is a character of .Z=pZ/�.

The set of characters of a group G becomes a group G_ under the addition,

.�C�0/.g/D �.g/�0.g/;

called the dual group of G. For example, the dual group Z_ of Z is isomorphic to �.C/ by
the map � 7! �.1/.

THEOREM 1.60 Let G be a finite commutative group.

(a) The dual of G_ is isomorphic to G.
(b) The map G!G__ sending an element a of G to the character � 7! �.a/ of G_ is

an isomorphism.
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In other words, G �G_ and G 'G__.
PROOF. The statements are obvious for cyclic groups, and .G�H/_ 'G_�H_. 2

ASIDE 1.61 The statement that the natural map G ! G__ is an isomorphism is a special case
of the Pontryagin theorem. For infinite groups, it is necessary to consider groups together with a
topology. For example, as we observed above, Z_ ' �.C/. Each m 2 Z does define a character
� 7! �mW�.C/! �.C/, but there are many homomorphisms �.C/! �.C/ not of this form, and
so the dual of �.C/ is larger than Z. However, these are the only continuous homomorphisms. In
general, letG be a commutative group endowed with a locally compact topology9 for which the group
operations are continuous; then the group G_ of continuous characters G! �.C/ has a natural
topology for which it is locally compact, and the Pontryagin duality theorem says that the natural
map G!G__ is an isomorphism.

THEOREM 1.62 (ORTHOGONALITY RELATIONS) Let G be a finite commutative group.
For any characters � and  of G,X

a2G
�.a/ .a�1/D

�
jGj if �D  
0 otherwise.

In particular, X
a2G

�.a/D

�
jGj if � is trivial
0 otherwise.

PROOF. If �D  , then �.a/ .a�1/D 1, and so the sum is jGj. Otherwise there exists a
b 2G such that �.b/¤  .b/. As a runs over G, so also does ab, and soX

a2G
�.a/ .a�1/D

X
a2G

�.ab/ ..ab/�1/D �.b/ .b/�1
X

a2G
�.a/ .a�1/:

Because �.b/ .b/�1 ¤ 1, this implies that
P
a2G �.a/ .a

�1/D 0. 2

COROLLARY 1.63 For any a 2G,X
�2G_

�.a/D

�
jGj if aD e
0 otherwise.

PROOF. Apply the theorem to G_, noting that .G_/_ 'G. 2

The order of ab

Let a and b be elements of a group G. If a has order m and b has order n, what can we say
about the order of ab? The next theorem shows that we can say nothing at all.

THEOREM 1.64 For any integers m;n;r > 1, there exists a finite group G with elements a
and b such that a has order m, b has order n, and ab has order r .

PROOF. We shall show that, for a suitable prime power q, there exist elements a and b
of SL2.Fq/ such that a, b, and ab have orders 2m, 2n, and 2r respectively. As �I is the
unique element of order 2 in SL2.Fq/, the images of a, b, ab in SL2.Fq/=f˙I g will then
have orders m, n, and r as required.

9Following Bourbaki, I require locally compact spaces to be Hausdorff.
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Let p be a prime number not dividing 2mnr . Then p is a unit in the finite ring Z=2mnrZ,
and so some power of it, q say, is 1 in the ring. This means that 2mnr divides q�1. As the
group F�q has order q�1 and is cyclic (see 1.56), there exist elements u, v, and w of F�q
having orders 2m, 2n, and 2r respectively. Let

aD

�
u 1

0 u�1

�
and b D

�
v 0

t v�1

�
(elements of SL2.Fq/);

where t has been chosen so that

uvC tCu�1v�1 D wCw�1:

The characteristic polynomial of a is .X �u/.X �u�1/, and so a is similar to diag.u;u�1/.
Therefore a has order 2m. Similarly b has order 2n. The matrix

ab D

�
uvC t v�1

u�1t u�1v�1

�
;

has characteristic polynomial

X2� .uvC tCu�1v�1/XC1D .X �w/.X �w�1/,

and so ab is similar to diag.w;w�1/. Therefore ab has order 2r .10
2

Exercises

1-1 Show that the quaternion group has only one element of order 2, and that it commutes
with all elements of Q. Deduce that Q is not isomorphic to D4, and that every subgroup of
Q is normal.11

1-2 Consider the elements

aD

�
0 �1

1 0

�
b D

�
0 1

�1 �1

�
in GL2.Z/. Show that a4 D 1 and b3 D 1, but that ab has infinite order, and hence that the
group ha;bi is infinite.

1-3 Show that every finite group of even order contains an element of order 2.

1-4 Let nD n1C�� �Cnr be a partition of the positive integer n. Use Lagrange’s theorem
to show that nŠ is divisible by

Qr
iD1ni Š.

1-5 Let N be a normal subgroup of G of index n. Show that if g 2G, then gn 2N . Give
an example to show that this may be false when the subgroup is not normal.

10I don’t know who found this beautiful proof. Apparently the original proof of G.A. Miller is very
complicated; see mo24913.

11This property of Q is unusual. In fact, the only noncommutative groups in which every subgroup is normal
are the groups of the form Q�A�B with Q the quaternion group, A a commutative group whose elements
have finite odd order, and B a commutative group whose elements have order 2 (or 1). See Hall 1959, 12.5.4.
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1-6 A group G is said to have finite exponent if there exists an m> 0 such that am D e
for every a in G; the smallest such m is then called the exponent of G.

(a) Show that every group of exponent 2 is commutative.
(b) Show that, for an odd prime p, the group of matrices8<:

0@1 a b

0 1 c

0 0 1

1A ˇ̌̌̌ˇ̌ a;b;c 2 Fp
9=;

has exponent p, but is not commutative.

1-7 Two subgroups H and H 0 of a group G are said to be commensurable if H \H 0 is
of finite index in both H and H 0. Show that commensurability is an equivalence relation on
the subgroups of G.

1-8 Show that a nonempty finite set with an associative binary operation satisfying the
cancellation laws is a group.

1-9 Let G be a set with an associative binary operation. Show that if left multiplication
x 7! ax by every element a is bijective and right multiplication by some element is injective,
then G is a group. Give an example to show that the second condition is needed.

1-10 Show that a commutative monoid M is a submonoid of a commutative group if and
only if cancellation holds in M :

mnDm0n H) mDm0:

Hint: The group is constructed from M as Q is constructed from Z.



CHAPTER 2
Free Groups and Presentations;

Coxeter Groups

It is frequently useful to describe a group by giving a set of generators for the group and a set
of relations for the generators from which every other relation in the group can be deduced.
For example, Dn can be described as the group with generators r;s and relations

rn D e; s2 D e; srsr D e:

In this chapter, we make precise what this means. First we need to define the free group on a
set X of generators — this is a group generated by X and with no relations except for those
implied by the group axioms. Because inverses cause problems, we first do this for monoids.
Recall that a monoid is a set S with an associative binary operation having an identity
element e. A homomorphism ˛WS ! S 0 of monoids is a map such that ˛.ab/D ˛.a/˛.b/
for all a;b 2 S and ˛.e/ D e — unlike the case of groups, the second condition is not
automatic. A homomorphism of monoids preserves all finite products.

Free monoids

Let X D fa;b;c; : : :g be a (possibly infinite) set of symbols. A word is a finite sequence of
symbols from X in which repetition is allowed. For example,

aa; aabac; b

are distinct words. Two words can be multiplied by juxtaposition, for example,

aaaa�aabac D aaaaaabac:

This defines on the set of all words an associative binary operation. The empty sequence
is allowed, and we denote it by 1. (In the unfortunate case that the symbol 1 is already an
element of X , we denote it by a different symbol.) Then 1 serves as an identity element.
Write SX for the set of words together with this binary operation. Then SX is a monoid,
called the free monoid on X .

31



32 2. FREE GROUPS AND PRESENTATIONS; COXETER GROUPS

When we identify an element a of X with the word a, X becomes
a subset of SX and generates it (i.e., no proper submonoid of
SX contains X). Moreover, the map X ! SX has the following
universal property: for any map of sets ˛WX ! S from X to a
monoid S , there exists a unique homomorphism SX ! S making
the diagram at right commute:

X SX

S:

a 7! a

˛

Free groups

We want to construct a group FX containing X and having the same universal property as
SX with “monoid” replaced by “group”. Define X 0 to be the set consisting of the symbols
in X and also one additional symbol, denoted a�1, for each a 2X ; thus

X 0 D fa;a�1;b;b�1; : : :g:

Let W 0 be the set of words using symbols from X 0. This becomes a monoid under juxtaposi-
tion, but it is not a group because a�1 is not yet the inverse of a, and we can’t cancel out the
obvious terms in words of the following form:

� � �aa�1 � � � or � � �a�1a � � �

A word is said to be reduced if it contains no pairs of the form aa�1 or a�1a. Starting with
a word w, we can perform a finite sequence of cancellations to arrive at a reduced word
(possibly empty), which will be called the reduced form w0 of w. There may be many
different ways of performing the cancellations, for example,

cabb�1a�1c�1ca ! caa�1c�1ca ! cc�1ca ! ca;

cabb�1a�1c�1ca ! cabb�1a�1a ! cabb�1 ! ca:

We have underlined the pair we are cancelling. Note that the middle a�1 is cancelled with
different a’s, and that different terms survive in the two cases (the ca at the right in the first
cancellation, and the ca at left in the second). Nevertheless we ended up with the same
answer, and the next result says that this always happens.

PROPOSITION 2.1 There is only one reduced form of a word.

PROOF. We use induction on the length of the word w. If w is reduced, there is nothing to
prove. Otherwise a pair of the form a0a

�1
0 or a�10 a0 occurs — assume the first, since the

argument is the same in both cases.
Observe that any two reduced forms of w obtained by a sequence of cancellations in

which a0a�10 is cancelled first are equal, because the induction hypothesis can be applied to
the (shorter) word obtained by cancelling a0a�10 .

Next observe that any two reduced forms of w obtained by a sequence of cancellations
in which a0a�10 is cancelled at some point are equal, because the result of such a sequence
of cancellations will not be affected if a0a�10 is cancelled first.

Finally, consider a reduced form w0 obtained by a sequence in which no cancellation
cancels a0a�10 directly. Since a0a�10 does not remain in w0, at least one of a0 or a�10 must
be cancelled at some point. If the pair itself is not cancelled, then the first cancellation
involving the pair must look like

� � � 6 a�10 6 a0a
�1
0 � � � or � � �a0 6 a�10 6 a0 � � �
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where our original pair is underlined. But the word obtained after this cancellation is the
same as if our original pair were cancelled, and so we may cancel the original pair instead.
Thus we are back in the case just proved. 2

We say two words w;w0 are equivalent, denoted w � w0, if they have the same reduced
form. This is an equivalence relation (obviously).

PROPOSITION 2.2 Products of equivalent words are equivalent, i.e.,

w � w0; v � v0 H) wv � w0v0:

PROOF. Let w0 and v0 be the reduced forms of w and of v. To obtain the reduced form
of wv, we can first cancel as much as possible in w and v separately, to obtain w0v0 and
then continue cancelling. Thus the reduced form of wv is the reduced form of w0v0. A
similar statement holds for w0v0, but (by assumption) the reduced forms of w and v equal
the reduced forms of w0 and v0, and so we obtain the same result in the two cases. 2

Let FX be the set of equivalence classes of words. Proposition 2.2 shows that the binary
operation on W 0 defines a binary operation on FX , which obviously makes it into a monoid.
It also has inverses, because

.ab � � �gh/
�
h�1g�1 � � �b�1a�1

�
� 1:

Thus FX is a group, called the free group on X . To summarize: the elements of FX are
represented by words in X 0; two words represent the same element of FX if and only if
they have the same reduced forms; multiplication is defined by juxtaposition; the empty
word represents 1; inverses are obtained in the obvious way. Alternatively, each element of
FX is represented by a unique reduced word; multiplication is defined by juxtaposition and
passage to the reduced form.

When we identify a 2 X with the equivalence class of the (reduced) word a, then X
becomes identified with a subset of FX — clearly it generates FX . The next proposition
is a precise statement of the fact that there are no relations among the elements of X when
regarded as elements of FX except those imposed by the group axioms.

PROPOSITION 2.3 For any map of sets ˛WX ! G from X to a group G, there exists a
unique homomorphism FX !G making the following diagram commute:

X FX

G:

a 7! a

˛

PROOF. Consider a map ˛WX ! G. We extend it to a map of sets X 0 ! G by setting
˛.a�1/D ˛.a/�1. Because G is, in particular, a monoid, ˛ extends to a homomorphism of
monoids SX 0!G. This map will send equivalent words to the same element of G, and so
will factor through FX D SX 0=�. The resulting map FX !G is a group homomorphism.
It is unique because we know it on a set of generators for FX . 2
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REMARK 2.4 The universal property of the map �WX ! FX , x 7! x, characterizes it:
if �0WX ! F 0 is a second map with the same universal property, then there is a unique
isomorphism ˛WFX ! F 0 such that ˛ ı �D �0,

FX

X

F 0:

�

�0

˛

We recall the proof: by the universality of �, there exists a unique homomorphism ˛WFX !

F 0 such that ˛ ı � D �0; by the universality of �0, there exists a unique homomorphism
ˇWF 0! FX such that ˇ ı �0 D �; now .ˇ ı˛/ı �D �, but by the universality of �, idFX is the
unique homomorphism FX ! FX such that idFX ı�D �, and so ˇ ı˛ D idFX ; similarly,
˛ ıˇ D idF 0 , and so ˛ and ˇ are inverse isomorphisms.

COROLLARY 2.5 Every group is a quotient of a free group.

PROOF. Choose a set X of generators for G (e.g., X D G), and let F be the free group
generated by X . According to (2.3), the map a 7! aW X !G extends to a homomorphism
F !G, and the image, being a subgroup containing X , must equal G: 2

The free group on the set X D fag is simply the infinite cyclic group C1 generated by
a, but the free group on a set consisting of two elements is already very complicated.

I now discuss, without proof, some important results on free groups.

THEOREM 2.6 (NIELSEN-SCHREIER) 1 Subgroups of free groups are free.

The best proof uses topology, and in particular covering spaces—see Serre 1980 or
Rotman 1995, Theorem 11.44.

Two free groups FX and FY are isomorphic if and only if X and Y have the same
cardinality. Thus we can define the rank of a free group G to be the cardinality of any free
generating set (subset X of G for which the homomorphism FX ! G given by (2.3) is
an isomorphism). Let H be a finitely generated subgroup of a free group G. Then there
is an algorithm for constructing from any finite set of generators for H a free finite set of
generators. If G has finite rank n and .G WH/D i <1, then H is free of rank

ni � iC1:

In particular, H may have rank greater than that of F (or even infinite rank2). For proofs,
see Rotman 1995, Chapter 11, and Hall 1959, Chapter 7.

1Nielsen (1921) proved this for finitely generated subgroups, and in fact gave an algorithm for deciding
whether a word lies in the subgroup; Schreier (1927) proved the general case.

2For example, the commutator subgroup of the free group on two generators has infinite rank.
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Generators and relations

Consider a set X and a set R of words made up of symbols in X 0. Each element of R
represents an element of the free group FX , and the quotient G of FX by the normal
subgroup generated by these elements (1.40) is said to have X as generators and R as
relations (or as a set of defining relations). One also says that .X;R/ is a presentation for
G, and denotes G by hX jRi.

EXAMPLE 2.7 (a) The dihedral group Dn has generators r;s and defining relations

rn; s2; srsr:

(See 2.9 below for a proof.)
(b) The generalized quaternion group Qn, n� 3, has generators a;b and relations3

a2
n�1

D 1;a2
n�2

D b2;bab�1 D a�1:

For n D 3 this is the group Q of (1.18). In general, it has order 2n (for more on it, see
Exercise 2-5).

(c) Two elements a and b in a group commute if and only if their commutator Œa;b� def
D

aba�1b�1 is 1. The free abelian group on generators a1; : : : ;an has generators a1;a2; : : : ;an
and relations

Œai ;aj �; i ¤ j:

(d) Let G D hs; t j s3t; t3; s4i. Then G D f1g because

s D ss3t D s4t D t

1D s3t t�3 D s3ss�3 D s:

For the remaining examples, see Massey 1967, which contains a good account of the
interplay between group theory and topology. For example, for many types of topological
spaces, there is an algorithm for obtaining a presentation for the fundamental group.

(e) The fundamental group of the open disk with one point removed is the free group on
� where � is any loop around the point (ibid. II 5.1).

(f) The fundamental group of the sphere with r points removed has generators �1; :::;�r
(�i is a loop around the i th point) and a single relation

�1 � � ��r D 1:

(g) The fundamental group of a compact Riemann surface of genus g has 2g generators
u1;v1; :::;ug ;vg and a single relation

u1v1u
�1
1 v�11 � � �ugvgu

�1
g v�1g D 1

(ibid. IV Exercise 5.7).

3Strictly speaking, I should say the relations a2
n�1

, a2
n�2

b�2, bab�1a.
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PROPOSITION 2.8 Let G be the group defined by the presentation .X;R/. For any group
H and map of sets ˛WX !H sending each element of R to 1 (in the obvious sense4), there
exists a unique homomorphism G!H making the following diagram commute:

X G

H:

a 7! a

˛

PROOF. From the universal property of free groups (2.3), we know that ˛ extends to a
homomorphism FX !H , which we again denote ˛. Let �R be the image of R in FX . By
assumption �R�Ker.˛/, and therefore the normal subgroupN generated by �R is contained
in Ker.˛/. By the universal property of quotients (see 1.43), ˛ factors through FX=N DG.
This proves the existence, and the uniqueness follows from the fact that we know the map on
a set of generators for X . 2

EXAMPLE 2.9 LetG D ha;b j an;b2;babai. We prove thatG is isomorphic to the dihedral
group Dn (see 1.17). Because the elements r;s 2Dn satisfy these relations, the map

fa;bg !Dn; a 7! r; b 7! s

extends uniquely to a homomorphism G!Dn. This homomorphism is surjective because
r and s generate Dn. The equalities

an D 1; b2 D 1; baD an�1b

imply that each element of G is represented by one of the following elements,

1; : : : ;an�1;b;ab; : : : ;an�1b;

and so jGj � 2n D jDnj. Therefore the homomorphism is bijective (and these symbols
represent distinct elements of G).

Similarly,
ha;b j a2;b2; .ab/ni 'Dn

by a 7! s, b 7! t .

EXAMPLE 2.10 (a) Let G D hx;y j xm;yni where m;n > 1. Then x has order m, y has
order n, and xy has infinite order in G. To see this, recall that for any integers m;n;r > 1,
there exists a group H with elements a and b such that a, b, and ab have orders m, n, and r
respectively (Theorem 1.64). According to (2.8), there exists a homomorphism ˛WG!H

such that ˛.x/D a and ˛.y/D b. The order of x certainly divides m, and the fact that ˛.x/
has order m shows that x has order exactly m. Similarly, y has order n. As ˛.xy/D ab,
the element xy must have order at least r . As this is true for all r > 1, the element xy has
infinite order.

(b) Let G D hx;y j xm;yn; .xy/ri where m;n;r > 1. There exists a homomorphism
from G to the group in (1.64) sending x and y to a and b, which shows that x, y, and xy

4Each element of R represents an element of FX , and the condition requires that the unique extension of ˛
to FX sends each of these elements to 1.
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have orders m, n, and r in G. The group G may be finite or infinite, depending on the triple
.m;n;r/. These groups occur naturally as subgroups of index 2 in certain symmetry groups
— see the Wikipedia (Triangle group).

(c) Let G D SL2.Z/=f˙I g, and let S and T be the elements of G represented by the
matrices

�
0 �1
1 0

�
and

�
1 1
0 1

�
. Then S and ST generate G, and S2D 1D .ST /3 (see Theorem

2.12 of my course notes on modular forms). It is known that this is a full set of relations
for S and ST in G, and so every group generated by an element of order 2 and an element
of order 3 is a quotient of G. Most finite simple groups of Lie type, and all but three of the
sporadic simple groups, fall into this class.

Finitely presented groups

A group is said to be finitely presented if it admits a presentation .X;R/ with both X and R
finite.

EXAMPLE 2.11 Consider a finite group G. Let X DG, and let R be the set of words

fabc�1 j ab D c in Gg:

I claim that .X;R/ is a presentation of G, and so G is finitely presented. Let G0 D hX jRi.
The extension of a 7! aWX ! G to FX sends each element of R to 1, and therefore
defines a homomorphism G0! G, which is obviously surjective. But every element of
G0 is represented by an element of X , and so jG0j � jGj. Therefore the homomorphism is
bijective.

Although it is easy to define a group by a finite presentation, calculating the properties
of the group can be very difficult — note that we are defining the group, which may be quite
small, as the quotient of a huge free group by a huge subgroup. I list some negative results.

THE WORD PROBLEM

Let G be the group defined by a finite presentation .X;R/. The word problem for G asks
whether there exists an algorithm (decision procedure) for deciding whether a word on X 0

represents 1 in G. The answer is negative: Novikov and Boone showed that there exist
finitely presented groups G for which no such algorithm exists. Of course, there do exist
other groups for which there is an algorithm.

The same ideas lead to the following result: there does not exist an algorithm that will
determine for an arbitrary finite presentation whether or not the corresponding group is
trivial, finite, abelian, solvable, nilpotent, simple, torsion, torsion-free, free, or has a solvable
word problem.

See Rotman 1995, Chapter 12, for proofs of these statements.

THE BURNSIDE PROBLEM

Recall that a group is said to have exponent e if ge D 1 for all g 2G and e is the smallest
natural number with this property. It is easy to write down examples of infinite groups
generated by a finite number of elements of finite order (see Exercise 1-2 or Example 2.10),
but does there exist such a group with finite exponent? (Burnside problem). In 1968, Adjan
and Novikov showed the answer is yes: there do exist infinite finitely generated groups of
finite exponent.
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THE RESTRICTED BURNSIDE PROBLEM

The Burnside group of exponent e on r generators B.r;e/ is the quotient of the free group
on r generators by the subgroup generated by all eth powers. The Burnside problem asked
whether B.r;e/ is finite, and it is known to be infinite except some small values of r and e.
The restricted Burnside problem asks whether B.r;e/ has only finitely many finite quotients;
equivalently, it asks whether there is one finite quotient of B.r;e/ having all other finite
quotients as quotients. The classification of the finite simple groups (see p. 52) showed that
in order prove that B.r;e/ always has only finitely many finite quotients, it suffices to prove
it for e equal to a prime power. This was shown by Efim Zelmanov in 1989 after earlier work
of Kostrikin. See Feit 1995.

TODD-COXETER ALGORITHM

There are some quite innocuous looking finite presentations that are known to define quite
small groups, but for which this is very difficult to prove. The standard approach to these
questions is to use the Todd-Coxeter algorithm (see Chapter 4 below).

We shall develop various methods for recognizing groups from their presentations (see
also the exercises).

Coxeter groups

A Coxeter system is a pair .G;S/ consisting of a group G and a set of generators S for G
subject only to relations of the form .st/m.s;t/ D 1, where8<:

m.s;s/ D 1 all s;
m.s; t/ � 2

m.s; t/ D m.t;s/:

(14)

When no relation occurs between s and t , we set m.s; t/D1. Thus a Coxeter system is
defined by a set S and a mapping

mWS �S ! N[f1g

satisfying (14); then G D hS jRi where

RD f.st/m.s;t/ jm.s; t/ <1g.

The Coxeter groups are those that arise as part of a Coxeter system. The cardinality of S is
called the rank of the Coxeter system.

EXAMPLES

2.12 Up to isomorphism, the only Coxeter system of rank 1 is .C2;fsg/.

2.13 The Coxeter systems of rank 2 are indexed by m.s; t/� 2.

(a) If m.s; t/ is an integer n, then the Coxeter system is .G;fs; tg/ where

G D hs; t j s2; t2; .st/ni.

According to (2.9), G 'Dn. In particular, s ¤ t and st has order n.
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(b) If m.s; t/D1, then the Coxeter system is .G;fs; tg/ where G D hs; t j s2; t2i. Ac-
cording to (2.10(a)), s and t each have order 2, and st has infinite order.

2.14 Let V D Rn endowed with the standard positive definite symmetric bilinear form

..xi /1�i�n; .yi /1�i�n/D
X

xiyi :

A reflection is a linear map sWV ! V sending some nonzero vector ˛ to �˛ and fixing the
points of the hyperplane H˛ orthogonal to ˛. We write s˛ for the reflection defined by ˛; it
is given by the formula

s˛v D v�
2.v;˛/

.˛;˛/
˛;

because this is certainly correct for v D ˛ and for v 2H˛, and hence (by linearity) on the
whole of V D h˛i˚H˛ . A finite reflection group is a finite group generated by reflections.
For such a groupG, it is possible to choose a set S of generating reflections for which .G;S/
is a Coxeter system (Humphreys 1990, 1.9). Thus, the finite reflection groups are all Coxeter
groups (in fact, they are precisely the finite Coxeter groups, ibid., 6.4).

2.15 Let Sn act on Rn by permuting the coordinates,

�.a1; : : : ;an/D .a�.1/; : : : ;a�.n//:

The transposition .ij / interchanging i and j , sends the vector

˛ D .0; : : : ;0;
i

1;0; : : : ;0;
j

�1;0; : : :/

to its negative, and leaves the points of the hyperplane

H˛ D .a1; : : : ;
i
ai ; : : : ;

j
ai ; : : : ;an/

fixed. Therefore, .ij / is a reflection. As Sn is generated by the transpositions, this shows
that it is a finite reflection group (hence also a Coxeter group).

THE STRUCTURE OF COXETER GROUPS

THEOREM 2.16 Let .G;S/ be the the Coxeter system defined by a map mWS �S ! N[
f1g satisfying (14).

(a) The natural map S !G is injective.
(b) Each s 2 S has order 2 in G.
(c) For each s ¤ t in S , st has order m.s; t/ in G.

PROOF. Note that the order of s is 1 or 2, and the order of st divides m.s; t/, and so the
theorem says that the elements of S remain distinct in G and that each s and each st has the
largest possible order.

If S has only a single element, thenG 'C2 (see 2.12), and so the statements are obvious.
Otherwise, let s and t be distinct elements of S , and let G0 D hs; t j s2; t2; .st/m.s;t/i.
The map S ! G0 sending s to s, t to t , and all other elements of S to 1 extends to a
homomorphism G!G0. We know that s and t are distinct elements of order 2 in G0 and
that st has order m.s; t/ in G0 (see 2.13), and it follows that the same is true in G. 2
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REMARK 2.17 Let V be the R-vector space with basis a family .es/s2S indexed by S . The
standard proof of Theorem 2.16 defines a “geometry” on V for which there exist “reflections”
�s , s 2 S , such that �s�t has order m.s; t/. According to (2.8), the map s 7! �s extends
to homomorphism of group G! GL.V /. This proves the theorem, and it realizes G as a
group of automorphisms of a “geometry”. See Humphreys 1990, Chapter 5, or v3.02 of
these notes.

Exercises

2-1 Let Dn D ha;bjan;b2;ababi be the nth dihedral group. If n is odd, prove that D2n �
hani� ha2;bi, and hence that D2n � C2�Dn.

2-2 Prove that the group with generators a1; : : : ;an and relations Œai ;aj �D 1, i ¤ j , is the
free abelian group on a1; : : : ;an. [Hint: Use universal properties.]

2-3 Let a and b be elements of an arbitrary free group F . Prove:

(a) If an D bn with n > 1, then aD b.
(b) If ambn D bnam with mn 6D 0, then ab D ba.
(c) If the equation xn D a has a solution x for every n, then aD 1.

2-4 Let Fn denote the free group on n generators. Prove:

(a) If n < m, then Fn is isomorphic to both a subgroup and a quotient group of Fm.
(b) Prove that F1�F1 is not a free group.
(c) Prove that the centre Z.Fn/D 1 provided n > 1.

2-5 Prove that Qn (see 2.7b) has a unique subgroup of order 2, which is Z.Qn/. Prove
that Qn=Z.Qn/ is isomorphic to D2n�2 .

2-6 (a) Prove that ha;b j a2;b2; .ab/ni 'Dn (cf. 2.9).
(b) Prove that G D ha;b j a2;ababi is an infinite group. (This is usually known as the
infinite dihedral group.)

2-7 Let G D ha;b;c j a3;b3; c4;acac�1;aba�1bc�1b�1i. Prove that G is the trivial
group f1g. [Hint: Expand .aba�1/3 D .bcb�1/3.]

2-8 Let F be the free group on the set fx;yg and let G D C2, with generator a¤ 1. Let ˛
be the homomorphism F !G such that ˛.x/D aD ˛.y/. Find a minimal generating set
for the kernel of ˛. Is the kernel a free group?

2-9 Let G D hs; t j t�1s3t D s5i. Prove that the element

g D s�1t�1s�1tst�1st

is in the kernel of every map from G to a finite group.
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Coxeter came to Cambridge and gave a lecture [in which he stated a] problem for which he gave

proofs for selected examples, and he asked for a unified proof. I left the lecture room thinking.

As I was walking through Cambridge, suddenly the idea hit me, but it hit me while I was in

the middle of the road. When the idea hit me I stopped and a large truck ran into me. . . . So I

pretended that Coxeter had calculated the difficulty of this problem so precisely that he knew that

I would get the solution just in the middle of the road. . . . Ever since, I’ve called that theorem

“the murder weapon”. One consequence of it is that in a group if a2 D b3 D c5 D .abc/�1, then

c610 D 1.

John Conway, Math. Intelligencer 23 (2001), no. 2, pp. 8–9.





CHAPTER 3
Automorphisms and Extensions

Automorphisms of groups

An automorphism of a group G is an isomorphism of the group with itself. The set
Aut.G/ of automorphisms of G becomes a group under composition: the composite of two
automorphisms is again an automorphism; composition of maps is always associative (see
(5), p. 9); the identity map g 7! g is an identity element; an automorphism is a bijection, and
therefore has an inverse, which is again an automorphism.

For g 2G, the map ig “conjugation by g”,

x 7! gxg�1 WG!G

is an automorphism of G. An automorphism of this form is called an inner automorphism,
and the remaining automorphisms are said to be outer.

Note that

.gh/x.gh/�1 D g.hxh�1/g�1, i.e., igh.x/D .ig ı ih/.x/;

and so the map g 7! ig WG! Aut.G/ is a homomorphism. Its image is denoted by Inn.G/.
Its kernel is the centre of G,

Z.G/D fg 2G j gx D xg all x 2Gg;

and so we obtain from (1.45) an isomorphism

G=Z.G/! Inn.G/:

In fact, Inn.G/ is a normal subgroup of Aut.G/: for g 2G and ˛ 2 Aut.G/,

.˛ ı ig ı˛
�1/.x/D ˛.g �˛�1.x/ �g�1/D ˛.g/ �x �˛.g/�1 D i˛.g/.x/:

EXAMPLE 3.1 (a) Let G D Fnp . The automorphisms of G as a commutative group are just
the automorphisms of G as a vector space over Fp; thus Aut.G/D GLn.Fp/. Because G is
commutative, all nontrivial automorphisms of G are outer.

(b) As a particular case of (a), we see that

Aut.C2�C2/D GL2.F2/:

43
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(c) Since the centre of the quaternion group Q is ha2i, we have that

Inn.Q/'Q=ha2i � C2�C2:

In fact, Aut.Q/� S4. See Exercise 3-4.

ASIDE 3.2 Let ˛ be an automorphism of a group H . If ˛ is inner, then it extends to every group G
containing H as a subgroup. The converse is also true (Schupp 1987).

COMPLETE GROUPS

DEFINITION 3.3 A group G is complete if the map g 7! ig WG ! Aut.G/ is an isomor-
phism.

Thus, a group G is complete if and only if (a) the centre Z.G/ of G is trivial, and (b)
every automorphism of G is inner.

EXAMPLE 3.4 (a) For n¤ 2;6, Sn is complete. The group S2 is commutative and hence
fails (a); Aut.S6/=Inn.S6/� C2 and hence S6 fails (b). See Rotman 1995, Theorems 7.5,
7.10.

(b) If G is a simple noncommutative group, then Aut.G/ is complete. See Rotman 1995,
Theorem 7.14.

According to Exercise 3-3, GL2 .F2/� S3, and so the nonisomorphic groups C2�C2
and S3 have isomorphic automorphism groups.

AUTOMORPHISMS OF CYCLIC GROUPS

Let G be a cyclic group of order n, say G D hai. Let m be an integer � 1. The smallest
multiple of m divisible by n is m � n

gcd.m;n/ . Therefore, am has order n
gcd.m;n/ , and so the

generators of G are exactly the elements am with gcd.m;n/D 1. An automorphism ˛ of G
must send a to another generator of G, and so ˛.a/D am for some m relatively prime to n.
The map ˛ 7!m defines an isomorphism

Aut.Cn/! .Z=nZ/�

where
.Z=nZ/� D funits in the ring Z=nZg D fmCnZ j gcd.m;n/D 1g:

This isomorphism is independent of the choice of a generator a for G: if ˛.a/D am, then
for any other element b D ai of G,

˛.b/D ˛.ai /D ˛.a/i D ami D .ai /m D .b/m:

It remains to determine .Z=nZ/�. If n D pr1

1 � � �p
rs
s is the factorization of n into a

product of powers of distinct primes, then

Z=nZ' Z=pr1

1 Z� � � ��Z=prs
s Z; m mod n$ .m mod pr1 ; : : :/

by the Chinese remainder theorem. This is an isomorphism of rings, and so

.Z=nZ/� ' .Z=pr1

1 Z/�� � � �� .Z=prs
s Z/�:
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It remains to consider the case nD pr , p prime.
Suppose first that p is odd. The set f0;1; : : : ;pr �1g is a complete set of representatives

for Z=prZ, and 1
p

of these elements are divisible by p. Hence .Z=prZ/� has order pr �
pr

p
D pr�1.p�1/. The homomorphism

.Z=prZ/�! .Z=pZ/�

is surjective with kernel of order pr�1, and we know that .Z=pZ/� is cyclic. Let a 2
.Z=prZ/� map to a generator of .Z=pZ/�. Then ap

r .p�1/ D 1 and ap
r

again maps to a
generator of .Z=pZ/�. Therefore .Z=prZ/� contains an element � def

D ap
r

of order p�1.
Using the binomial theorem, one finds that 1Cp has order pr�1 in .Z=prZ/�. Therefore
.Z=prZ/� is cyclic with generator � � .1Cp/ (cf. (13), p. 26), and every element can be
written uniquely in the form

�i � .1Cp/j ; 0� i < p�1; 0� j < pr�1:

On the other hand,
.Z=8Z/� D fN1; N3; N5; N7g D hN3; N5i � C2�C2

is not cyclic.

SUMMARY 3.5 (a) For a cyclic group of G of order n, Aut.G/' .Z=nZ/�: The automor-
phism of G corresponding to Œm� 2 .Z=nZ/� sends an element a of G to am.

(b) If nD pr1

1 � � �p
rs
s is the factorization of n into a product of powers of distinct primes

pi , then

.Z=nZ/� ' .Z=pr1

1 Z/�� � � �� .Z=prs
s Z/�; m mod n$ .m mod pr1 ; : : :/:

(c) For a prime p,

.Z=prZ/� �

8̂<̂
:
C.p�1/pr�1 p odd,
C2 pr D 22

C2� C2r�2 p D 2, r > 2:

Characteristic subgroups

DEFINITION 3.6 A characteristic subgroup of a group G is a subgroup H such that
˛.H/DH for all automorphisms ˛ of G.

The same argument as in (1.32) shows that it suffices to check that ˛.H/�H for all
˛ 2Aut.G/. Thus, a subgroupH ofG is normal if it is stable under all inner automorphisms
ofG, and it is characteristic if it stable under all automorphisms. In particular, a characteristic
subgroup is normal.

REMARK 3.7 (a) Consider a group G and a normal subgroup N . An inner automorphism
of G restricts to an automorphism of N , which may be outer (for an example, see 3.16
below). Thus a normal subgroup of N need not be a normal subgroup of G. However, a
characteristic subgroup of N will be a normal subgroup of G. Also a characteristic subgroup
of a characteristic subgroup is a characteristic subgroup.
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(b) The centre Z.G/ of G is a characteristic subgroup, because

zg D gz all g 2G H) ˛.z/˛.g/D ˛.g/˛.z/ all g 2G;

and as g runs over G, ˛.g/ also runs over G. Expect subgroups with a general group-
theoretic definition to be characteristic.

(c) If H is the only subgroup of G of order m, then it must be characteristic, because
˛.H/ is again a subgroup of G of order m.

(d) Every subgroup of a commutative group is normal but not necessarily character-
istic. For example, every subspace of dimension 1 in F2p is subgroup of F2p, but it is not
characteristic because it is not stable under Aut.F2p/D GL2.Fp/.

Semidirect products

Let N be a normal subgroup of G. Each element g of G defines an automorphism of N ,
n 7! gng�1, and this defines a homomorphism

� WG! Aut.N /; g 7! ig jN:

If there exists a subgroup Q of G such that G!G=N maps Q isomorphically onto G=N ,
then I claim that we can reconstruct G from N , Q, and the restriction of � to Q. Indeed, an
element g of G can be written uniquely in the form

g D nq; n 2N; q 2Q;

— q must be the unique element of Q mapping to gN 2G=N , and n must be gq�1. Thus,
we have a one-to-one correspondence of sets

G
1-1
 !N �Q:

If g D nq and g0 D n0q0, then

gg0 D .nq/
�
n0q0

�
D n.qn0q�1/qq0 D n ��.q/.n0/ �qq0:

DEFINITION 3.8 A group G is a semidirect product of its subgroups N and Q if N is
normal and the homomorphism G!G=N induces an isomorphism Q!G=N .

Equivalently, G is a semidirect product of subgroup N and Q if

N GG; NQDG; N \QD f1g: (15)

Note that Q need not be a normal subgroup of G. When G is the semidirect product of
subgroups N and Q, we write G D N ÌQ (or N Ì� Q where � WQ! Aut.N / gives the
action of Q on N by inner automorphisms).

EXAMPLE 3.9 (a) In Dn, n� 2, let Cn D hri and C2 D hsi; then

Dn D hriÌ� hsi D CnÌ� C2

where �.s/.r i /D r�i (see 1.17).
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(b) The alternating subgroup An is a normal subgroup of Sn (because it has index 2),
and C2 D f.12/g maps isomorphically onto Sn=An. Therefore Sn D AnÌC2.

(c) The quaternion group can not be written as a semidirect product in any nontrivial
fashion (see Exercise 3-1).

(d) A cyclic group of order p2, p prime, is not a semidirect product (because it has only
one subgroup of order p).

(e) Let G D GLn.F /. Let B be the subgroup of upper triangular matrices in G, T the
subgroup of diagonal matrices in G, and U the subgroup of upper triangular matrices with
all their diagonal coefficients equal to 1. Thus, when nD 2,

B D

��
� �

0 �

��
; T D

��
� 0

0 �

��
; U D

��
1 �

0 1

��
.

Then, U is a normal subgroup of B , UT D B , and U \T D f1g. Therefore,

B D U ÌT .

Note that, when n� 2, the action of T on U is not trivial, for example,�
a 0

0 b

��
1 c

0 1

��
a�1 0

0 b�1

�
D

�
1 ac=b

0 1

�
;

and so B is not the direct product of T and U .

We have seen that, from a semidirect product G DN ÌQ, we obtain a triple

.N;Q;� WQ! Aut.N //;

and that the triple determines G. We now prove that every triple .N;Q;�/ consisting of two
groups N and Q and a homomorphism � WQ! Aut.N / arises from a semidirect product.
As a set, let G DN �Q, and define

.n;q/.n0;q0/D .n ��.q/.n0/;qq0/:

PROPOSITION 3.10 The composition law above makes G into a group, in fact, the semidi-
rect product of N and Q:

PROOF. Write qn for �.q/.n/, so that the composition law becomes

.n;q/.n0;q0/D .n � qn0;qq0/.

Then

..n;q/; .n0;q0//.n00;q00/D .n � qn0 � qq
0

n00;qq0q00/D .n;q/..n0;q0/.n00;q00//

and so the associative law holds. Because �.1/D 1 and �.q/.1/D 1,

.1;1/.n;q/D .n;q/D .n;q/.1;1/,

and so .1;1/ is an identity element. Next

.n;q/.q
�1

n�1;q�1/D .1;1/D .q
�1

n�1;q�1/.n;q/;

and so .q
�1

n�1;q�1/ is an inverse for .n;q/. Thus G is a group, and it is obvious that
N GG, NQ D G, and N \Q D f1g, and so G D N ÌQ. Moreover, when N and Q are
regarded as subgroups of G, the action of Q on N is that given by � . 2
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EXAMPLES

3.11 A group of order 12. Let � be the (unique) nontrivial homomorphism

C4! Aut.C3/' C2;

namely, that sending a generator of C4 to the map a 7! a2. Then G def
D C3 Ì� C4 is a

noncommutative group of order 12, not isomorphic to A4. If we denote the generators of C3
and C4 by a and b, then a and b generate G, and have the defining relations

a3 D 1; b4 D 1; bab�1 D a2:

3.12 Direct products. The bijection of sets

.n;q/ 7! .n;q/WN �Q!N Ì�Q

is an isomorphism of groups if and only if � is the trivial homomorphism Q! Aut.N /, i.e.,
�.q/.n/D n for all q 2Q, n 2N .

3.13 Groups of order 6. Both S3 and C6 are semidirect products of C3 by C2 — they
correspond to the two distinct homomorphisms C2! C2 ' Aut.C3/.

3.14 Groups of order p3 (element of order p2). Let N D hai be cyclic of order p2,
and let QD hbi be cyclic of order p, where p is an odd prime. Then AutN � Cp�1�Cp
(see 3.5), and Cp is generated by ˛Wa 7! a1Cp (note that ˛2.a/ D a1C2p; : : :). Define

Q! AutN by b 7! ˛. The group G def
DN Ì�Q has generators a;b and defining relations

ap
2

D 1; bp D 1; bab�1 D a1Cp:

It is a noncommutative group of order p3, and possesses an element of order p2.

3.15 Groups of order p3 (no element of order p2). Let N D ha;bi be the product of
two cyclic groups hai and hbi of order p, and let Q D hci be a cyclic group of order p.
Define � WQ! Aut.N / to be the homomorphism such that

�.ci /.a/D abi ; �.ci /.b/D b.

(If we regard N as the additive group N D F2p with a and b the standard basis elements, then

�.ci / is the automorphism of N defined by the matrix
�
1 0

i 1

�
.) The group G def

DN Ì�Q is

a group of order p3, with generators a;b;c and defining relations

ap D bp D cp D 1; ab D cac�1; Œb;a�D 1D Œb;c�:

Because b ¤ 1, the middle equality shows that the group is not commutative. When p is
odd, all elements except 1 have order p. When pD 2, G �D4, which does have an element
of order 22: Note that this shows that a group can have quite different representations as a
semidirect product:

D4
.3.9a)
� C4ÌC2 � .C2�C2/ÌC2:
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For an odd prime p, a noncommutative group of order p3 is isomorphic to the group in
(3.14) if it has an element of order p2 and to the group in (3.15) if it doesn’t (see Exercise
4-4). In particular, up to isomorphism, there are exactly two noncommutative groups of order
p3.

3.16 Making outer automorphisms inner. Let ˛ be an automorphism, possibly outer, of a
groupN . We can realizeN as a normal subgroup of a groupG in such a way that ˛ becomes
the restriction to N of an inner automorphism of G. To see this, let � WC1! Aut.N / be the
homomorphism sending a generator a of C1 to ˛ 2 Aut.N /, and let G DN Ì� C1. The
element g D .1;a/ of G has the property that g.n;1/g�1 D .˛.n/;1/ for all n 2N .

CRITERIA FOR SEMIDIRECT PRODUCTS TO BE ISOMORPHIC

It will be useful to have criteria for when two triples .N;Q;�/ and .N;Q;� 0/ determine
isomorphic groups.

LEMMA 3.17 If there exists an ˛ 2 Aut.N / such that

� 0.q/D ˛ ı�.q/ı˛�1; all q 2Q;

then the map
.n;q/ 7! .˛.n/;q/WN Ì�Q!N Ì� 0Q

is an isomorphism.

PROOF. For .n;q/ 2N Ì�Q, let .n;q/D .˛.n/;q/. Then

.n;q/ �.n0;q0/D .˛.n/;q/ � .˛.n0/;q0/

D .˛.n/ �� 0.q/.˛.n0//;qq0/

D .˛.n/ � .˛ ı�.q/ı˛�1/.˛.n0//;qq0/

D .˛.n/ �˛.�.q/.n0//;qq0/;

and

..n;q/ � .n0;q0//D .n ��.q/.n0/;qq0/

D .˛.n/ �˛
�
�.q/.n0/

�
;qq0/:

Therefore  is a homomorphism. The map

.n;q/ 7! .˛�1.n/;q/WN Ì� 0Q!N Ì�Q

is also a homomorphism, and it is inverse to  , and so both are isomorphisms. 2

LEMMA 3.18 If � D � 0 ı˛ with ˛ 2 Aut.Q/, then the map

.n;q/ 7! .n;˛.q//WN Ì�Q�N Ì� 0Q

is an isomorphism.

PROOF. Routine verification. 2
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LEMMA 3.19 If Q is cyclic and the subgroup �.Q/ of Aut.N / is conjugate to � 0.Q/, then

N Ì�Q�N Ì� 0Q:
PROOF. Let a generate Q. By assumption, there exists an a0 2Q and an ˛ 2 Aut.N / such
that

� 0.a0/D ˛ ��.a/ �˛�1:

The element � 0.a0/ generates � 0.Q/, and so we can choose a0 to generateQ, say a0D ai with
i relatively prime to the order of Q. Now the map .n;q/ 7! .˛.n/;qi / is an isomorphism
N Ì�Q!N Ì� 0Q. 2

SUMMARY 3.20 Let G be a group with subgroups H1 and H2 such that G DH1H2 and
H1\H2 D feg, so that each element g of G can be written uniquely as g D h1h2 with
h1 2H1 and h2 2H2.

(a) If H1 and H2 are both normal, then G is the direct product of H1 and H2, G D
H1�H2 (1.51).

(b) If H1 is normal in G, then G is the semidirect product of H1 and H2, G DH1ÌH2
((15), p. 46).

(c) If neither H1 nor H2 is normal, then G is the Zappa-Szép (or knit) product of H1 and
H2 (see wikipedia).

Extensions of groups

A sequence of groups and homomorphisms

1!N
�
!G

�
!Q! 1 (16)

is exact if � is injective, � is surjective, and Ker.�/D Im.�/. Thus �.N / is a normal subgroup
of G (isomorphic by � to N/ and G=�.N /

'
�!Q. We often identify N with the subgroup

�.N / of G and Q with the quotient G=N:
An exact sequence (16) is also called an extension of Q by N .1 An extension is central

if �.N /�Z.G/. For example, a semidirect product N Ì�Q gives rise to an extension of Q
by N ,

1!N !N Ì�Q!Q! 1;

which is central if and only if � is the trivial homomorphism.
Two extensions of Q by N are said to be isomorphic if there exists a commutative

diagram
1 N G Q 1

1 N G0 Q 1:

�

An extension of Q by N ,
1!N

�
!G

�
!Q! 1;

is said to be split if it is isomorphic to the extension defined by a semidirect product N Ì�Q.
Equivalent conditions:

1This is Bourbaki’s terminology (Algèbre, I �6); some authors call (16) an extension of N by Q.

http://en.wikipedia.org/wiki/Zappa-Szep_product
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(a) there exists a subgroup Q0 �G such that � induces an isomorphism Q0!Q; or
(b) there exists a homomorphism sWQ!G such that � ı s D id :

In general, an extension will not split. For example,

1! Cp! Cp2 ! Cp! 1

doesn’t split. If Q is the quaternion group and N is its centre, then

1!N !Q!Q=N ! 1 (17)

doesn’t split (if it did, Q would be commutative because N and Q=N are commutative and
� is trivial).

THEOREM 3.21 (SCHUR-ZASSENHAUS) An extension of finite groups of relatively prime
order is split.

PROOF. Rotman 1995, 7.41. 2

PROPOSITION 3.22 An extension (16) splits if N is complete. In fact, G is then the direct
product of N with the centralizer of N in G,

CG.N /
def
D fg 2G j gnD ng all n 2N g.

PROOF. Let H D CG.N /. We shall check that N and H satisfy the conditions of Proposi-
tion 1.51.

Observe first that, for any g 2G, n 7! gng�1WN !N is an automorphism of N , and
(because N is complete), it must be the inner automorphism defined by an element  of N ;
thus

gng�1 D n�1 all n 2N .

This equation shows that �1g 2H , and hence g D .�1g/ 2NH . Since g was arbitrary,
we have shown that G DNH .

Next note that every element of N \H is in the centre of N , which (because N is
complete) is trivial; hence N \H D 1.

Finally, for any element g D nh 2G,

gHg�1 D n.hHh�1/n�1 D nHn�1 DH

(recall that every element of N commutes with every element of H ). Therefore H is normal
in G. 2

An extension
1!N !G!Q! 1

gives rise to a homomorphism � 0WG! Aut.N /, namely,

� 0.g/.n/D gng�1:

Let Qq 2 G map to q in Q; then the image of � 0. Qq/ in Aut.N /=Inn.N / depends only on q;
therefore we get a homomorphism

� WQ! Out.N / def
D Aut.N /=Inn.N /:
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This map � depends only on the isomorphism class of the extension, and we write Ext1.Q;N /�
for the set of isomorphism classes of extensions with a given �: These sets have been exten-
sively studied.

When Q and N are commutative, there is a commutative group structure on the
set Ext1.Q;N /� . Moreover, endomorphisms of Q and N act as endomorphisms on
Ext1.Q;N /� . In particular, multiplication by m on Q or N induces multiplication by
m on Ext1.Q;N /� . Thus, ifQ and N are killed by m and n respectively, then Ext1.Q;N /�
is killed by m and by n, and hence by gcd.m;n/. This proves the Schur-Zassenhaus theorem
in this case.

The Hölder program.

It would be of the greatest interest if it were possible to
give an overview of the entire collection of finite
simple groups.

Otto Hölder, Math. Ann., 1892

Recall that a group G is simple if it contains no normal subgroup except 1 and G. In
other words, a group is simple if it can’t be realized as an extension of smaller groups. Every
finite group can be obtained by taking repeated extensions of simple groups. Thus the simple
finite groups can be regarded as the basic building blocks for all finite groups.

The problem of classifying all simple groups falls into two parts:

A. Classify all finite simple groups;
B. Classify all extensions of finite groups.

A. THE CLASSIFICATION OF FINITE SIMPLE GROUPS

There is a complete list of finite simple groups. They are2

(a) the cyclic groups of prime order,
(b) the alternating groups An for n� 5 (see the next chapter),
(c) certain infinite families of matrix groups (said to be of Lie type), and
(d) the 26 “sporadic groups”.

By far the largest class is (c), but the 26 sporadic groups are of more interest than
their small number might suggest. Some have even speculated that the largest of them, the
Fischer-Griess monster, is built into the fabric of the universe.

As an example of a matrix group, consider

SLm.Fq/
def
D fm�m matrices A with entries in Fq such that detAD 1g:

Here q D pn, p prime, and Fq is “the” field with q elements. This group is not simple
if q ¤ 2, because the scalar matrices diag.�; : : : ; �/, �m D 1, are in the centre for any m
dividing q�1, but these are the only matrices in the centre, and the groups

PSLn.Fq/
def
D SLn.Fq/=fcentreg

2It has been shown that every group on the list can be generated by two elements, and so this is true for all
finite simple groups. If a proof of this could be found that doesn’t use the classification, then the proof of the
classification would be greatly simplified (mo59213).
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are simple when m� 3 (Rotman 1995, 8.23) and when mD 2 and q > 3 (ibid. 8.13). Other
finite simple groups can be obtained from the groups in (1.8). The smallest noncommutative
group is A5, and the second smallest is PSL3.F2/, which has order 168 (see Exercise 4-8).

B THE CLASSIFICATION OF ALL EXTENSIONS OF FINITE GROUPS

Much is known about the extensions of finite groups, for example, about the extensions of
one simple group by another. However, as Solomon writes (2001, p. 347):

. . . the classification of all finite groups is completely infeasible. Nevertheless
experience shows that most of the finite groups which occur in “nature” . . . are
“close” either to simple groups or to groups such as dihedral groups, Heisenberg
groups, etc., which arise naturally in the study of simple groups.

As we noted earlier, by the year 2001, a complete irredundant list of finite groups was
available only for those up to an order of about 2000, and the number of groups on the list is
overwhelming.

NOTES The dream of classifying the finite simple groups goes back at least to Hölder 1892. However
a clear strategy for accomplishing this did not begin to emerge until the 1950s, when work of Brauer
and others suggested that the key was to study the centralizers of elements of order 2 (the involution
centralizers). For example, Brauer and Fowler (1955) showed that, for any finite group H , the
determination of the finite simple groups with an involution centralizer isomorphic to H is a finite
problem. Later work showed that the problem is even tractable, and so the strategy became: (a) list
the groups H that are candidates for being an involution centralizer in some finite simple group, and
(b) for each H in (a) list the finite simple groups for which H occurs as an involution centralizer. Of
course, this approach applies only to the finite simple groups containing an element of order 2, but an
old conjecture said that, except for the cyclic groups of prime order, every finite simple group has
even order and hence contains an element of order 2 by Cauchy’s theorem (4.13). With the proof of
this conjecture by Feit and Thompson (1963), the effort to complete the classification of the finite
simple groups began in earnest. A complete classification was announced in 1982, but there remained
sceptics, because the proof depended on thousands of pages of rarely read journal articles, and, in
fact, in reworking the proof, gaps were discovered. However, these have been closed, and with the
publication of Aschbacher and Smith 2004 it has become generally accepted that the proof of the
classification is indeed complete.

For a popular account of the history of the classification, see the book Ronan 2006, and for a
more technical account, see the expository article Solomon 2001.

Exercises

3-1 Let G be the quaternion group (1.18). Prove that G can’t be written as a semidirect
product in any nontrivial fashion.

3-2 Let G be a group of order mn where m and n have no common factor. If G contains
exactly one subgroup M of order m and exactly one subgroup N of order n, prove that G is
the direct product of M and N .

3-3 Prove that GL2.F2/� S3.

3-4 Let G be the quaternion group (1.18). Prove that Aut.G/� S4.
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3-5 Let G be the set of all matrices in GL3.R/ of the form
�
a 0 b
0 a c
0 0 d

�
, ad ¤ 0. Check that

G is a subgroup of GL3.R/, and prove that it is a semidirect product of R2 (additive group)
by R��R�. Is it a direct product of these two groups?

3-6 Find the automorphism groups of C1 and S3.

3-7 Let G DN ÌQ where N and Q are finite groups, and let g D nq be an element of G
with n 2N and q 2Q. Denote the order of an element x by o.x/:

(a) Show that o.g/D k �o.q/ for some divisor k of jN j.
(b) When Q acts trivially on N , show that o.g/D lcm.o.n/;o.q//:
(c) Let G D S5 D A5ÌQ with Q D h.1;2/i. Let nD .1;4;3;2;5/ and let q D .1;2/.

Show that o.g/D 6, o.n/D 5, and o.q/D 2.
(d) Suppose that G D .Cp/p ÌQ where Q is cyclic of order p and that, for some

generator q of Q,
q.a1; : : : ;an/q

�1
D .an;a1; : : : ;an�1/:

Show inductively that, for i � p,

..1;0; : : : ;0/;q/i D ..1; : : : ;1;0; : : : ;0/ ;qi /

(i copies of 1). Deduce that ..1;0; : : : ;0/;q/ has order p2 (hence o.g/D o.n/ �o.q/ in this
case).

(e) Suppose that G DN ÌQ where N is commutative, Q is cyclic of order 2, and the
generator q of Q acts on N by sending each element to its inverse. Show that .n;1/ has
order 2 no matter what n is (in particular, o.g/ is independent of o.n/).

3-8 Let G be the semidirect G DN ÌQ of its subgroups N and Q, and let

CN .Q/D fn 2N j nq D qn for all q 2Qg

(centralizer of Q in N ). Show that

Z.G/D fn �q j n 2 CN .Q/, q 2Z.Q/, nn0n�1 D q�1n0q for all n0 2N g:

Let � be the homomorphism Q! Aut.N / giving the action of Q on N (by conjugation).
Show that if N is commutative, then

Z.G/D fn �q j n 2 CN .Q/, q 2Z.Q/\Ker.�/g;

and if N and Q are commutative, then

Z.G/D fn �q j n 2 CN .Q/, q 2 Ker.�/g:

3-9 A homomorphism aWG!H of groups is normal if a.G/ is a normal subgroup of
H . The cokernel of a normal homomorphism a is defined to be H=a.G/. Show that, if in
the following commutative diagram, the blue sequences are exact and the homomorphisms
a;b;c are normal, then the red sequence exists and is exact:
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0 Kerf Kera Kerb Kerc

A B C 0

A00 B 0 C 0

Cokera Cokerb Cokerc Cokerg0 0

d

f g

a b c

f 0 g 0

3-10 LetN andH be subgroups ofG, and assume thatH normalizesN , i.e., hNh�1 �N
for all h 2H . Let � denote the action of H on N , �.h/.n/D hnh�1. Show that

.n;h/ 7! nhWN Ì� H !G

is a homomorphism with image NH .

3-11 Let N and Q be subgroups of a group G. Show that G is the semidirect product of
N and Q if and only if there exists a homomorphism G!Q whose restriction to Q is the
identity map and whose kernel is N .





CHAPTER 4
Groups Acting on Sets

Definition and examples

DEFINITION 4.1 Let X be a set and let G be a group. A left action of G on X is a mapping
.g;x/ 7! gxWG�X !X such that

(a) 1x D x, for all x 2X I
(b) .g1g2/x D g1.g2x/, all g1, g2 2G, x 2X:

A set together with a (left) action of G is called a (left) G-set. An action is trivial if gx D x
for all g 2G.

The conditions imply that, for each g 2G, left translation by g,

gLWX !X; x 7! gx;

has .g�1/L as an inverse, and therefore gL is a bijection, i.e., gL 2 Sym.X/. Axiom (b)
now says that

g 7! gLWG! Sym.X/ (18)

is a homomorphism. Thus, from a left action of G on X , we obtain a homomorphism
G! Sym.X/I conversely, every such homomorphism defines an action of G on X . The
action is said to be faithful (or effective) if the homomorphism (18) is injective, i.e., if

gx D x for all x 2X H) g D 1:

EXAMPLE 4.2 (a) Every subgroup of the symmetric group Sn acts faithfully on f1;2; :::;ng.
(b) Every subgroup H of a group G acts faithfully on G by left translation,

H �G!G; .h;x/ 7! hx:

(c) Let H be a subgroup of G. The group G acts on the set of left cosets of H ,

G�G=H !G=H; .g;C / 7! gC:

The action is faithful if, for example, H ¤G and G is simple.
(d) Every group G acts on itself by conjugation,

G�G!G; .g;x/ 7! gx
def
D gxg�1:

57
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For any normal subgroup N , G acts on N and G=N by conjugation.
(e) For any group G, Aut.G/ acts on G:
(f) The group of rigid motions of Rn is the group of bijections Rn! Rn preserving

lengths. It acts on Rn on the left.

A right action X �G!G is defined similarly. To turn a right action into a left action,
set g � x D xg�1. For example, there is a natural right action of G on the set of right
cosets of a subgroup H in G, namely, .C;g/ 7! Cg, which can be turned into a left action
.g;C / 7! Cg�1.

A map of G-sets (alternatively, a G-map or a G-equivariant map) is a map 'WX ! Y

such that
'.gx/D g'.x/; all g 2G; x 2X:

An isomorphism of G-sets is a bijective G-map; its inverse is then also a G-map.

ORBITS

Let G act on X . A subset S �X is said to be stable under the action of G if

g 2G; x 2 S H) gx 2 S:

The action of G on X then induces an action of G on S .
Write x �G y if y D gx, some g 2 G. This relation is reflexive because x D 1x,

symmetric because
y D gx H) x D g�1y

(multiply by g�1 on the left and use the axioms), and transitive because

y D gx; z D g0y H) z D g0.gx/D .g0g/x:

It is therefore an equivalence relation. The equivalence classes are called G-orbits. Thus the
G-orbits partition X . Write GnX for the set of orbits.

By definition, the G-orbit containing x0 is

Gx0 D fgx0 j g 2Gg:

It is the smallest G-stable subset of X containing x0.

EXAMPLE 4.3 (a) Suppose G acts on X , and let ˛ 2G be an element of order n. Then the
orbits of h˛i are the sets of the form

fx0;˛x0; : : : ;˛
n�1x0g:

(These elements need not be distinct, and so the set may contain fewer than n elements.)
(b) The orbits for a subgroup H of G acting on G by left multiplication are the right

cosets of H in G. We write HnG for the set of right cosets. Similarly, the orbits for H
acting by right multiplication are the left cosets, and we write G=H for the set of left cosets.
Note that the group law on G will not induce a group law on G=H unless H is normal.

(c) For a groupG acting on itself by conjugation, the orbits are called conjugacy classes:
for x 2G, the conjugacy class of x is the set

fgxg�1 j g 2Gg
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of conjugates of x. The conjugacy class of x0 always contains x0, and it consists only of x0
if and only if x0 is in the centre of G. In linear algebra the conjugacy classes in G DGLn.k/
are called similarity classes, and the theory of rational canonical forms provides a set of
representatives for the conjugacy classes: two matrices are similar (conjugate) if and only if
they have the same rational canonical form.

Note that a subset of X is stable if and only if it is a union of orbits. For example, a
subgroup H of G is normal if and only if it is a union of conjugacy classes.

The action of G on X is said to be transitive, and G is said to act transitively on X , if
there is only one orbit, i.e., for any two elements x and y of X , there exists a g 2G such that
gx D y. The set X is then called a homogeneous G-set. For example, Sn acts transitively
on f1;2; :::;ng. For any subgroup H of a group G, G acts transitively on G=H , but the
action of G on itself is never transitive if G ¤ 1 because f1g is always a conjugacy class.

The action of G on X is doubly transitive if for any two pairs .x1;x2/, .y1;y2/ of
elements of X with x1 ¤ x2 and y1 ¤ y2, there exists a (single) g 2G such that gx1 D y1
and gx2 D y2. Define k-fold transitivity for k � 3 similarly.

STABILIZERS

Let G act on X . The stabilizer (or isotropy group) of an element x 2X is

Stab.x/D fg 2G j gx D xg:

It is a subgroup, but it need not be a normal subgroup (see the next lemma). The action is
free if Stab.x/D feg for all x.

LEMMA 4.4 For any g 2G and x 2X ,

Stab.gx/D g �Stab.x/ �g�1:

PROOF. Certainly, if g0x D x, then

.gg0g�1/gx D gg0x D gx D y;

and so g �Stab.x/ �g�1 � Stab.gx/. Conversely, if g0.gx/D gx, then

.g�1g0g/x D g�1g0.gx/D g�1y D x;

and so g�1g0g 2 Stab.x/, i.e., g0 2 g �Stab.x/ �g�1. 2

Clearly \
x2X

Stab.x/D Ker.G! Sym.X//;

which is a normal subgroup of G. The action is faithful if and only if
T

Stab.x/D f1g.

EXAMPLE 4.5 (a) Let G act on itself by conjugation. Then

Stab.x/D fg 2G j gx D xgg:

This group is called the centralizer CG.x/ of x in G. It consists of all elements of G that
commute with, i.e., centralize, x. The intersection\

x2G

CG.x/D fg 2G j gx D xg for all x 2Gg
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is the centre of G.
(b) Let G act on G=H by left multiplication. Then Stab.H/DH , and the stabilizer of

gH is gHg�1:
(c) Let G be the group of rigid motions of Rn (4.2f). The stabilizer of the origin is the

orthogonal group On for the standard positive definite form on Rn (Artin 1991, Chap. 4,
5.16). Let T ' .Rn;C/ be the subgroup of G of translations of Rn, i.e., maps of the form
v 7! vCv0 some v0 2 Rn. Then T is a normal subgroup of G and G ' T ÌO (cf. Artin
1991, Chap. 5, �2).

For a subset S of X , we define the stabilizer of S to be

Stab.S/D fg 2G j gS D Sg:

Then Stab.S/ is a subgroup of G, and the same argument as in the proof of (4.4) shows that

Stab.gS/D g �Stab.S/ �g�1:

EXAMPLE 4.6 LetG act onG by conjugation, and letH be a subgroup ofG. The stabilizer
of H is called the normalizer NG.H/ of H in G:

NG.H/D fg 2G j gHg
�1
DH g:

Clearly NG.H/ is the largest subgroup of G containing H as a normal subgroup.

It is possible for gS � S but g 2 Stab.S/ (see 1.33).

TRANSITIVE ACTIONS

PROPOSITION 4.7 If G acts transitively on X , then for any x0 2X , the map

gStab.x0/ 7! gx0WG=Stab.x0/!X

is an isomorphism of G-sets.

PROOF. It is well-defined because, if h 2 Stab.x0/, then ghx0D gx0. It is injective because

gx0 D g
0x0 H) g�1g0x0 D x0 H) g;g0 lie in the same left coset of Stab.x0/:

It is surjective because G acts transitively. Finally, it is obviously G-equivariant. 2

Thus every homogeneous G-set X is isomorphic to G=H for some subgroup H of G,
but such a realization of X is not canonical: it depends on the choice of x0 2 X: To say
this another way, the G-set G=H has a preferred point, namely, the coset H ; to give a
homogeneous G-set X together with a preferred point is essentially the same as to give a
subgroup of G.

COROLLARY 4.8 Let G act on X , and let O DGx0 be the orbit containing x0. Then the
cardinality of O is

jOj D .G W Stab.x0//: (19)

For example, the number of conjugates gHg�1 of a subgroup H of G is .GWNG.H//.
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PROOF. The action ofG onO is transitive, and so g 7!gx0 defines a bijectionG=Stab.x0/!
Gx0. 2

The equation (19) is frequently useful for computing jOj.

PROPOSITION 4.9 Let x0 2X . If G acts transitively on X , then

Ker.G! Sym.X//

is the largest normal subgroup contained in Stab.x0/.

PROOF. When

Ker.G! Sym.X//D
\
x2X

Stab.x/D
\
g2G

Stab.gx0/
(4.4)
D

\
g �Stab.x0/ �g�1:

Hence, the proposition is a consequence of the following lemma. 2

LEMMA 4.10 For any subgroup H of a group G,
T
g2G gHg

�1 is the largest normal
subgroup contained in H .

PROOF. Note that N0
def
D
T
g2G gHg

�1, being an intersection of subgroups, is itself a
subgroup. It is normal because

g1N0g
�1
1 D

\
g2G

.g1g/N0.g1g/
�1
DN0

— for the second equality, we used that, as g runs over the elements of G, so also does g1g.
Thus N0 is a normal subgroup of G contained in eHe�1 DH . If N is a second such group,
then

N D gNg�1 � gHg�1

for all g 2G, and so
N �

\
g2G

gHg�1 DN0:

2

THE CLASS EQUATION

When X is finite, it is a disjoint union of a finite number of orbits:

X D

m[
iD1

Oi (disjoint union):

Hence:

PROPOSITION 4.11 The number of elements in X is

jX j D

mX
iD1

jOi j D

mX
iD1

.G W Stab.xi //; xi in Oi : (20)

When G acts on itself by conjugation, this formula becomes:
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PROPOSITION 4.12 (CLASS EQUATION)

jGj D
X

.G W CG.x// (21)

.x runs over a set of representatives for the conjugacy classes), or

jGj D jZ.G/jC
X

.G W CG.y// (22)

.y runs over set of representatives for the conjugacy classes containing more than one
element).

THEOREM 4.13 (CAUCHY) If the prime p divides jGj, thenG contains an element of order
p.

PROOF. We use induction on jGj. If for some y not in the centre ofG, p does not divide .G W
CG.y//, then p divides the order of CG.y/ and we can apply induction to find an element
of order p in CG.y/. Thus we may suppose that p divides all of the terms .G W CG.y// in
the class equation (second form), and so also divides Z.G/. But Z.G/ is commutative, and
it follows from the structure theorem1 of such groups that Z.G/ will contain an element of
order p. 2

COROLLARY 4.14 A finite group G is a p-group if and only if every element has order a
power of p.

PROOF. If jGj is a power of p, then Lagrange’s theorem (1.26) shows that the order of every
element is a power of p. The converse follows from Cauchy’s theorem. 2

COROLLARY 4.15 Every group of order 2p, p an odd prime, is cyclic or dihedral.

PROOF. From Cauchy’s theorem, we know that such aG contains elements s and r of orders
2 and p respectively. Let H D hri. Then H is of index 2, and so is normal. Obviously
s …H , and so G DH [Hs W

G D f1;r; : : : ; rp�1; s; rs; : : : ; rp�1sg:

As H is normal, srs�1 D r i , some i . Because s2 D 1, r D s2rs�2 D s.srs�1/s�1 D r i
2

,
and so i2 � 1 mod p. Because Z=pZ is a field, its only elements with square 1 are˙1, and
so i � 1 or �1 mod p. In the first case, the group is commutative (any group generated by a
set of commuting elements is obviously commutative); in the second srs�1 D r�1 and we
have the dihedral group (2.9). 2

1Here is a direct proof that the theorem holds for an abelian group Z. We use induction on the order of Z.
It suffices to show that Z contains an element whose order is divisible by p; because then some power of the
element will have order exactly p. Let g ¤ 1 be an element of Z. If p doesn’t divide the order of g, then it
divides the order of Z=hgi, in which case there exists (by induction) an element of G whose order in Z=hgi is
divisible by p. But the order of such an element must itself be divisible by p.
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p-GROUPS

THEOREM 4.16 Every nontrivial finite p-group has nontrivial centre.

PROOF. By assumption, .G W 1/ is a power of p, and so .G W CG.y// is power of p (¤ p0)
for all y not in the centre of G. As p divides every term in the class equation (22) except
(perhaps) jZ.G/j, it must divide jZ.G/j also. 2

COROLLARY 4.17 A group of order pn has normal subgroups of order pm for all m� n.

PROOF. We use induction on n. The centre of G contains an element g of order p, and so
N D hgi is a normal subgroup of G of order p. Now the induction hypothesis allows us to
assume the result for G=N; and the correspondence theorem (1.47) then gives it to us for
G: 2

PROPOSITION 4.18 Every group of order p2 is commutative, and hence is isomorphic to
Cp �Cp or Cp2 .

PROOF. We know that the centre Z is nontrivial, and that G=Z therefore has order 1 or p.
In either case it is cyclic, and the next result implies that G is commutative. 2

LEMMA 4.19 Suppose G contains a subgroup H in its centre (hence H is normal) such
that G=H is cyclic. Then G is commutative.

PROOF. Let a be an element of G whose image in G=H generates it. Then every element
of G can be written g D aih with h 2H , i 2 Z. Now

aih �ai
0

h0 D aiai
0

hh0 because H �Z.G/
D ai

0

aih0h

D ai
0

h0 �aih: 2

REMARK 4.20 The above proof shows that if H �Z.G/ and G contains a set of represen-
tatives for G=H whose elements commute, then G is commutative.

For p odd, it is now not difficult to show that any noncommutative group of order p3 is
isomorphic to exactly one of the groups constructed in (3.14, 3.15) (Exercise 4-4). Thus, up
to isomorphism, there are exactly two noncommutative groups of order p3.

EXAMPLE 4.21 Let G be a noncommutative group of order 8. Then G must contain an
element a of order 4 (see Exercise 1-6). If G contains an element b of order 2 not in hai,
thenG ' haiÌ� hbi where � is the unique isomorphism Z=2Z! .Z=4Z/�, and soG �D4.
If not, any element b of G not in hai must have order 4, and a2 D b2. Now bab�1 is an
element of order 4 in hai. It can’t equal a, because otherwise G would be commutative, and
so bab�1 D a3. Therefore G is the quaternion group (1.18, 2.7b).
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ACTION ON THE LEFT COSETS

The action of G on the set of left cosets G=H of H in G is a very useful tool in the study of
groups. We illustrate this with some examples.

Let X DG=H . Recall that, for any g 2G,

Stab.gH/D gStab.H/g�1 D gHg�1

and the kernel of
G! Sym.X/

is the largest normal subgroup
T
g2G gHg

�1 of G contained in H .

REMARK 4.22 (a) Let H be a subgroup of G not containing a normal subgroup of G other
than 1. Then G ! Sym.G=H/ is injective, and we have realized G as a subgroup of a
symmetric group of order much smaller than .G W 1/Š. For example, if G is simple, then the
Sylow theorems (see Chapter 5) show that G has many proper subgroups H ¤ 1 (unless G
is cyclic), but (by definition) it has no such normal subgroup.

(b) If .G W 1/ does not divide .G WH/Š, then

G! Sym.G=H/

can’t be injective (Lagrange’s theorem, 1.26), and we can conclude thatH contains a normal
subgroup¤ 1 of G. For example, if G has order 99, then it will have a subgroup N of order
11 (Cauchy’s theorem, 4.13), and the subgroup must be normal. In fact, G DN �Q.

EXAMPLE 4.23 Corollary 4.15 shows that every group G of order 6 is either cyclic or
dihedral. Here we present a slightly different argument. According to Cauchy’s theorem
(4.13), G must contain an element r of order 3 and an element s of order 2. Moreover
N

def
D hri must be normal because 6 doesn’t divide 2Š (or simply because it has index 2).

Let H D hsi. Either (a) H is normal in G, or (b) H is not normal in G. In the first
case, rsr�1 D s, i.e., rs D sr , and so G ' hri � hsi � C2 �C3. In the second case,
G! Sym.G=H/ is injective, hence surjective, and so G � S3 �D3.

Permutation groups

Consider Sym.X/ where X has n elements. Since (up to isomorphism) a symmetry group
Sym.X/ depends only on the number of elements in X , we may take X D f1;2; : : : ;ng, and
so work with Sn. The symbol

�
1 2 3 4 5 6 7
2 5 7 4 3 1 6

�
denotes the permutation sending 1 7! 2, 2 7! 5,

3 7! 7, etc..
Consider a permutation

� D

�
1 2 3 : : : n

�.1/ �.2/ �.3/ : : : �.n/

�
:

The pairs .i;j / with i < j and �.i/ > �.j / are called the inversions of � , and � is said
to be even or odd according as the number its inversions is even or odd.. The signature,
sign.�/, of � isC1 or �1 according as � is even or odd. For example, sign.�/D�1 if � is

a transposition.
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REMARK 4.24 To compute the signature of � , connect (by a line) each element i in the top
row to the element i in the bottom row, and count the number of times that the lines cross: �
is even or odd according as this number is even or odd. For example,

1 2 3 4 5

3 5 1 4 2

is even (6 intersections). This works, because there is one crossing for each inversion.

For a permutation � , consider the products

V D
Y

1�i<j�n

.j � i/D .2�1/.3�1/ � � �.n�1/

.3�2/ � � �.n�2/

� � �

.n� .n�1//

�V D
Y

1�i<j�n

.�.j /��.i//D .�.2/��.1//.�.3/��.1// � � �.�.n/��.1//

.�.3/��.2// � � �.�.n/��.2//

� � �

.�.n/��.n�1//:

The terms in the products are the same except that each inversion introduces a negative sign.2

Therefore,
�V D sign.�/V:

Now let P be the additive group of maps Zn! Z. For f 2 P and � 2 Sn, let �f be the
element of P defined by

.�f /.z1; : : : ; zn/D f .z�.1/; : : : ; z�.n//:

For �;� 2 Sn, one finds that3

�.�f /D .��/f: (23)

Let p be the element of P defined by

p.z1; : : : ; zn/D
Y

1�i<j�n

.zj �zi /:

The same argument as above shows that

�p D sign.�/p:

On putting f D p in (23) and using that p ¤ 0, one finds that

sign.�/sign.�/D sign.��/:

Therefore, “sign” is a homomorphism Sn! f˙1g. When n� 2, it is surjective, and so its
kernel is a normal subgroup of Sn of order nŠ

2
, called the alternating groupAn.

2Each is a product over the 2-element subsets of f1;2; : : : ;ng; the factor corresponding to the subset fi;j g is
˙.j � i/.

3For x 2 Zn and � 2 Sn, let x� be the element of Zn such that .x� /i D x�.i/. Then .x� /� D x�� . By
definition, .�f /.x/D f .x� /. Therefore

.�.�f //.x/D .�f /.x� /D f ..x� /� /D f .x�� /D ..��/f /.x/:
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REMARK 4.25 Clearly sign is the unique homomorphism Sn! f˙1g such that sign.�/D
�1 for every transposition � . Now let G D Sym.X/ where X is a set with n elements. Once
we have chosen an ordering of X , we can speak of the inversions of an element � of G.
Define ".�/ to beC1 or �1 according as � has an even or an odd number of inversions. The
same arguments as above show that " is the unique homomorphism G! f˙1g such that
".�/D �1 for every transposition � . In particular, it is independent of the choice of the
ordering. In other words, the parity of the number of inversions of � is independent of the
choice of the ordering on X . Can you prove this directly?

A cycle is a permutation of the following form

i1 7! i2 7! i3 7! � � � 7! ir 7! i1; remaining i ’s fixed.

The ij are required to be distinct. We denote this cycle by .i1i2:::ir/, and call r its length
— note that r is also its order as an element of Sn. A cycle of length 2 is a transposition.
A cycle .i/ of length 1 is the identity map. The support of the cycle .i1 : : : ir/ is the set
fi1; : : : ; irg, and cycles are said to be disjoint if their supports are disjoint. Note that disjoint
cycles commute. If

� D .i1:::ir/.j1:::js/ � � �.l1:::lu/ (disjoint cycles);

then
�m D .i1:::ir/

m.j1:::js/
m
� � �.l1:::lu/

m (disjoint cycles);

and it follows that � has order lcm.r; s; :::;u/:

PROPOSITION 4.26 Every permutation can be written (in essentially one way) as a product
of disjoint cycles.

PROOF. Let � 2 Sn, and let O � f1;2; : : : ;ng be an orbit for h�i. If jOj D r , then for any
i 2O;

O D fi;�.i/; : : : ;�r�1.i/g:

Therefore � and the cycle .i �.i/ : : : �r�1.i// have the same action on any element of O .
Let

f1;2; : : : ;ng D

m[
jD1

Oj

be the decomposition of f1; : : : ;ng into a disjoint union of orbits for h�i, and let j be the
cycle associated (as above) with Oj . Then

� D 1 � � �m

is a decomposition of � into a product of disjoint cycles. For the uniqueness, note that
a decomposition � D 1 � � �m into a product of disjoint cycles must correspond to a de-
composition of f1; :::;ng into orbits (ignoring cycles of length 1 and orbits with only one
element). We can drop cycles of length one, change the order of the cycles, and change how
we write each cycle (by choosing different initial elements), but that’s all because the orbits
are intrinsically attached to �: 2
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For example, �
1 2 3 4 5 6 7 8

5 7 4 2 1 3 6 8

�
D .15/.27634/.8/: (24)

It has order lcm.2;5/D 10.

COROLLARY 4.27 Each permutation � can be written as a product of transpositions; the
number of transpositions in such a product is even or odd according as � is even or odd.

PROOF. The cycle
.i1i2:::ir/D .i1i2/ � � �.ir�2ir�1/.ir�1ir/;

and so the first statement follows from the proposition. Because sign is a homomorphism,
and the signature of a transposition is �1, sign.�/D .�1/#transpositions. 2

Note that the formula in the proof shows that the signature of a cycle of length r is
.�1/r�1, that is, an r-cycle is even or odd according as r is odd or even.

It is possible to define a permutation to be even or odd according as it is a product of an
even or odd number of transpositions, but then one has to go through an argument as above
to show that this is a well-defined notion.

The corollary says that Sn is generated by transpositions. For An there is the following
result.

COROLLARY 4.28 The alternating group An is generated by cycles of length three.

PROOF. Any � 2 An is the product (possibly empty) of an even number of transpositions,
� D t1t

0
1 � � � tmt

0
m, but the product of two transpositions can always be written as a product of

3-cycles:

.ij /.kl/D

8̂<̂
:
.ij /.jl/D .ij l/ case j D k;
.ij /.jk/.jk/.kl/D .ijk/.jkl/ case i;j;k; l distinct,
1 case .ij /D .kl/:

2

Recall that two elements a and b of a group G are said to be conjugate a � b if there
exists an element g 2G such that b D gag�1, and that conjugacy is an equivalence relation.
For a group G, it is useful to determine the conjugacy classes in G.

EXAMPLE 4.29 In Sn, the conjugate of a cycle is given by:

g.i1 : : : ik/g
�1
D .g.i1/ : : :g.ik//:

Hence g.i1 : : : ir/ � � �.l1 : : : lu/g�1D .g.i1/ : : :g.ir// � � �.g.l1/:::g.lu// (even if the cycles are
not disjoint, because conjugation is a homomorphism). In other words, to obtain g�g�1,
replace each element in each cycle of � by its image under g:

We shall now determine the conjugacy classes in Sn. By a partition of n, we mean a
sequence of integers n1; : : : ;nk such that

1� n1 � n2 � � � � � nk � n and

n1Cn2C�� �Cnk D n:
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For example, there are exactly 5 partitions of 4, namely,

4D 1C1C1C1; 4D 1C1C2; 4D 1C3; 4D 2C2; 4D 4;

and 1;121;505 partitions of 61. Note that a partition

f1;2; :::;ng DO1[ :::[Ok (disjoint union)

of f1;2; : : : ;ng determines a partition of n,

nD n1Cn2C :::Cnk; ni D jOi j;

provided the numbering has been chosen so that jOi j � jOiC1j. Since the orbits of an
element � of Sn form a partition of f1; : : : ;ng, we can attach to each such � a partition of n.
For example, the partition of 8 attached to .15/.27634/.8/ is 1;2;5 and the partition attached
to n attached to

� D .i1 : : : in1
/ � � �.l1 : : : lnk

/; (disjoint cycles) 1 < ni � niC1;

is 1;1; : : : ;1;n1; : : : ;nk .n�
P
ni ones/:

PROPOSITION 4.30 Two elements � and � of Sn are conjugate if and only if they define
the same partitions of n.

PROOF. H) WWe saw in (4.29) that conjugating an element preserves the type of its disjoint
cycle decomposition.
(H W Since � and � define the same partitions of n, their decompositions into products

of disjoint cycles have the same type:

� D .i1 : : : ir/.j1 : : :js/ : : : .l1 : : : lu/;

� D .i 01 : : : i
0
r/.j

0
1 : : :j

0
s/ : : : .l

0
1 : : : l

0
u/:

If we define g to be �
i1 � � � ir j1 � � � js � � � l1 � � � lu
i 01 � � � i 0r j 01 � � � j 0s � � � l 01 � � � l 0u

�
;

then
g�g�1 D �: 2

EXAMPLE 4.31 .ijk/D .1234:::
ijk4:::

/.123/.1234:::
ijk4:::

/�1:

REMARK 4.32 For 1 < k � n, there are n.n�1/���.n�kC1/
k

distinct k-cycles in Sn. The 1
k

is
needed so that we don’t count

.i1i2 : : : ik/D .iki1 : : : ik�1/D : : :

k times. Similarly, it is possible to compute the number of elements in any conjugacy class
in Sn, but a little care is needed when the partition of n has several terms equal. For example,
the number of permutations in S4 of type .ab/.cd/ is

1

2

�
4�3

2
�
2�1

2

�
D 3:
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The 1
2

is needed so that we don’t count .ab/.cd/D .cd/.ab/ twice. For S4 we have the
following table:

Partition Element No. in Conj. Class Parity
1C1C1C1 1 1 even
1C1C2 .ab/ 6 odd
1C3 .abc/ 8 even
2C2 .ab/.cd/ 3 even
4 .abcd/ 6 odd

Note that A4 contains exactly 3 elements of order 2, namely those of type 2C2, and that
together with 1 they form a subgroup V . This group is a union of conjugacy classes, and is
therefore a normal subgroup of S4.

THEOREM 4.33 (GALOIS) The group An is simple if n� 5

REMARK 4.34 For nD 2, An is trivial, and for nD 3, An is cyclic of order 3, and hence
simple; for nD 4 it is nonabelian and nonsimple — it contains the normal, even characteristic,
subgroup V (see 4.32).

LEMMA 4.35 Let N be a normal subgroup of An (n� 5/; if N contains a cycle of length
three, then it contains all cycles of length three, and so equals An (by 4.28).

PROOF. Let  be the cycle of length three in N , and let � be a second cycle of length three
in An. We know from (4.30) that � D gg�1 for some g 2 Sn. If g 2 An, then this shows
that � is also in N . If not, because n� 5, there exists a transposition t 2 Sn disjoint from � .
Then tg 2 An and

� D t� t�1 D tgg�1t�1;

and so again � 2N . 2

The next lemma completes the proof of the Theorem.

LEMMA 4.36 Every normal subgroup N of An, n� 5, N ¤ 1, contains a cycle of length 3.

PROOF. Let � 2N , � ¤ 1. If � is not a 3-cycle, we shall construct another element � 0 2N ,
� 0 ¤ 1, which fixes more elements of f1;2; : : : ;ng than does � . If � 0 is not a 3-cycle, then
we can apply the same construction. After a finite number of steps, we arrive at a 3-cycle.

Suppose � is not a 3-cycle. When we express it as a product of disjoint cycles, either it
contains a cycle of length � 3 or else it is a product of transpositions, say

(i) � D .i1i2i3:::/ � � � or
(ii) � D .i1i2/.i3i4/ � � � .

In the first case, � moves two numbers, say i4, i5, other than i1, i2, i3, because � ¤
.i1i2i3/, .i1 : : : i4/. Let  D .i3i4i5/. Then �1

def
D ��1D .i1i2i4 : : :/ � � � 2N , and is distinct

from � (because it acts differently on i2). Thus � 0 def
D �1�

�1 ¤ 1, but � 0 D ��1��1 fixes
i2 and all elements other than i1; :::; i5 fixed by � — it therefore fixes more elements than � .

In the second case, form  , �1, � 0 as in the first case with i4 as in (ii) and i5 any
element distinct from i1; i2; i3; i4. Then �1 D .i1i2/.i4i5/ � � � is distinct from � because
it acts differently on i4. Thus � 0 D �1��1 ¤ 1, but � 0 fixes i1 and i2, and all elements
¤ i1; :::; i5 not fixed by � — it therefore fixes at least one more element than � . 2



70 4. GROUPS ACTING ON SETS

COROLLARY 4.37 For n� 5, the only normal subgroups of Sn are 1; An, and Sn.

PROOF. If N is normal in Sn, then N \An is normal in An. Therefore either N \An DAn
or N \An D f1g. In the first case, N � An, which has index 2 in Sn, and so N D An or Sn.
In the second case, the map x 7! xAnWN ! Sn=An is injective, and so N has order 1 or
2, but it can’t have order 2 because no conjugacy class in Sn (other than f1g) consists of a
single element. 2

ASIDE 4.38 There exists a description of the conjugacy classes in An, from which it is possible to
deduce its simplicity for n� 5 (see Exercise 4-12).

ASIDE 4.39 A group G is said to be solvable if there exist subgroups

G DG0 �G1 � �� � �Gi�1 �Gi � �� � �Gr D f1g

such that each Gi is normal in Gi�1 and each quotient Gi�1=Gi is commutative. Thus An (also Sn/
is not solvable if n� 5. Let f .X/ 2QŒX� be of degree n.

In Galois theory, one attaches to f a subgroup Gf of the group of permutations of the roots of f ,
and shows that the roots of f can be obtained from the coefficients of f by the algebraic operations
of addition, subtraction, multiplication, division, and the extraction of mth roots if and only if Gf is
solvable (Galois’s theorem). For every n, there exist lots of polynomials f of degree n with Gf � Sn,
and hence (when n� 5) lots of polynomials not solvable in radicals.

The Todd-Coxeter algorithm.

Let G be a group described by a finite presentation, and let H be a subgroup described by a
generating set. Then the Todd-Coxeter algorithm4 is a strategy for writing down the set of
left cosets of H in G together with the action of G on the set. I illustrate it with an example
(from Artin 1991, 6.9, which provides more details, but note that he composes permutations
in the reverse direction from us).

Let G D ha;b;c j a3;b2; c2; cbai and let H be the subgroup generated by c (strictly
speaking, H is the subgroup generated by the element of G represented by the reduced word
c). The operation ofG on the set of cosets is described by the action of the generators, which
must satisfy the following rules:

(i) Each generator (a;b;c in our example) acts as a permutation.
(ii) The relations (a3;b2; c2; cba in our example) act trivially.

(iii) The generators of H (c in our example) fix the coset 1H .
(iv) The operation on the cosets is transitive.

The strategy is to introduce cosets, denoted 1;2; : : : with 1D 1H , as necessary.
Rule (iii) tells us simply that c1 D c. We now apply the first two rules. Since we

don’t know what a1 is, let’s denote it 2: a1 D 2. Similarly, let a2 D 3. Now a3 D a31,
which according to (ii) must be 1. Thus, we have introduced three (potential) cosets 1, 2, 3,
permuted by a as follows:

1
a
7! 2

a
7! 3

a
7! 1:

4To solve a problem, an algorithm must always terminate in a finite time with the correct answer to the
problem. The Todd-Coxeter algorithm does not solve the problem of determining whether a finite presentation
defines a finite group (in fact, there is no such algorithm). It does, however, solve the problem of determining the
order of a finite group from a finite presentation of the group (use the algorithm with H the trivial subgroup 1.)
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What is b1? We don’t know, and so it is prudent to introduce another coset 4D b1. Now
b4D 1 because b2 D 1, and so we have

1
b
7! 4

b
7! 1:

We still have the relation cba. We know a1D 2, but we don’t know what b2 is, and so we
set b2D 5:

1
a
7! 2

b
7! 5:

By (iii) c1D 1, and by (ii) applied to cba we have c5D 1. Therefore, according to (i) we
must have 5D 1; we drop 5, and so now b2D 1. Since b4D 1 we must have 4D 2, and so
we can drop 4 also. What we know can be summarized by the table:

a a a b b c c a b c

1 2 3 1 2 1 1 1 2 1 1
2 3 1 2 1 2 2 3 2
3 1 2 3 3 3 1 2 3

The bottom right corner, which is forced by (ii), tells us that c2D 3. Hence also c3D 2, and
this then determines the rest of the table:

a a a b b c c a b c

1 2 3 1 2 1 1 1 2 1 1
2 3 1 2 1 2 3 2 3 3 2
3 1 2 3 3 3 2 3 1 2 3

We find that we have three cosets on which a;b;c act as

aD .123/ b D .12/ c D .23/:

More precisely, we have written down a map G! S3 that is consistent with the above rules.
A theorem (Artin 1991, 9.10) now says that this does in fact describe the action of G on
G=H . Since the three elements .123/, .12/, and .23/ generate S3, this shows that the action
of G on G=H induces an isomorphism G! S3, and that H is a subgroup of order 2.

In Artin 1991, 6.9, it is explained how to make this procedure into an algorithm which,
when it succeeds in producing a consistent table, will in fact produce the correct table.

This algorithm is implemented in GAP.

Primitive actions.

Let G be a group acting on a set X , and let � be a partition of X . We say that � is stabilized
by G if

A 2 � H) gA 2 �:

It suffices to check the condition for a set of generators for G.

EXAMPLE 4.40 (a) The subgroupGD h.1234/i of S4 stabilizes the partition ff1;3g;f2;4gg
of f1;2;3;4g.

(b) Identify X D f1;2;3;4g with the set of vertices of the square on which D4 acts
in the usual way, namely, with r D .1234/, s D .2;4/. Then D4 stabilizes the partition
ff1;3g;f2;4gg (opposite vertices stay opposite).

(c) Let X be the set of partitions of f1;2;3;4g into two sets, each with two elements.
Then S4 acts on X , and Ker.S4! Sym.X// is the subgroup V defined in (4.32).
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The group G always stabilizes the trivial partitions of X , namely, the set of all one-
element subsets of X , and fXg. When it stabilizes only those partitions, we say that the
action is primitive; otherwise it is imprimitive. A subgroup of Sym.X/ (e.g., of Sn) is said
to be primitive if it acts primitively on X . Obviously, Sn itself is primitive, but Example
4.40b shows that D4, regarded as a subgroup of S4 in the obvious way, is not primitive.

EXAMPLE 4.41 A doubly transitive action is primitive: if it stabilized

ffx;x0; :::g;fy; :::g:::g,

then there would be no element sending .x;x0/ to .x;y/.

REMARK 4.42 The G-orbits form a partition of X that is stabilized by G. If the action is
primitive, then the partition into orbits must be one of the trivial ones. Hence

action primitive H) action transitive or trivial.

For the remainder of this section, G is a finite group acting transitively on a set X with at
least two elements.

PROPOSITION 4.43 The group G acts imprimitively if and only if there is a proper subset
A of X with at least 2 elements such that,

for each g 2G, either gAD A or gA\AD ;: (25)
PROOF. H): The partition � stabilized by G contains such an A.
(H: From such anA, we can form a partition fA;g1A;g2A;:::g ofX , which is stabilized

by G. 2

A subset A of X satisfying (25) is called block.

PROPOSITION 4.44 Let A be a block in X with jAj � 2 and A¤X . For any x 2 A,

Stab.x/¤ Stab.A/¤G:
PROOF. We have Stab.A/� Stab.x/ because

gx D x H) gA\A¤ ; H) gAD A:

Let y 2 A, y ¤ x. Because G acts transitively on X , there is a g 2 G such that gx D y.
Then g 2 Stab.A/, but g … Stab.x/:

Let y … A. There is a g 2G such that gx D y, and then g … Stab.A/: 2

THEOREM 4.45 The group G acts primitively on X if and only if, for one (hence all) x in
X , Stab.x/ is a maximal subgroup of G.
PROOF. If G does not act primitively on X , then (see 4.43) there is a block A¤X with at
least two elements, and so (4.44) shows that Stab.x/ will not be maximal for any x 2 A.

Conversely, suppose that there exists an x in X and a subgroup H such that

Stab.x/¤H ¤G.

Then I claim that ADHx is a block¤X with at least two elements.
Because H ¤ Stab.x/, Hx ¤ fxg, and so fxg¤ A¤X .
If g 2H , then gAD A. If g …H , then gA is disjoint from A: for suppose ghx D h0x

some h0 2H ; then h0�1gh 2 Stab.x/�H , say h0�1ghD h00, and g D h0h00h�1 2H . 2
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Exercises

4-1 Let H1 and H2 be subgroups of a group G. Show that the maps of G-sets G=H1!
G=H2 are in natural one-to-one correspondence with the elements gH2 of G=H2 such that
H1 � gH2g

�1.

4-2 (a) Show that a finite group G can’t be equal to the union of the conjugates of a proper
subgroup H .

(b) Show that (a) holds for an infinite group G provided that .GWH/ is finite.
(c) Give an example to show that (a) fails in general for infinite groups.
(d) Give an example of a proper subset S of a finite groupG such thatGD

S
g2G gSg

�1.

4-3 Show that any set of representatives for the conjugacy classes in a finite group generates
the group.

4-4 Prove that any noncommutative group of order p3, p an odd prime, is isomorphic to
one of the two groups constructed in (3.14, 3.15).

4-5 Let p be the smallest prime dividing .G W 1/ (assumed finite). Show that any subgroup
of G of index p is normal.

4-6 Show that a group of order 2m, m odd, contains a subgroup of index 2. (Hint: Use
Cayley’s theorem 1.22)

4-7 For n � 5, show that the k-cycles in Sn generate Sn or An according as k is even or
odd.

4-8 Let G D GL3.F2/.

(a) Show that .G W 1/D 168.
(b) Let X be the set of lines through the origin in F32; show that X has 7 elements, and

that there is a natural injective homomorphism G ,! Sym.X/D S7.
(c) Use Jordan canonical forms to show that G has six conjugacy classes, with 1, 21, 42,

56, 24, and 24 elements respectively. [Note that if M is a free F2Œ˛�-module of rank
one, then EndF2Œ˛�.M/D F2Œ˛�.]

(d) Deduce that G is simple.

4-9 Let G be a group. If Aut.G/ is cyclic, prove that G is commutative; if further, G is
finite, prove that G is cyclic.

4-10 Show that Sn is generated by .12/; .13/; : : : ; .1n/; also by .12/; .23/; : : : ; .n�1n/.

4-11 LetK be a conjugacy class of a finite groupG contained in a normal subgroupH ofG.
Prove thatK is a union of k conjugacy classes of equal size inH , where kD .G WH �CG.x//
for any x 2K.
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4-12 (a) Let � 2 An. From Exercise 4-11 we know that the conjugacy class of � in Sn
either remains a single conjugacy class in An or breaks up as a union of two classes of equal
size. Show that the second case occurs ” � does not commute with an odd permutation
” the partition of n defined by � consists of distinct odd integers.
(b) For each conjugacy class K in A7, give a member of K, and determine jKj.

4-13 Let G be the group with generators a;b and relations a4 D 1D b2, abaD bab.

(a) Use the Todd-Coxeter algorithm (with H D 1) to find the image of G under the
homomorphism G! Sn, nD .G W 1/, given by Cayley’s Theorem 1.11. [No need to
include every step; just an outline will do.]

(b) Use Sage/GAP to check your answer.

4-14 Show that if the action of G on X is primitive and effective, then the action of any
normal subgroup H ¤ 1 of G is transitive.

4-15 (a) Check that A4 has 8 elements of order 3, and 3 elements of order 2. Hence it has
no element of order 6.
(b) Prove that A4 has no subgroup of order 6 (cf. 1.30). (Use 4.23.)
(c) Prove that A4 is the only subgroup of S4 of order 12.

4-16 Let G be a group with a subgroup of index r . Prove:

(a) If G is simple, then .G W 1/ divides rŠ.
(b) If r D 2;3; or 4, then G can’t be simple.
(c) There exists a nonabelian simple group with a subgroup of index 5.

4-17 Prove that Sn is isomorphic to a subgroup of AnC2.

4-18 Let H and K be subgroups of a group G. A double coset of H and K in G is a set
of the form

HaK D fhak j h 2H , k 2Kg

for some a 2G.

(a) Show that the double cosets of H and K in G partition G.
(b) Let H \aKa�1 act on H �K by b.h;k/D .hb;a�1b�1ak/. Show that the orbits

for this action are exactly the fibres of the map .h;k/ 7! hakWH �K!HaK.
(c) (Double coset counting formula). Use (b) to show that

jHaKj D
jH jjKj

jH \aKa�1j
:

4-19 The normal subgroups N of a group G are those with the following property: for
every set X on which G acts transitively, N fixes one x in X if and only if N fixes every x
in X .

4-20 (This exercise assumes a knowledge of categories.) Let G be a group, and let F
be the functor sending a G-set to its underlying set. We can regard G as a G-set, and so
an automorphism a of F defines an automorphism aG of G (as a set). Show that the map
a 7! aG.1/WAut.F /!G is an isomorphism of groups (cf. sx66588).



CHAPTER 5
The Sylow Theorems; Applications

As an undergraduate, I learned the Sylow theorems in my algebra classes
but could never retain either the statement or proof of these theorems
in memory except for short periods of time. . . I think the problem was
that I was exposed to these theorems long before I had internalised the
concept of a group action. But once one has the mindset to approach a
mathematical object through the various natural group actions on that
object, and then look at the various dynamical features of that action
(orbits, stabilisers, quotients, etc.) then the Sylow theorems (and Cauchy’s
theorem, Lagrange’s theorem, etc.) all boil down to observing an action
on some natural space (e.g. the conjugacy action on the group, or on
tuples of elements on that group) and counting orbits and stabilisers.
Terry Tao mo130883.

In this chapter, all groups are finite.
LetG be a group and let p be a prime dividing .GW1/. A subgroup ofG is called a Sylow

p-subgroup of G if its order is the highest power of p dividing .G W 1/. In other words, H
is a Sylow p-subgroup of G if it is a p-group and its index in G is prime to p.

The Sylow theorems state that there exist Sylow p-subgroups for all primes p dividing
.GW1/, that the Sylow p-subgroups for a fixed p are conjugate, and that every p-subgroup
of G is contained in such a subgroup; moreover, the theorems restrict the possible number of
Sylow p-subgroups in G.

The Sylow theorems

In the proofs, we frequently use that if O is an orbit for a group H acting on a set X , and
x0 2O , then the map H !X , h 7! hx0 induces a bijection

H=Stab.x0/!OI

see (4.7). Therefore
.H W Stab.x0//D jOj:

In particular, when H is a p-group, jOj is a power of p: either O consists of a single
element, or jOj is divisible by p. Since X is a disjoint union of the orbits, we can conclude:

75
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LEMMA 5.1 Let H be a p-group acting on a finite set X , and let XH be the set of points
fixed by H ; then

jX j � jXH j .mod p/:

When the lemma is applied to a p-group H acting on itself by conjugation, we find that

.Z.H/ W 1/� .H W 1/ mod p

and so pj.Z.H/W1/ (cf. the proof of 4.16).

THEOREM 5.2 (SYLOW I) Let G be a finite group, and let p be prime. If pr j.G W 1/, then
G has a subgroup of order pr :

PROOF. According to (4.17), it suffices to prove this with pr the highest power of p dividing
.G W 1/, and so from now on we assume that .G W 1/D prm with m not divisible by p. Let

X D fsubsets of G with pr elementsg;

with the action of G defined by

G�X !X; .g;A/ 7! gA
def
D fga j a 2 Ag:

Let A 2X , and let
H D Stab.A/ def

D fg 2G j gAD Ag:

For any a0 2A, h 7! ha0WH !A is injective (cancellation law), and so .H W 1/� jAj D pr .
In the equation

.G W 1/D .G WH/.H W 1/

we know that .G W 1/D prm, .H W 1/� pr , and that .G WH/ is the number of elements in
the orbit of A. If we can find an A such that p doesn’t divide the number of elements in its
orbit, then we can conclude that (for such an A), H D StabA has order pr .

The number of elements in X is

jX j D

�
prm

pr

�
D
.prm/.prm�1/ � � �.prm� i/ � � �.prm�prC1/

pr.pr �1/ � � �.pr � i/ � � �.pr �prC1/
:

Note that, because i < pr , the power of p dividing prm� i is the power of p dividing i . The
same is true for pr � i . Therefore the corresponding terms on top and bottom are divisible
by the same powers of p, and so p does not divide jX j. Because the orbits form a partition
of X ,

jX j D
X
jOi j; Oi the distinct orbits;

and so at least one of the jOi j is not divisible by p. 2

EXAMPLE 5.3 Let Fp DZ=pZ, the field with p elements, and letG DGLn.Fp/. The n�n
matrices in G are precisely those whose columns form a basis for Fnp . Thus, the first column
can be any nonzero vector in Fnp , of which there are pn�1; the second column can be any
vector not in the span of the first column, of which there are pn�p; and so on. Therefore,
the order of G is

.pn�1/.pn�p/.pn�p2/ � � �.pn�pn�1/;



The Sylow theorems 77

and so the power of p dividing .G W 1/ is p1C2C���C.n�1/. Consider the upper triangular
matrices with 1’s down the diagonal:0BBBBB@

1 � � � � � �

0 1 � � � � �

0 0 1 � � � �
:::

:::
::: � � �

:::

0 0 0 � � � 1

1CCCCCA :

They form a subgroup U of order pn�1pn�2 � � �p, which is therefore a Sylow p-subgroup
G.

REMARK 5.4 The theorem gives another proof of Cauchy’s theorem (4.13). If a prime p
divides .GW1/, then G will have a subgroup H of order p, and any g 2H , g ¤ 1, is an
element of G of order p.

REMARK 5.5 The proof of Theorem 5.2 can be modified to show directly that for each
power pr of p dividing .G W 1/ there is a subgroup H of G of order pr . One again writes
.G W 1/D prm and considers the set X of all subsets of order pr . In this case, the highest
power pr0 of p dividing jX j is the highest power of p dividing m, and it follows that there
is an orbit in X whose order is not divisible by pr0C1. For an A in such an orbit, the same
counting argument shows that Stab.A/ has pr elements. We recommend that the reader
write out the details.

THEOREM 5.6 (SYLOW II) LetG be a finite group, and let jGj Dprmwithm not divisible
by p.

(a) Any two Sylow p-subgroups are conjugate.
(b) Let sp be the number of Sylow p-subgroups in G; then sp � 1 mod p and spjm.
(c) Every p-subgroup of G is contained in a Sylow p-subgroup.

Let H be a subgroup of G. Recall (4.6, 4.8) that the normalizer of H in G is

NG.H/D fg 2G j gHg
�1
DH g;

and that the number of conjugates of H in G is .G WNG.H//.

LEMMA 5.7 Let P be a Sylow p-subgroup of G, and let H be a p-subgroup. If H
normalizes P , i.e., if H �NG.P /, then H � P . In particular, no Sylow p-subgroup of G
other than P normalizes P .

PROOF. Because H and P are subgroups of NG.P / with P normal in NG.P /, HP is a
subgroup, and H=H \P 'HP=P (apply 1.46). Therefore .HP W P / is a power of p (here
is where we use that H is a p-group), but

.HP W 1/D .HP W P /.P W 1/;

and .P W 1/ is the largest power of p dividing .G W 1/, hence also the largest power of p
dividing .HP W 1/. Thus .HP W P /D p0 D 1, and H � P . 2
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PROOF (OF SYLOW II) (a) Let X be the set of Sylow p-subgroups in G, and let G act on
X by conjugation,

.g;P / 7! gPg�1WG�X !X:

Let O be one of the G-orbits: we have to show O is all of X .
Let P 2O , and let P act on O through the action of G. This single G-orbit may break

up into several P -orbits, one of which will be fP g. In fact this is the only one-point orbit
because

fQg is a P -orbit” P normalizes Q;

which we know (5.7) happens only for Q D P . Hence the number of elements in every
P -orbit other than fP g is divisible by p, and we have that jOj � 1 mod p.

Suppose there exists a P … O . We again let P act on O , but this time the argument
shows that there are no one-point orbits, and so the number of elements in every P -orbit is
divisible by p. This implies that #O is divisible by p, which contradicts what we proved in
the last paragraph. There can be no such P , and so O is all of X .

(b) Since sp is now the number of elements in O , we have also shown that sp � 1 (mod
p/.

Let P be a Sylow p-subgroup of G. According to (a), sp is the number of conjugates of
P , which equals

.G WNG.P //D
.G W 1/

.NG.P / W 1/
D

.G W 1/

.NG.P / W P / � .P W 1/
D

m

.NG.P / W P /
:

This is a factor of m.
(c) Let H be a p-subgroup of G, and let H act on the set X of Sylow p-subgroups by

conjugation. Because jX j D sp is not divisible by p, XH must be nonempty (Lemma 5.1),
i.e., at least one H -orbit consists of a single Sylow p-subgroup. But then H normalizes P
and Lemma 5.7 implies that H � P . 2

COROLLARY 5.8 A Sylow p-subgroup is normal if and only if it is the only Sylow p-
subgroup.

PROOF. Let P be a Sylow p-subgroup of G. If P is normal, then (a) of Sylow II implies
that it is the only Sylow p-subgroup. The converse statement follows from (3.7c) (which
shows, in fact, that P is even characteristic). 2

COROLLARY 5.9 Suppose that a group G has only one Sylow p-subgroup for each prime
p dividing its order. Then G is a direct product of its Sylow p-subgroups.

PROOF. Let P1; : : : ;Pk be Sylow subgroups of G, and let jPi j D p
ri

i ; the pi are distinct
primes. Because each Pi is normal in G, the product P1 � � �Pk is a normal subgroup of G.
We shall prove by induction on k that it has order pr1

1 � � �p
rk

k
. If k D 1, there is nothing to

prove, and so we may suppose that k � 2 and that P1 � � �Pk�1 has order pr1

1 � � �p
rk�1

k�1
. Then

P1 � � �Pk�1\Pk D 1; therefore (1.51) shows that .P1 � � �Pk�1/Pk is the direct product of
P1 � � �Pk�1 and Pk , and so has order pr1

1 � � �p
rk

k
. Now (1.52) applied to the full set of Sylow

subgroups of G shows that G is their direct product. 2
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EXAMPLE 5.10 Let G D GL.V / where V is a vector space of dimension n over Fp . There
is a geometric description of the Sylow subgroups of G. A maximal flag F in V is a
sequence of subspaces

V D Vn � Vn�1 � �� � � Vi � �� � � V1 � f0g

with dimVi D i . Given such a flag F , let U.F / be the set of linear maps ˛WV ! V such that

(a) ˛.Vi /� Vi for all i , and
(b) the endomorphism of Vi=Vi�1 induced by ˛ is the identity map.

I claim that U.F / is a Sylow p-subgroup of G. Indeed, we can construct a basis fe1; : : : ; eng
for V such fe1g is basis for V1, fe1; e2g is a basis for V2, and so on. Relative to this basis,
the matrices of the elements of U.F / are exactly the elements of the group U of (5.3).

Let g 2 GLn.F/. Then gF def
D fgVn;gVn�1; : : :g is again a maximal flag, and U.gF /D

g �U.F / �g�1. From (a) of Sylow II, we see that the Sylow p-subgroups of G are precisely
the groups of the form U.F / for some maximal flag F .

ASIDE 5.11 Some books use different numberings for Sylow’s theorems. I have essentially followed
the original (Sylow 1872).

Alternative approach to the Sylow theorems

We briefly forget that we have proved the Sylow theorems.

THEOREM 5.12 LetG be a group, and letP be a Sylow p-subgroup ofG. For any subgroup
H of G, there exists an a 2G such that H \aPa�1 is a Sylow p-subgroup of H .

PROOF. Recall (Exercise 4-18) that G is a disjoint union of the double cosets for H and P ,
and so

jGj D
X

a
jHaP j D

X
a

jH jjP j

jH \aPa�1j

where the sum is over a set of representatives for the double cosets. On dividing by jP j we
find that

jGj

jP j
D

X
a

jH j

jH \aPa�1j
;

and so there exists an a such that .H WH \aPa�1/ is not divisible by p. For such an a,
H \aPa�1 is a Sylow p-subgroup of H . 2

PROOF (OF SYLOW I) According to Cayley’s theorem (1.22), G embeds into Sn, and Sn
embeds into GLn.Fp/ (see 7.1b below). As GLn.Fp/ has a Sylow p-subgroup (see 5.3), so
also does G. 2

PROOF (OF SYLOW II(a,c)) LetP be a Sylow p-subgroup ofG, and letP 0 be a p-subgroup
of G. Then P 0 is the unique Sylow p-subgroup of P 0, and so the theorem with H D P 0

shows that aPa�1 � P 0 for some a. This implies (a) and (c) of Sylow II. 2
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Examples

We apply what we have learnt to obtain information about groups of various orders.

5.13 (GROUPS OF ORDER 99) LetG have order 99. The Sylow theorems imply thatG has
at least one subgroup H of order 11, and in fact s11

ˇ̌
99
11

and s11 � 1 mod 11. It follows that
s11D 1, andH is normal. Similarly, s9j11 and s9� 1 mod 3, and so the Sylow 3-subgroup
is also normal. Hence G is isomorphic to the direct product of its Sylow subgroups (5.9),
which are both commutative (4.18), and so G commutative.

Here is an alternative proof. Verify as before that the Sylow 11-subgroup N of G is
normal. The Sylow 3-subgroup Q maps bijectively onto G=N , and so G D N ÌQ. It
remains to determine the action by conjugation of Q on N . But Aut.N / is cyclic of order
10 (see 3.5), and so there is only the trivial homomorphism Q! Aut.N /. It follows that G
is the direct product of N and Q.

5.14 (GROUPS OF ORDER pq, p;q PRIMES, p < q) LetG be such a group, and let P and
Q be Sylow p and q subgroups. Then .G WQ/D p, which is the smallest prime dividing
.G W 1/, and so (see Exercise 4-5) Q is normal. Because P maps bijectively onto G=Q, we
have that

G DQÌP;

and it remains to determine the action of P on Q by conjugation.
The group Aut.Q/ is cyclic of order q�1 (see 3.5), and so, unless pjq�1, G DQ�P .
If pjq�1, then Aut.Q/ (being cyclic) has a unique subgroup P 0 of order p. In fact P 0

consists of the maps
x 7! xi ; fi 2 Z=qZ j ip D 1g:

Let a and b be generators for P and Q respectively, and suppose that the action of a on Q
by conjugation is x 7! xi0 ; i0 ¤ 1 (in Z=qZ). Then G has generators a;b and relations

ap; bq; aba�1 D bi0 :

Choosing a different i0 amounts to choosing a different generator a for P , and so gives an
isomorphic group G.

In summary: if p − q�1, then the only group of order pq is the cyclic group Cpq; if
pjq�1, then there is also a nonabelian group given by the above generators and relations.

5.15 (GROUPS OF ORDER 30) Let G be a group of order 30. Then

s3 D 1;4;7;10; : : : and divides 10I

s5 D 1;6;11; : : : and divides 6:

Hence s3 D 1 or 10, and s5 D 1 or 6. In fact, at least one is 1, for otherwise there would
be 20 elements of order 3 and 24 elements of order 5, which is impossible. Therefore, a
Sylow 3-subgroup P or a Sylow 5-subgroup Q is normal, and so H D PQ is a subgroup of
G. Because 3 doesn’t divide 5�1D 4, (5.14) shows that H is commutative, H � C3�C5.
Hence

G D .C3�C5/Ì� C2;
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and it remains to determine the possible homomorphisms � WC2! Aut.C3�C5/. But such
a homomorphism � is determined by the image of the nonidentity element of C2, which
must be an element of order 2. Let a, b, c generate C3, C5, C2. Then

Aut.C3�C5/D Aut.C3/�Aut.C5/;

and the only elements of AutC3 and AutC5 of order 2 are a 7! a�1 and b 7! b�1. Thus
there are exactly 4 homomorphisms � , and �.c/ is one of the following elements:�

a 7! a

b 7! b

�
a 7! a

b 7! b�1

�
a 7! a�1

b 7! b

�
a 7! a�1

b 7! b�1
:

The groups corresponding to these homomorphisms have centres of order 30, 3 (generated
by a), 5 (generated by b), and 1 respectively, and hence are nonisomorphic. We have shown
that (up to isomorphism) there are exactly 4 groups of order 30. For example, the third on
our list has generators a;b;c and relations

a3; b5; c2; ab D ba; cac�1 D a�1; cbc�1 D b:

5.16 (GROUPS OF ORDER 12) Let G be a group of order 12, and let P be its Sylow 3-
subgroup. If P is not normal, then P doesn’t contain a nontrivial normal subgroup of G,
and so the map (4.2, action on the left cosets)

' WG! Sym.G=P /� S4

is injective, and its image is a subgroup of S4 of order 12. From Sylow II we see that G
has exactly 4 Sylow 3-subgroups, and hence it has exactly 8 elements of order 3. But all
elements of S4 of order 3 are in A4 (see the table in 4.32), and so '.G/ intersects A4 in a
subgroup with at least 8 elements. By Lagrange’s theorem '.G/D A4, and so G � A4.

Now assume that P is normal. Then G D P ÌQ where Q is the Sylow 4-subgroup. If
Q is cyclic of order 4, then there is a unique nontrivial map Q.D C4/! Aut.P /.D C2/,
and hence we obtain a single noncommutative group C3ÌC4. If Q D C2�C2, there are
exactly 3 nontrivial homomorphism � WQ! Aut.P /, but the three groups resulting are all
isomorphic to S3�C2 with C2 D Ker� . (The homomorphisms differ by an automorphism
of Q, and so we can also apply Lemma 3.18.)

In total, there are 3 noncommutative groups of order 12 and 2 commutative groups.

5.17 (GROUPS OF ORDER p3) Let G be a group of order p3, with p an odd prime, and
assume G is not commutative. We know from (4.17) that G has a normal subgroup N of
order p2.

If every element of G has order p (except 1), then N � Cp �Cp and there is a subgroup
Q of G of order p such that Q\N D f1g. Hence

G DN Ì�Q

for some homomorphism � WQ!N . The order of Aut.N /� GL2.Fp/ is .p2�1/.p2�p/
(see 5.3), and so its Sylow p-subgroups have order p. By the Sylow theorems, they are
conjugate, and so Lemma 3.19 shows that there is exactly one nonabelian group in this case.

Suppose G has elements of order p2, and let N be the subgroup generated by such an
element a. Because .G WN/D p is the smallest (in fact only) prime dividing .G W 1/, N is
normal in G (Exercise 4-5). We next show that G contains an element of order p not in N .
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We know Z.G/ ¤ 1, and, because G isn’t commutative, that G=Z.G/ is not cyclic
(4.19). Therefore .Z.G/ W 1/D p and G=Z.G/� Cp �Cp. In particular, we see that for
all x 2 G, xp 2 Z.G/. Because G=Z.G/ is commutative, the commutator of any pair of
elements of G lies in Z.G/, and an easy induction argument shows that

.xy/n D xnynŒy;x�
n.n�1/

2 ; n� 1:

Therefore .xy/p D xpyp, and so x 7! xpWG ! G is a homomorphism. Its image is
contained in Z.G/, and so its kernel has order at least p2. Since N contains only p� 1
elements of order p, we see that there exists an element b of order p outside N . Hence G D
haiÌ hbi � Cp2 ÌCp, and it remains to observe (3.19) that the nontrivial homomorphisms
Cp! Aut.Cp2/� Cp �Cp�1 give isomorphic groups.

Thus, up to isomorphism, the only noncommutative groups of order p3 are those
constructed in (3.14, 3.15).

5.18 (GROUPS OF ORDER 2pn, 4pn; AND 8pn, p ODD) LetG be a group of order 2mpn,
1�m� 3, p an odd prime, 1� n. We shall show that G is not simple. Let P be a Sylow
p-subgroup and let N DNG.P /, so that sp D .G WN/.

From Sylow II, we know that spj2m, sp D 1;pC1;2pC1; : : :. If sp D 1, P is normal.
If not, there are two cases to consider:

(i) sp D 4 and p D 3, or
(ii) sp D 8 and p D 7:

In the first case, the action by conjugation of G on the set of Sylow 3-subgroups1 defines
a homomorphism G! S4, which, if G is simple, must be injective. Therefore .G W 1/j4Š,
and so nD 1; we have .G W 1/D 2m3. Now the Sylow 2-subgroup has index 3, and so we
have a homomorphism G! S3. Its kernel is a nontrivial normal subgroup of G.

In the second case, the same argument shows that .G W 1/j8Š, and so nD 1 again. Thus
.G W 1/D 56 and s7 D 8. Therefore G has 48 elements of order 7, and so there can be only
one Sylow 2-subgroup, which must therefore be normal.

Note that groups of order pqr , p;q primes, p < q are not simple, because Exercise 4-5
shows that the Sylow q-subgroup is normal. An examination of cases now reveals that A5 is
the smallest noncyclic simple group.

5.19 (GROUPS OF ORDER 60) Let G be a simple group of order 60. We shall show that G
is isomorphic to A5. Let P be a Sylow 2-subgroup and N DNG.P /, so that s2 D .G WN/.
According to the Sylow theorems, s2 D 1;3;5; or 15:

(a) The case s2 D 1 is impossible, because P would be normal (see 5.8).
(b) The case s2 D 3 is impossible, because the kernel of G! Sym.G=N/ would be a

nontrivial normal subgroup of G.
(c) In the case s2 D 5, we get an inclusion G ,! Sym.G=N/D S5, which realizes G as

a subgroup of index 2 in S5, but we saw in (4.37) that, for n� 5, An is the only subgroup of
index 2 in Sn.

(d) In the case s2 D 15, a counting argument (using that s5 D 6) shows that there exist
two Sylow 2-subgroups P and Q intersecting in a group of order 2. The normalizer N

1Equivalently, the usual map G! Sym.G=N/.
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of P \Q contains P and Q, and so it has index 1, 3, or 5 in G. The first two cases are
impossible for the same reasons as in (a) and (b). If .GWN/D 5, the argument in (c) gives
an isomorphism G � A5; but this is impossible because s2.A5/D 5.

Exercises

5-1 Show that a finite group (not necessarily commutative) is cyclic if, for each n > 0, it
contains at most n elements of order dividing n.





CHAPTER 6
Subnormal Series; Solvable and

Nilpotent Groups

Subnormal Series.

Let G be a group. A chain of subgroups

G DG0 �G1 � �� � �Gi �GiC1 � �� � �Gn D f1g:

is called a subnormal series if Gi is normal in Gi�1 for every i , and it is called a normal
series if Gi is normal in G for every i .1 The series is said to be without repetitions if all the
inclusions Gi�1 �Gi are proper (i.e., Gi�1 ¤Gi ). Then n is called the length of the series.
The quotient groups Gi�1=Gi are called the quotient (or factor) groups of the series.

A subnormal series is said to be a composition series if it has no proper refinement that
is also a subnormal series. In other words, it is a composition series if Gi is maximal among
the proper normal subgroups Gi�1 for each i . Thus a subnormal series is a composition
series if and only if each quotient group is simple and nontrivial. Obviously, every finite
group has a composition series (usually many): choose G1 to be a maximal proper normal
subgroup of G; then choose G2 to be a maximal proper normal subgroup of G1, etc.. An
infinite group may or may not have a finite composition series.

Note that from a subnormal series

G DG0 FG1 F � � � FGi FGiC1 F � � � FGn D f1g

we obtain a sequence of exact sequences

1!Gn�1!Gn�2!Gn�2=Gn�1! 1

� � �

1!GiC1!Gi !Gi=GiC1! 1

� � �

1!G1!G0!G0=G1! 1:

Thus G is built up out of the quotients G0=G1;G1=G2; : : : ;Gn�1 by forming successive
extensions. In particular, since every finite group has a composition series, it can be regarded

1Some authors write “normal series” where we write “subnormal series” and “invariant series” where we
write “normal series”.

85
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as being built up out of simple groups. The Jordan-Hölder theorem, which is the main topic
of this section, says that these simple groups are independent of the composition series (up
to order and isomorphism).

Note that if G has a subnormal series G DG0 FG1 F � � � FGn D f1g, then

.G W 1/D
Y

1�i�n
.Gi�1 WGi /D

Y
1�i�n

.Gi�1=Gi W 1/:

EXAMPLE 6.1 (a) The symmetric group S3 has a composition series

S3 FA3 F1

with quotients C2, C3:
(b) The symmetric group S4 has a composition series

S4 FA4 FV Fh.13/.24/iF1;

where V � C2�C2 consists of all elements of order 2 in A4 (see 4.32). The quotients are
C2, C3, C2, C2.

(c) Any maximal flag in Fnp, p a prime, is a composition series. Its length is n, and its
quotients are Cp;Cp; : : : ;Cp:

(d) Consider the cyclic group Cm D hai. For any factorization mD p1 � � �pr of m into a
product of primes (not necessarily distinct), there is a composition series

Cm F C m
p1

F C m
p1p2

F � � �

k k k

hai hap1i hap1p2i

The length is r , and the quotients are Cp1
;Cp2

; : : : ;Cpr
.

(e) Suppose G is a direct product of simple groups, G DH1� � � ��Hr . Then G has a
composition series

G FH2� � � ��Hr FH3� � � ��Hr F � � �

of length r and with quotientsH1;H2; : : : ;Hr . Note that for any permutation � of f1;2; : : : rg,
there is another composition series with quotients H�.1/;H�.2/; : : : ;H�.r/.

(f) We saw in (4.37) that for n � 5, the only normal subgroups of Sn are Sn, An, f1g,
and in (4.33) that An is simple. Hence Sn FAn Ff1g is the only composition series for Sn.

THEOREM 6.2 (JORDAN-HÖLDER) 2Let G be a finite group. If

G DG0 FG1 F � � � FGs D f1g

G DH0 FH1 F � � � FHt D f1g

are two composition series for G, then s D t and there is a permutation � of f1;2; : : : ; sg
such that Gi=GiC1 �H�.i/=H�.i/C1.

PROOF. We use induction on the order of G.
Case I: H1 DG1. In this case, we have two composition series for G1, to which we can

apply the induction hypothesis.

2Jordan showed that corresponding quotients had the same order, and Hölder that they were isomorphic.
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Case II: H1 ¤ G1. Because G1 and H1 are both normal in G, the product G1H1 is a
normal subgroup of G. It properly contains both G1 and H1, which are maximal normal
subgroups of G, and so G1H1 DG. Therefore

G=G1 DG1H1=G1 'H1=G1\H1 (see 1.46).

SimilarlyG=H1'G1=G1\H1. LetK2DG1\H1; thenK2 is a maximal normal subgroup
in both G1 and H1, and

G=G1 'H1=K2; G=H1 'G1=K2: (26)

Choose a composition series
K2 FK3 F � � � FKu:

We have the picture:

G1 F G2 F � � � F Gs

G K2 F � � � F Ku

H1 F H2 F � � � F Ht :

j jj

jj j

On applying the induction hypothesis to G1 and H1 and their composition series in the
diagram, we find that

Quotients.G FG1 FG2 F � � �/ D fG=G1;G1=G2;G2=G3; : : :g (definition)
� fG=G1;G1=K2;K2=K3; : : :g (induction)
� fH1=K2;G=H1;K2=K3; : : :g (apply (26))
� fG=H1;H1=K2;K2=K3; : : :g (reorder)
� fG=H1;H1=H2;H2=H3; : : :g (induction)
D Quotients.G FH1 FH2 F � � �/ (definition). 2

Note that the theorem applied to a cyclic group Cm implies that the factorization of an
integer into a product of primes is unique.

REMARK 6.3 (a) There are infinite groups having finite composition series (there are even
infinite simple groups). For such a group, let d.G/ be the minimum length of a composition
series. Then the Jordan-Hölder theorem extends to show that all composition series have
length d.G/ and have isomorphic quotient groups. The same proof works except that you
have to use induction on d.G/ instead of jGj and verify that a normal subgroup of a group
with a finite composition series also has a finite composition series (Exercise 6-1).

(b) Analogues of the Jordan-Hölder theorem hold in many situations, but not in all
situations. Consider, for example, the category of finitely generated projective modules over
a Dedekind domain R. Every such module is isomorphic to a finite direct sum a1˚�� �˚ar
of nonzero ideals inR, and two modules a1˚�� �˚ar and b1˚�� �˚bs are isomorphic if and
only if r D s and a1 � � �ar equals b1 � � �bs in the ideal class group of R. If a is a nonprincipal
ideal in R and b is such that ab is principal, then a˚b� R2, and so R2 has composition
series with distinct quotients fa;bg and fR;Rg.

The quotients of a composition series are sometimes called composition factors.
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Solvable groups

A subnormal series whose quotient groups are all commutative is called a solvable series.
A group is solvable (or soluble) if it has a solvable series. Alternatively, we can say that a
group is solvable if it can be obtained by forming successive extensions of commutative
groups. Since a commutative group is simple if and only if it is cyclic of prime order, we see
that G is solvable if and only if for one (hence every) composition series the quotients are all
cyclic groups of prime order.

Every commutative group is solvable, as is every dihedral group. The results in Chapter
5 show that every group of order < 60 is solvable. By contrast, a noncommutative simple
group, e.g., An for n� 5, will not be solvable.

THEOREM 6.4 (FEIT-THOMPSON) Every finite group of odd order is solvable.3

PROOF. The proof occupies an entire issue of the Pacific Journal of Mathematics (Feit and
Thompson 1963). 2

In other words, every finite group is either solvable or contains an element of order 2.
For the role this theorem played in the classification of the finite simple groups, see p. 53.
For a more recent look at the Feit-Thompson theorem, see Glauberman 1999.

EXAMPLE 6.5 Consider the subgroups B D
��
� �

0 �

��
and U D

��
1 �

0 1

��
of GL2.F /,

some field F . Then U is a normal subgroup of B , and B=U ' F � �F �, U ' .F;C/.
Hence B is solvable.

PROPOSITION 6.6 (a) Every subgroup and every quotient group of a solvable group is
solvable.

(b) An extension of solvable groups is solvable.

PROOF. (a) Let G FG1 F � � � FGn be a solvable series for G, and let H be a subgroup of G.
The homomorphism

x 7! xGiC1 WH \Gi !Gi=GiC1

has kernel .H \Gi /\GiC1 DH \GiC1. Therefore, H \GiC1 is a normal subgroup of
H \Gi and the quotient H \Gi=H \GiC1 injects into Gi=GiC1, which is commutative.
We have shown that

H FH \G1 F � � � FH \Gn

is a solvable series for H .
Let NG be a quotient group of G, and let NGi be the image of Gi in NG. Then

NG F NG1 F � � � F NGn D f1g

3Burnside (1897, p. 379) wrote:

No simple group of odd order is at present known to exist. An investigation as to the existence
or non-existence of such groups would undoubtedly lead, whatever the conclusion might be, to
results of importance; it may be recommended to the reader as well worth his attention. Also,
there is no known simple group whose order contains fewer than three different primes. . . .

Significant progress in the first problem was not made until Suzuki, M., The nonexistence of a certain type of
simple group of finite order, 1957. However, the second problem was solved by Burnside himself, who proved
using characters that any group whose order contains fewer than three different primes is solvable (see Alperin
and Bell 1995, p. 182).
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is a solvable series for NG.
(b) Let N be a normal subgroup of G, and let NG D G=N . We have to show that if N

and NG are solvable, then so also is G. Let

NG F NG1 F � � � F NGn D f1g

N FN1 F � � � FNm D f1g

be solvable series for NG andN , and letGi be the inverse image of NGi inG. ThenGi=GiC1'
NGi= NGiC1 (see 1.48), and so

G FG1 F � � � FGn.DN/FN1 F � � � FNm

is a solvable series for G. 2

COROLLARY 6.7 A finite p-group is solvable.

PROOF. We use induction on the order the group G. According to (4.16), the centre Z.G/
ofG is nontrivial, and so the induction hypothesis implies thatG=Z.G/ is solvable. Because
Z.G/ is commutative, (b) of the proposition shows that G is solvable. 2

Let G be a group. Recall that the commutator of x;y 2G is

Œx;y�D xyx�1y�1 D xy.yx/�1

Thus
Œx;y�D 1 ” xy D yx;

and G is commutative if and only if every commutator equals 1.

EXAMPLE 6.8 For any finite-dimensional vector space V over a field k and any maximal
flag F D fVn;Vn�1; : : :g in V , the group

B.F /D f˛ 2 Aut.V / j ˛.Vj /� Vj all j g

is solvable. Indeed, let U.F / be the group defined in Example 5.10. Then B.F /=U.F / is
commutative, and, when k D Fp, U.F / is a p-group. This proves that B.F / is solvable
when k D Fp, and in the general case one defines subgroups B0 � B1 � �� � of B.F / with

Bi D f˛ 2 B.F / j ˛.Vj /� Vj�i all j g

and notes that the commutator of two elements of Bi lies in BiC1.

For any homomorphism 'WG!H

'.Œx;y�/D '.xyx�1y�1/D Œ'.x/;'.y/�;

i.e., ' maps the commutator of x;y to the commutator of '.x/;'.y/. In particular, we see
that if H is commutative, then ' maps all commutators in G to 1.

The group G0 DG.1/ generated by the commutators in G is called the commutator or
first derived subgroup of G.
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PROPOSITION 6.9 The commutator subgroup G0 is a characteristic subgroup of G; it is the
smallest normal subgroup of G such that G=G0 is commutative.

PROOF. An automorphism ˛ of G maps the generating set for G0 into G0, and hence maps
G0 into G0. Since this is true for all automorphisms of G, G0 is characteristic.

Write g 7! Ng for the homomorphism g 7! gG0WG!G=G0. Then Œ Ng; Nh�D Œg;h�, which
is 1 because Œg;h� 2 G0. Hence Œ Ng; Nh�D 1 for all Ng, Nh 2 G=G0, which shows that G=G0 is
commutative.

LetN be a second normal subgroup ofG such thatG=N is commutative. Then Œg;h� 7! 1

in G=N , and so Œg;h� 2N . Since these elements generate G0, N �G0. 2

For n � 5; An is the smallest normal subgroup of Sn giving a commutative quotient.
Hence .Sn/0 D An.

The second derived subgroup of G is .G0/0; the third is G.3/ D .G00/0; and so on. Since
a characteristic subgroup of a characteristic subgroup is characteristic (3.7a), each derived
group G.n/ is a characteristic subgroup of G. Hence we obtain a normal series

G �G.1/ �G.2/ � �� � ;

which is called the derived series of G. For example, when n� 5, the derived series of Sn is

Sn � An � An � An � �� � :

PROPOSITION 6.10 A group G is solvable if and only if its kth derived subgroup G.k/ D 1
for some k.

PROOF. If G.k/ D 1, then the derived series is a solvable series for G. Conversely, let

G DG0 FG1 FG2 F � � � FGs D 1

be a solvable series for G. Because G=G1 is commutative, G1 � G0. Now G0G2 is a
subgroup of G1, and from

G0=G0\G2
'
!G0G2=G2 �G1=G2

we see that

G1=G2 commutative H) G0=G0\G2 commutative H) G00 �G0\G2 �G2:

Continuing in the fashion, we find that G.i/ �Gi for all i , and hence G.s/ D 1. 2

Thus, a solvable group G has a canonical solvable series, namely the derived series, in
which all the groups are normal in G. The proof of the proposition shows that the derived
series is the shortest solvable series for G. Its length is called the solvable length of G.

ASIDE 6.11 Not every element of the commutator subgroup of a group is itself a commutator, but
the smallest groups where this occurs have order 96. This was shown by a computer search through
the libraries of small groups. See also mo44269.
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Nilpotent groups

Let G be a group. Recall that we write Z.G/ for the centre of G. Let Z2.G/� G be the
subgroup of G corresponding to Z.G=Z.G//�G=Z.G/. Thus

g 2Z2.G/ ” Œg;x� 2Z.G/ for all x 2G:

Continuing in this fashion, we get a sequence of subgroups (ascending central series)

f1g �Z.G/�Z2.G/� �� �

where
g 2Zi .G/ ” Œg;x� 2Zi�1.G/ for all x 2G:

If Zm.G/DG for some m, then G is said to be nilpotent, and the smallest such m is called
the (nilpotency) class of G. For example, all finite p-groups are nilpotent (apply 4.16).

Only the group f1g has class 0, and the groups of class 1 are exactly the commutative
groups. A group G is of class 2 if and only if G=Z.G/ is commutative — such a group is
said to be metabelian.

EXAMPLE 6.12 (a) A nilpotent group is obviously solvable, but the converse is false. For
example, for a field F , let

B D

��
a b

0 c

�ˇ̌̌̌
a;b;c 2 F; ac ¤ 0

�
:

Then Z.B/D faI j a¤ 0g, and the centre of B=Z.B/ is trivial. Therefore B=Z.B/ is not
nilpotent, but we saw in (6.5) that it is solvable.

(b) The group G D

8<:
0@1 � �0 1 �

0 0 1

1A9=; is metabelian: its centre is

8<:
0@1 0 �

0 1 0

0 0 1

1A9=;, and

G=Z.G/ is commutative.
(c) Any nonabelian group G of order p3 is metabelian. In fact, G0 DZ.G/ has order p

(see 5.17), andG=G0 is commutative (4.18). In particular, the quaternion and dihedral groups
of order 8, Q and D4, are metabelian. The dihedral group D2n is nilpotent of class n — this
can be proved by induction, using that Z.D2n/ has order 2, and D2n=Z.D2n/�D2n�1 . If
n is not a power of 2, then Dn is not nilpotent (use Theorem 6.18 below).

PROPOSITION 6.13 (a) A subgroup of a nilpotent group is nilpotent.
(b) A quotient of a nilpotent group is nilpotent.

PROOF. (a) Let H be a subgroup of a nilpotent group G. Clearly, Z.H/ � Z.G/\H .
Assume (inductively) that Zi .H/�Zi .G/\H ; then ZiC1.H/�ZiC1.G/\H , because
(for h 2H )

h 2ZiC1.G/ H) Œh;x� 2Zi .G/ all x 2G H) Œh;x� 2Zi .H/ all x 2H:

(b) Straightforward. 2

REMARK 6.14 It should be noted that if H is a subgroup of G, then Z.H/ may be bigger
than Z.G/. For example, the centre of

H D

��
a 0

0 b

�ˇ̌̌̌
ab ¤ 0

�
� GL2.F /:

is H itself, but the centre of GL2.F / consists only of the scalar matrices.
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PROPOSITION 6.15 A group G is nilpotent of class �m if and only if

Œ: : : ŒŒg1;g2�;g3�; : : : ; ;gmC1�D 1

for all g1; :::;gmC1 2G:

PROOF. Recall, g 2Zi .G/ ” Œg;x� 2Zi�1.G/ for all x 2G:
Assume G is nilpotent of class �m; then

G DZm.G/ H) Œg1;g2� 2Z
m�1.G/ all g1;g2 2G

H) ŒŒg1;g2�;g3� 2Z
m�2.G/ all g1;g2;g3 2G

� � � � � �

H) Œ� � � ŒŒg1;g2�;g3�; :::;gm� 2Z.G/ all g1; : : : ;gm 2G

H) Œ� � � ŒŒg1;g2�;g3�; : : : ;gmC1�D 1 all g1; : : : ;gm 2G:

For the converse, let g1 2G. Then

ŒŒ:::ŒŒg1;g2�;g3�;:::;gm�;gmC1�D 1 for all g1;g2; :::;gmC1 2G

H) Œ:::ŒŒg1;g2�;g3�; :::;gm� 2Z.G/; for all g1; :::;gm 2G

H) Œ:::ŒŒg1;g2�;g3�; :::;gm�1� 2Z
2.G/; for all g1; :::;gm�1 2G

� � � � � �

H) g1 2Z
m.G/ all g1 2G: 2

An extension of nilpotent groups need not be nilpotent, i.e.,

N and G=N nilpotent »G nilpotent. (27)

For example, the subgroup U of the group B in Examples 6.5 and 6.12 is commutative and
B=U is commutative, but B is not nilpotent.

However, the implication (27) holds when N is contained in the centre of G. In fact, we
have the following more precise result.

COROLLARY 6.16 For any subgroup N of the centre of G,

G=N nilpotent of class m H) G nilpotent of class �mC1:

PROOF. Write � for the map G!G=N . Then

�.Œ:::ŒŒg1;g2�;g3�; :::;gm�;gmC1�/D Œ:::ŒŒ�g1;�g2�;�g3�; :::;�gm�;�gmC1�D 1

all g1; :::;gmC1 2G. Hence Œ:::ŒŒg1;g2�;g3�; :::;gm�;gmC1� 2N �Z.G/, and so

Œ:::ŒŒg1;g2�;g3�; :::;gmC1�;gmC2�D 1 all g1; :::;gmC2 2G: 2

COROLLARY 6.17 A finite p-group is nilpotent.

PROOF. We use induction on the order of G. Because Z.G/¤ 1, G=Z.G/ nilpotent, which
implies that G is nilpotent. 2
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Recall that an extension
1!N

�
!G

�
!Q! 1

is central if �.N /�Z.G/. Then:

the nilpotent groups are those that can be obtained from commutative groups by
successive central extensions.

Contrast:

the solvable groups are those that can be obtained from commutative groups by
successive extensions (not necessarily central).

THEOREM 6.18 A finite group is nilpotent if and only if it is equal to a direct product of its
Sylow subgroups.

PROOF. A direct product of nilpotent groups is obviously nilpotent, and so the “if” direction
follows from the preceding corollary. For the converse, let G be a finite nilpotent group.
According to (5.9) it suffices to prove that all Sylow subgroups are normal. Let P be such a
subgroup of G, and let N DNG.P /. The first lemma below shows that NG.N /DN , and
the second then implies that N DG, i.e., that P is normal in G. 2

LEMMA 6.19 Let P be a Sylow p-subgroup of a finite group G. For any subgroup H of G
containing NG.P /, we have NG.H/DH .

PROOF. Let g 2NG.H/, so that gHg�1 DH . Then H � gPg�1 D P 0, which is a Sylow
p-subgroup of H . By Sylow II, hP 0h�1 D P for some h 2H , and so hgPg�1h�1 � P .
Hence hg 2NG.P /�H , and so g 2H: 2

LEMMA 6.20 Let H be proper subgroup of a finite nilpotent group G; then H ¤NG.H/.

PROOF. The statement is obviously true for commutative groups, and so we can assume
G to be noncommutative. We use induction on the order of G. Because G is nilpotent,
Z.G/¤ 1. Certainly the elements of Z.G/ normalize H , and so if Z.G/ ªH , we have
H ¤Z.G/ �H �NG.H/. Thus we may suppose Z.G/�H . Then the normalizer of H in
G corresponds under (1.47) to the normalizer of H=Z.G/ in G=Z.G/, and we can apply
the induction hypothesis. 2

REMARK 6.21 For a finite abelian group G we recover the fact that G is a direct product of
its p-primary subgroups.

PROPOSITION 6.22 (FRATTINI’S ARGUMENT) Let H be a normal subgroup of a finite
group G, and let P be a Sylow p-subgroup of H . Then G DH �NG.P /.

PROOF. Let g 2 G. Then gPg�1 � gHg�1 D H , and both gPg�1 and P are Sylow
p-subgroups of H . According to Sylow II, there is an h 2H such that gPg�1 D hPh�1,
and it follows that h�1g 2NG.P / and so g 2H �NG.P /. 2

THEOREM 6.23 A finite group is nilpotent if and only if every maximal proper subgroup is
normal.
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PROOF. We saw in Lemma 6.20 that for any proper subgroup H of a nilpotent group G,
H ¤NG.H/. Hence,

H maximal H) NG.H/DG;

i.e., H is normal in G.
Conversely, suppose every maximal proper subgroup of G is normal. We shall check the

condition of Theorem 6.18. Thus, let P be a Sylow p-subgroup of G. If P is not normal in
G, then there exists a maximal proper subgroupH of G containing NG.P /. Being maximal,
H is normal, and so Frattini’s argument shows thatG DH �NG.P /DH — contradiction.2

ASIDE 6.24 Consider a nilpotent group G of class 2:

1! A!G! B! 1; A;B commutative; A�Z.G/:

Taking commutators induces a map
V2

B!A (and every such map occurs for some extension). The
image of this map is the commutator subgroup and the image of the pure tensors b^ b0 is the set
of actual commutators. This can be used to give examples of groups whose commutator subgroup
doesn’t consist entirely of commutators (Torsten Ekedahl, mo44269).

Groups with operators

Recall that the set Aut.G/ of automorphisms of a groupG is again a group. Let A be a group.
A pair .G;'/ consisting of a group G together with a homomorphism 'WA! Aut.G/ is
called an A-group, or G is said to have A as a group of operators.

Let G be an A-group, and write ˛x for '.˛/x. Then

(a) .˛ˇ/x D ˛.ˇx/ (' is a homomorphism);
(b) ˛.xy/D ˛x �˛y ('.˛/ is a homomorphism);
(c) 1x D x (' is a homomorphism).

Conversely, a map .˛;x/ 7! ˛x W A�G!G satisfying (a), (b), (c) arises from a homomor-
phism A!Aut.G/. Conditions (a) and (c) show that x 7! ˛x is inverse to x 7! .˛�1/x, and
so x 7! ˛x is a bijection G!G. Condition (b) then shows that it is an automorphism of G.
Finally, (a) shows that the map '.˛/D .x 7! ˛x/ is a homomorphism A! Aut.G/.

Let G be a group with operators A. A subgroup H of G is admissible or A-invariant if

x 2H H) ˛x 2H , all ˛ 2 A:

An intersection of admissible groups is admissible. If H is admissible, so also are its
normalizer NG.H/ and centralizer CG.H/:

AnA-homomorphism (or admissible homomorphism) ofA-groups is a homomorphism
 WG!G0 such that .˛g/D ˛.g/ for all ˛ 2 A, g 2G:

EXAMPLE 6.25 (a) A group G can be regarded as a group with f1g as group of operators.
In this case all subgroups and homomorphisms are admissible, and so the theory of groups
with operators includes the theory of groups without operators.

(b) Consider G acting on itself by conjugation, i.e., consider G together with the
homomorphism

g 7! ig WG! Aut.G/:

In this case, the admissible subgroups are the normal subgroups.
(c) Consider G with A D Aut.G/ as group of operators. In this case, the admissible

subgroups are the characteristic subgroups.
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Almost everything we have proved for groups also holds for groups with operators. In
particular, the Theorems 1.45, 1.46, and 1.47 hold for groups with operators. In each case,
the proof is the same as before except that admissibility must be checked.

THEOREM 6.26 For any admissible homomorphism  WG!G0 of A-groups, N def
D Ker./

is an admissible normal subgroup of G, .G/ is an admissible subgroup of G0, and  factors
in a natural way into the composite of an admissible surjection, an admissible isomorphism,
and an admissible injection:

G�G=N
'
! .G/ ,!G0:

THEOREM 6.27 Let G be a group with operators A, and let H and N be admissible
subgroups with N normal. Then H \N is a normal admissible subgroup of H , HN
is an admissible subgroup of G, and h.H \N/ 7! hH is an admissible isomorphism
H=H \N !HN=N:

THEOREM 6.28 Let 'WG ! NG be a surjective admissible homomorphism of A-groups.
Under the one-to-one correspondenceH $ NH between the set of subgroups ofG containing
Ker.'/ and the set of subgroups of NG (see 1.47), admissible subgroups correspond to
admissible subgroups.

Let 'WA! Aut.G/ be a group with A operating. An admissible subnormal series is a
chain of admissible subgroups of G

G �G1 �G2 � �� � �Gr

with each Gi normal in Gi�1. Define similarly an admissible composition series. The
quotients of an admissible subnormal series are A-groups, and the quotients of an admissible
composition series are simple A-groups, i.e., they have no normal admissible subgroups
apart from the obvious two.

The Jordan-Hölder theorem continues to hold for A-groups. In this case the isomor-
phisms between the corresponding quotients of two composition series are admissible. The
proof is the same as that of the original theorem, because it uses only the isomorphism
theorems, which we have noted also hold for A-groups.

EXAMPLE 6.29 (a) Consider G with G acting by conjugation. In this case an admissible
subnormal series is a sequence of subgroups

G DG0 �G1 �G2 � �� � �Gs D f1g;

with each Gi normal in G, i.e., a normal series. The action of G on Gi by conjugation
passes to the quotient, to give an action of G on Gi=GiC1. The quotients of two admissible
composition series are isomorphic as G-groups.

(b) Consider G with AD Aut.G/ as operator group. In this case, an admissible subnor-
mal series is a sequence

G DG0 �G1 �G2 � �� � �Gs D f1g

with eachGi a characteristic subgroup ofG, and the quotients of two admissible composition
series are isomorphic as Aut.G/-groups.
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Krull-Schmidt theorem

A group G is indecomposable if G ¤ 1 and G is not isomorphic to a direct product of two
nontrivial groups, i.e., if

G �H �H 0 H) H D 1 or H 0 D 1:

EXAMPLE 6.30 (a) A simple group is indecomposable, but an indecomposable group need
not be simple: it may have a normal subgroup. For example, S3 is indecomposable but has
C3 as a normal subgroup.

(b) A finite commutative group is indecomposable if and only if it is cyclic of prime-
power order.

Of course, this is obvious from the classification, but it is not difficult to prove it directly.
Let G be cyclic of order pn, and suppose that G � H �H 0. Then H and H 0 must be
p-groups, and they can’t both be killed by pm, m< n. It follows that one must be cyclic
of order pn, and that the other is trivial. Conversely, suppose that G is commutative and
indecomposable. Since every finite commutative group is (obviously) a direct product of
p-groups with p running over the primes, G is a p-group. If g is an element of G of highest
order, one shows that hgi is a direct factor of G, G � hgi�H , which is a contradiction.

(c) Every finite group can be written as a direct product of indecomposable groups
(obviously).

THEOREM 6.31 (KRULL-SCHMIDT) 4Suppose that G is a direct product of indecompos-
able subgroups G1; : : : ;Gs and of indecomposable subgroups H1; : : : ;Ht :

G 'G1� � � ��Gs; G 'H1� � � ��Ht :

Then s D t , and there is a re-indexing such that Gi �Hi . Moreover, given r , we can arrange
the numbering so that

G DG1� � � ��Gr �HrC1� � � ��Ht :

PROOF. See Rotman 1995, 6.36. 2

EXAMPLE 6.32 Let G D Fp �Fp, and think of it as a two-dimensional vector space over
Fp. Let

G1 D h.1;0/i; G2 D h.0;1/iI H1 D h.1;1/i; H2 D h.1;�1/i:

Then G DG1�G2, G DH1�H2, G DG1�H2.

REMARK 6.33 (a) The Krull-Schmidt theorem holds also for an infinite group provided it
satisfies both chain conditions on subgroups, i.e., ascending and descending sequences of
subgroups of G become stationary.

(b) The Krull-Schmidt theorem also holds for groups with operators. For example,
let Aut.G/ operate on G; then the subgroups in the statement of the theorem will all be
characteristic.

(c) When applied to a finite abelian group, the theorem shows that the groups Cmi
in a

decomposition G D Cm1
� :::�Cmr

with each mi a prime power are uniquely determined
up to isomorphism (and ordering).

4Strictly, this should be called the Wedderburn-Remak-Schmidt-Krull-Ore theorem — see the Wikipedia
entry for “Krull-Schmidt theorem”.
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Exercises

6-1 Let G be a group (not necessarily finite) with a finite composition series

G DG0 �G1 � �� � �Gn D 1;

and let N be a normal subgroup of G. Show that

N DN \G0 �N \G1 � �� � �N \Gn D 1

becomes a composition series for N once the repetitions have been omitted.

6-2 If G1 and G2 are groups such that G01 � G
0
2 and G1=G01 � G2=G

0
2, are G1 and G2

necessarily isomorphic? (Here 0 denotes the commutator subgroup.)





CHAPTER 7
Representations of Finite Groups

Throughout this chapter, G is a finite group and F is a field. All vector spaces are finite
dimensional.

An F -algebra is a ring A containing F in its centre and finite dimensional as an F -vector
space. We do not assume A to be commutative; for example, A could be the matrix algebra
Mn.F /. Let e1; : : : ; en be a basis for A as an F -vector space; then eiej D

P
k a

k
ij ekfor some

akij 2 F , called the structure constants of A relative to the basis .ei /i ; once a basis has been
chosen, the algebra A is uniquely determined by its structure constants.

All A-modules are finite dimensional when regarded as F -vector spaces. For an A-
module V , mV denotes the direct sum of m copies of V .

The opposite Aopp of an F -algebra A is the same F -algebra as A but with the multipli-
cation reversed, i.e., Aopp D .A;C; �0/ with a �0 b D ba. In other words, there is a one-to-one
correspondence a$ a0WA$ Aopp which is an isomorphism of F -vector spaces and has the
property that a0b0 D .ba/0.

An A-module M is simple if it is nonzero and contains no submodules except 0 and M ,
and it is semisimple if it is isomorphic to a direct sum of simple modules.

Matrix representations

A matrix representation of degree n of G over F is a homomorphism G! GLn.F /. The
representation is said to be faithful if the homomorphism is injective. Thus a faithful
representation identifies G with group of n�n matrices.

EXAMPLE 7.1 (a) There is a representation Q! GL2.C/ of the quaternion group Q D
ha;bi sending a to

�
0
p
�1

p
�1 0

�
and b to

�
0 1
�1 0

�
. In fact, that is how we originally defined

Q in (1.18).
(b) Let G D Sn. For each � 2 Sn, let I.�/ be the matrix obtained from the identity

matrix by using � to permute the rows. Then, for any n�n matrix A, I.�/A is obtained
from A by using � to permute the rows. In particular, I.�/I.� 0/D I.�� 0/, and so � 7! I.�/

is a representation of Sn. Clearly, it is faithful. As every finite group embeds into Sn for
some n (Cayley’s theorem, see 1.22), this shows that every finite group has a faithful matrix
representation.

(c) Let G D Cn D h�i. If F contains a nth root of 1, say �, then there is representation
� i 7! �i WCn! GL1.F / D F �. The representation is faithful if and only if � has order

99
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exactly n. If nD p is prime and F has characteristic p, then Xp�1D .X �1/p, and so 1
is the only pth root of 1 in F . In this case, the representation is trivial, but there is a faithful
representation

� i 7!

�
1 i

0 1

�
WCp! GL2.F /:

ASIDE 7.2 Recall that the Burnside problem asks whether every finitely generated group with
finite exponent is finite (see p. 37). Burnside proved that the problem has a positive answer for
subgroups of GLn.C/. Therefore, no infinite finitely generated group with finite exponent has a
faithful representation over C.

Roots of 1 in fields

As the last example indicates, the representations of a group over a field F depend on the
roots of 1 in the field. The nth roots of 1 in a field F form a subgroup �n.F / of F �, which
is cyclic (see 1.56).

If the characteristic of F divides n, then j�n.F /j < n. Otherwise, Xn�1 has distinct
roots (a multiple root would have to be a root of its derivative nXn�1), and we can always
arrange that j�n.F /j D n by extending F , for example, by replacing a subfield F of C with
F Œ�� where � D e2�i=n, or by replacing F with F ŒX�=.g.X// where g.X/ is an irreducible
factor of Xn�1 not dividing Xm�1 for any proper divisor m of n:

An element of order n in F � is called a primitive nth root of 1. To say that F contains a
primitive nth root of 1, �, means that �n.F / is a cyclic group of order n and that � generates
it (and it implies that either F has characteristic 0 or it has characteristic a prime not dividing
n).

Linear representations

Recall (4.1) that we have defined the notion of a group G acting a set. When the set is an
F -vector space V , we say that the action is linear if the map

gV WV ! V , x 7! gx;

is linear for each g 2G. Then gV has inverse the linear map .g�1/V , and g 7! gV WG!

GL.V / is a homomorphism. Thus, from a linear action of G on V , we obtain a homomor-
phism of groups G!GL.V /; conversely, every such homomorphism defines a linear action
ofG on V . We call a homomorphismG!GL.V / a linear representation ofG on V . Note
that a linear representation of G on F n is just a matrix representation of degree n.

EXAMPLE 7.3 (a) Let G D Cn D h�i, and assume that F contains a primitive nth root of 1,
say �. Let G! GL.V / be a linear representation of G. Then .�L/n D .�n/L D 1, and so
the minimum polynomial of �L divides Xn�1. As Xn�1 has n distinct roots �0; : : : ; �n�1

in F , the vector space V decomposes into a direct sum of eigenspaces

V D
M

0�i�n�1
Vi ; Vi

def
D fv 2 V j �v D �ivg.

Conversely, every such direct sum decomposition of G arises from a representation of G.
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(b) Let G be a commutative group of exponent n, and assume that F contains a primitive
nth root of 1. Let

G_ D Hom.G;F �/D Hom.G;�n.F //

To give a representation of G on a vector space V is the same as to give a direct sum
decomposition

V D
M

�2G_
V�; V�

def
D fv 2 V j �v D �.�/vg.

When G is cyclic, this is a restatement of (a), and the general case follows easily (decompose
V with respect to the action of one cyclic factor of G; then decompose each summand with
respect to the action of a second cyclic factor of G; and so on).

Maschke’s theorem

Let G! GL.V / be a linear representation of G on an F -vector space V . A subspace W
of V is said to be G-invariant if gW �W for all g 2 G. An F -linear map ˛WV ! V 0 of
vector spaces on which G acts linearly is said to be G-invariant if

˛.gv/D g.˛v/ for all g 2G;v 2 V:

Finally, a bilinear form �WV �V ! F is said to be G-invariant if

�.gv;gv0/D �.v;v0/ for all g 2G, v;v0 2 V:

THEOREM 7.4 (MASCHKE) LetG!GL.V / be a linear representation ofG. If the charac-
teristic of F does not divide jGj, then every G-invariant subspace W of V has a G-invariant
complement, i.e., there exists a G-invariant subspace W 0 such that V DW ˚W 0.

Note that the theorem always applies when F has characteristic zero.
The condition on the characteristic is certainly necessary: let G D h�i be the cyclic

group of order p, where p is the characteristic of F , and let � acts on V D F 2 as the matrix�
1 1
0 1

�
(see 7.3b); the subspace .�0 / is G-invariant, and its complementary subspaces are those

of the form F
�
a
b

�
, b ¤ 0; none of them is G-invariant. In fact, in every representation of Cp

on a nonzero vector space over a field of characteristic p, there is a nonzero fixed vector.
Because of the importance of the ideas involved, we present two proofs of Maschke’s

theorem.

PROOF OF MASCHKE’S THEOREM (CASE F D R OR C)

LEMMA 7.5 Let � be a symmetric bilinear form on V , and let W be a subspace of V . If �
and W are G-invariant, then so also is W ? def

D fv 2 V j �.w;v/D 0 for all w 2W g.

PROOF. Let v 2W ? and let g 2G. For any w 2W , �.w;gv/D �.g�1w;v/ because � is
G-invariant, and �.g�1w;v/D 0 because W is G-invariant. This shows that gv 2W ?. 2

Recall from linear algebra that if � is positive definite, then V DW ˚W ?. Therefore, in
order to prove Maschke’s theorem, it suffices to show that there exists a G-invariant positive
definite symmetric bilinear from �WV �V ! F .
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LEMMA 7.6 For any symmetric bilinear form � on V ,

N�.v;w/
def
D

X
g2G

�.gv;gw/

is a G-invariant symmetric bilinear form on V .

PROOF. The form � is obviously bilinear and symmetric, and for g0 2G,

N�.g0v;g0w/
def
D

X
g2G

�.gg0v;gg0w/;

which equals
P
g2G �.gv;gw/ because, as g runs over G, so also does gg0. 2

Unfortunately, we can’t conclude that N� is nondegenerate when � is (otherwise we could
prove that all F ŒG�-modules are semisimple, with no restriction on F or G).

LEMMA 7.7 Let F D R. If � is a positive definite symmetric bilinear form on V , then so
also is N�.

PROOF. If N� is positive definite, then for any nonzero v in V ,

N�.v;v/D
X

g2G
�.gv;gv/ > 0:

2

This completes the proof of Maschke’s theorem when F D R, because there certainly
exist positive definite symmetric bilinear forms � on V . A similar argument using hermitian
forms applies when F D C (or, indeed, when F is any subfield of C).

ASIDE 7.8 A representation of a group G on a real vector space V is unitary if there exists a
G-invariant positive definite symmetric bilinear form on V . Lemma 7.6 shows that every unitary
representation is semisimple, and Lemma 7.7 shows that every real representation of a finite group is
unitary.

PROOF OF MASCHKE’S THEOREM (GENERAL CASE)

An endomorphism � of an F -vector space V is called a projector if �2 D � . The minimum
polynomial of a projector � divides X2�X DX.X �1/, and so V decomposes into a direct
sum of eigenspaces,

V D V0.�/˚V1.�/, where
�
V0.�/D fv 2 V j �v D 0g D Ker.�/
V1.�/D fv 2 V j �v D vg D Im.�/:

Conversely, a decomposition V D V0˚V1 arises from a projector .v0;v1/ 7! .0;v1/.
Now suppose that G acts linearly on V . If a projector � is G-invariant, then V1.�/ and

V0.�/ are obviously G-invariant. Thus, to prove the theorem it suffices to show that W is
the image of a G–invariant projector � .

We begin by choosing an F -linear projector � with image W , which certainly exists,
and we modify it to obtain a G-invariant projector N� with the same image. For v 2 V , let

N�.v/D
1

jGj

X
g2G

g
�
�.g�1v/

�
:
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This makes sense because jGj � 1 2 F �, and it defines an F -linear map N� WV ! V . Let
w 2W ; then g�1w 2W , and so

N�.w/D
1

jGj

X
g2G

g.g�1w/D
1

jGj

X
g2G

w D w: (28)

The image of N� is contained in W , because Im.�/�W and W is G-invariant, and so

N�2.v/
def
D N�. N� .v//

.28/
D N�.v/

for any v 2V . Thus, N� is a projector, and (28) shows that Im. N�/�W , and hence Im. N�/DW .
It remains to show that N� is G-invariant. For g0 2 V

N�.g0v/D
1

jGj

X
g2G

g
�
�.g�1g0v/

�
D g0

1

jGj

X
g2G

.g�10 g/
�
�.g�1g0v/

�
;

which equals g0 N� .v/ because, as g runs over G, so also does g�10 g.

The group algebra; semisimplicity

The group algebra F ŒG� of G is defined to be the F -vector space with basis the elements
of G endowed with the multiplication extending that on G. Thus,

˘ an element of F ŒG� is a sum
P
g2G cgg, cg 2 F ,

˘ two elements
P
g2G cgg and

P
g2G c

0
gg of F ŒG� are equal if and only if cg D c0g for

all g, and
˘

�P
g2G cgg

��P
g2G c

0
gg
�
D
P
g2G c

00
gg; c00g D

P
g1g2Dg

cg1
c0g2
:

A linear action
g;v 7! gvWG�V ! V

of G on an F -vector space extends uniquely to an action of F ŒG� on V ,X
g2G

cgg;v 7!
X

g2G
cggvWF ŒG��V ! V;

which makes V into an F ŒG�-module. The submodules for this action are exactly the
G-invariant subspaces.

Let G! GL.V / be a linear representation of G. When V is simple (resp. semisimple)
as an F ŒG�-module, the representation is usually said to be irreducible (resp. completely
reducible). However, I will call them simple (resp. semisimple) representations.

PROPOSITION 7.9 If the characteristic of F does not divide jGj, then every F ŒG�-module
is a direct sum of simple submodules.
PROOF. Let V be a F ŒG�-module. If V is simple, then there is nothing to prove. Otherwise,
it contains a nonzero proper submodule W . According to Maschke’s theorem, V DW ˚W 0

withW 0 an F ŒG�-submodule. IfW andW 0 are simple, then the proof is complete; otherwise,
we can continue the argument, which terminates in a finite number of steps because V has
finite dimension as an F -vector space. 2

As we have observed, the linear representations of G can be regarded as F ŒG�-modules.
Thus, to understand the linear representations of G, we need to understand the F ŒG�-
modules, and for this we need to understand the structure of the F -algebra F ŒG�. In the next
three sections we study F -algebras and their modules; in particular, we prove the famous
Wedderburn theorems concerning F -algebras whose modules are all semisimple.
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Semisimple modules

In this section, A is an F -algebra.

PROPOSITION 7.10 Every A-module V admits a filtration

V D V0 � V1 � �� � � Vs D f0g

such that the quotients Vi=ViC1 are simple A-modules. If

V DW0 �W1 � �� � �Wt D f0g

is a second such filtration, then s D t and there is a permutation � of f1; : : : ; sg such that
Vi=ViC1 �W�.i/=W�.i/C1 for all i .

PROOF. This is a variant of the Jordan-Hölder theorem (6.2), which can be proved by the
same argument. 2

COROLLARY 7.11 Suppose

V � V1˚�� �˚Vs �W1˚�� �˚Wt

with all the A-modules Vi and Wj simple. Then s D t and there is a permutation � of
f1; : : : ; sg such that Vi �W�.i/.

PROOF. Each decomposition defines a filtration, to which the proposition can be applied.2

PROPOSITION 7.12 Let V be an A-module. If V is a sum of simple submodules, say
V D

P
i2I Si (the sum need not be direct), then for any submoduleW of V , there is a subset

J of I such that
V DW ˚

M
i2J

Si :

PROOF. Let J be maximal among the subsets of I such the sum SJ
def
D
P
j2J Sj is direct

and W \SJ D 0. I claim that W CSJ D V (hence V is the direct sum of W and the Sj
with j 2 J ). For this, it suffices to show that each Si is contained in W CSJ . Because Si
is simple, Si \ .W CSJ / equals Si or 0. In the first case, Si �W CSJ , and in the second
SJ \Si D 0 and W \ .SJ CSi /D 0, contradicting the definition of I . 2

COROLLARY 7.13 The following conditions on an A-module V are equivalent:

(a) V is semisimple;
(b) V is a sum of simple submodules;
(c) every submodule of V has a complement.

PROOF. The proposition shows that (b) implies (c), and the argument in the proof of (7.9)
shows that (c) implies (a). It is obvious that (a) implies (b). 2

COROLLARY 7.14 Sums, submodules, and quotient modules of semisimple modules are
semisimple.

PROOF. Each is a sum of simple modules. 2
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Simple F -algebras and their modules

An F -algebra A is said to be simple if it contains no two-sided ideals except 0 and A. We
shall make frequent use of the following observation:

The kernel of a homomorphism f WA! B of F -algebras is an ideal in A not
containing 1; therefore, if A is simple, then f is injective.

EXAMPLE 7.15 We consider the matrix algebra Mn.F /. Let eij be the matrix with 1 in the
.i;j /th position and zeros elsewhere.

(a) Let I be a two-sided ideal in Mn.F /, and suppose that I contains a nonzero matrix
M D .mij / with, say, mi0j0

¤ 0. As

ei i0 �M � ej0j Dmi0j0
eij

and ei i0 �M �ej0j 2 I , we see that I contains all the matrices eij and so equalsMn.F /.
We have shown that Mn.F / is simple.

(b) For M;N 2Mn.F /, the j th column of M �N is M �Nj where Nj is the j th column
of N . Therefore, for a given matrix N ,�

Nj D 0 ) .M �N/j D 0

Nj ¤ 0 ) .M �N/j can be arbitrary:
(29)

For 1� i � n, let L.i/ be the set of matrices whose j th columns are zero for j ¤ i
and whose i th column is arbitrary. For example, when nD 4,

L.3/D

8̂̂<̂
:̂
0BB@
0 0 � 0

0 0 � 0

0 0 � 0

0 0 � 0

1CCA
9>>=>>;�M4.F /:

It follows from (29) that L.i/ is a minimal left ideal in Mn.F /. Note that Mn.F / is a
direct sum

Mn.F /D L.1/˚�� �˚L.n/

of minimal left ideals.

EXAMPLE 7.16 An F -algebra is said to be a division algebra if every nonzero element a
has an inverse, i.e., there exists a b such that ab D 1D ba. Thus a division algebra satisfies
all the axioms to be a field except commutativity (and for this reason is sometimes called a
skew field). Clearly, a division algebra has no nonzero proper ideals, left, right, or two-sided,
and so is simple.

If D is a division algebra, then the argument in (7.15a) shows that the algebra Mn.D/ is
simple.

EXAMPLE 7.17 For a;b 2 F �, let H.a;b/ be the F -algebra with basis 1; i;j;k (as an
F -vector space) and with the multiplication determined by

i2 D a; j 2 D b; ij D k D�j i

(so ik D i ij D aj etc.). Then H.a;b/ is an F -algebra, called a quaternion algebra over F .
For example, if F D R, then H.�1;�1/ is the usual quaternion algebra. One can show that
H.a;b/ is either a division algebra or it is isomorphic to M2.F /. In particular, it is simple.
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7.18 Much of linear algebra does not require that the field be commutative. For example,
the usual arguments show that a finitely generated module V over a division algebra D has a
basis, and that all bases have the same number n of elements — n is called the dimension of
V . In particular, all finitely generated D-modules are free.

7.19 Let A be an F -algebra, and let AA denote A regarded as a left A-module. Right
multiplication x 7! xa on AA by an element a of A is an A-linear endomorphism of AA.
Moreover, every A-linear map 'WAA!AA is of this form with aD '.1/. Thus,

EndA.AA/' A (as F -vector spaces).

Let 'a be the map x 7! xa. Then

.'a ı'a0/.1/
def
D 'a.'a0.1//D 'a.a

0/D a0aD 'a0a.1/;

and so
EndA.AA/' Aopp (as F -algebras).

More generally,
EndA.V /' Aopp

for any A-module V that is free of rank 1, and

EndA.V /'Mn.A
opp/

for any free A-module V of rank n (cf. 7.32 below).

CENTRALIZERS

Let A be an F -subalgebra of an F -algebra B . The centralizer of A in B is

CB.A/D fb 2 B j baD ab for all a 2 Ag:

It is again an F -subalgebra of B .

EXAMPLE 7.20 In the following examples, the centralizers are taken in Mn.F /.

(a) Let A be the set of scalar matrices in Mn.F /, i.e., A D F � In. Clearly, C.A/ D
Mn.F /.

(b) Let ADMn.F /. Then C.A/ is the centre of Mn.F /, which we now compute. Let
eij be the matrix with 1 in the .i;j /th position and zeros elsewhere, so that

eij elm D

�
eim if j D l
0 if j ¤ l:

Let ˛ D .aij / 2 Mn.F /. Then ˛ D
P
i;j aij eij , and so ˛elm D

P
i aileim and

elm˛ D
P
j amj elj . If ˛ is in the centre of Mn.F /, then ˛elm D elm˛, and so

ail D 0 for i ¤ l , amj D 0 for j ¤m, and al l D amm. It follows that the centre of
Mn.F / is set of scalar matrices F �In. Thus C.A/D F �In.

(c) Let A be the set of diagonal matrices in Mn.F /. In this case, C.A/D A.

Notice that in all three cases, C.C.A//D A.
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THEOREM 7.21 (DOUBLE CENTRALIZER THEOREM) Let A be an F -algebra, and let V
be a faithful semisimple A-module. Then C.C.A//D A (centralizers taken in EndF .V /).
PROOF. Let D D C.A/ and let B D C.D/. Clearly A � B , and the reverse inclusion
follows from the next lemma when we take v1; : : : ;vn to generate V as a F -vector space.2

LEMMA 7.22 For any v1; : : : ; vn 2 V and b 2 B , there exists an a 2 A such that

av1 D bv1; av2 D bv2; : : : ; avn D bvn:

PROOF. We first prove this for nD 1. Note that Av1 is an A-submodule of V , and so (see
7.13) there exists an A-submodule W of V such that V D Av1˚W . Let � WV ! V be the
map .av1;w/ 7! .av1;0/ (projection onto Av1). It is A-linear, hence lies in D, and has the
property that �.v/D v if and only if v 2 Av1. Now

�.bv1/D b.�v1/D bv1;

and so bv1 2 Av1, as required.
We now prove the general case. Let W be the direct sum of n copies of V with A acting

diagonally, i.e.,

a.v1; : : : ;vn/D .av1; : : : ;avn/; a 2 A; vi 2 V:

Then W is again a semisimple A-module (7.14). The centralizer of A in EndF .W / consists
of the matrices .ij /1�i;j�n, ij 2 EndF .V /, such that .ija/D .aij / for all a 2 A, i.e.,
such that ij 2D (cf. 7.32). In other words, the centralizer of A in EndF .A/ is Mn.D/. An
argument as in Example 7.20(b), using the matrices eij .ı/ with ı in the ij th position and
zeros elsewhere, shows that the centralizer of Mn.D/ in EndF .W / consists of the diagonal
matrices 0BBB@

ˇ 0 � � � 0

0 ˇ � � � 0
:::

:::
: : :

:::

0 0 � � � ˇ

1CCCA
with ˇ 2 B . We now apply the case n D 1 of the lemma to A, W , b, and the vector
.v1; : : : ;vn/ to complete the proof. 2

THEOREM 7.23 Every simple F -algebra is isomorphic to Mn.D/ for some n and some
division F -algebra D.
PROOF. Choose a simple A-module S , for example, any minimal left ideal of A. Then A
acts faithfully on S , because the kernel of A! EndF .S/ will be a two-sided ideal of A not
containing 1, and hence is 0.

Let D be the centralizer of A in the F -algebra EndF .S/ of F -linear maps S ! S .
According to the double centralizer theorem (7.21), the centralizer of D in EndF .S/ is
A, i.e., AD EndD.S/. Schur’s lemma (7.24 below) implies that D is a division algebra.
Therefore S is a free D-module (7.18), say, S �Dn, and so EndD.S/�Mn.D

opp/ (see
7.19). 2

LEMMA 7.24 (SCHUR’S LEMMA) For everyF -algebraA and simpleA-module S , EndA.S/
is a division algebra.
PROOF. Let  be an A-linear map S ! S . Then Ker./ is an A-submodule of S , and so it
is either S or 0. In the first case,  is zero, and in the second it is an isomorphism, i.e., it has
an inverse that is also A-linear. 2
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MODULES OVER SIMPLE F -ALGEBRAS

For any F -algebra A, the submodules ofAA are the left ideals in A, and the simple submod-
ules ofAA are the minimal left ideals.

PROPOSITION 7.25 Any two minimal left ideals of a simple F -algebra are isomorphic as
left A-modules, andAA is a direct sum of its minimal left ideals.

PROOF. After Theorem 7.23, we may assume that ADMn.D/ for some division algebra
D. We saw in (7.16) that the minimal left ideals in Mn.D/ are those of the form L.fj g/.
Clearly AD

L
1�j�nL.fj g/ and each L.fj g/ is isomorphic to Dn with its natural action

of Mn.D/. 2

THEOREM 7.26 Let A be a simple F -algebra, and let S be a simple A-module. Then every
A-module is isomorphic to a direct sum of copies of S .

PROOF. Let S0 be a minimal left ideal of A. The proposition shows thatAA� Sn0 for some
n. Let e1; : : : ; er be a set of generators for V as an A-module. The map

.a1; : : : ;ar/ 7!
X

aiei

realizes V as a quotient of a direct sum of r copies ofAA, and hence as a quotient of nrS0.
Thus, V is a sum of simple submodules each isomorphic to S0, and so Proposition 7.12
shows that V �mS0 for some m. 2

COROLLARY 7.27 Let A be a simple F -algebra. Then any two simple A-modules are
isomorphic, and any two A-modules having the same dimension over F are isomorphic.

PROOF. Obvious from the Theorem. 2

COROLLARY 7.28 The integer n in Theorem 7.23 is uniquely determined by A, and D is
uniquely determined up to isomorphism.

PROOF. If A�Mn.D/, then D � EndA.S/ for any simple A-module S . Thus, the state-
ment follows from Theorem 7.26. 2

CLASSIFICATION OF THE DIVISION ALGEBRAS OVER F

After Theorem 7.23, to classify the simple algebras over F , it remains to classify the division
algebras over F .

PROPOSITION 7.29 When F is algebraically closed, the only division algebra over F is F
itself.

PROOF. Let D be division algebra over F . For any ˛ 2D, the F -subalgebra F Œ˛� of D
generated by ˛ is a field (because it is an integral domain of finite degree over F ). Therefore
˛ 2 F . 2

ASIDE 7.30 The classification of the isomorphism classes of division algebras over a field F is
one the most difficult and interesting problems in algebra and number theory. For F D R, the only
division algebra is the usual quaternion algebra. For F finite, the only division algebra with centre F
is F itself (theorem of Wedderburn).
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A division algebra over F whose centre is F is said to be central (formerly normal). Brauer
showed that the set of isomorphism classes of central division algebras over a field form a group,
called (by Hasse and Noether) the Brauer group1 of the field. The statements in the last paragraph
show that the Brauer groups of algebraically closed fields and finite fields are zero, and the Brauer
group of R has order 2. The Brauer groups of Q and its finite extensions were computed by Albert,
Brauer, Hasse, and Noether in the 1930s as a consequence of class field theory.

Semisimple F -algebras and their modules

An F -algebra A is said to be semisimple if every A-module is semisimple. Theorem 7.26
shows that simple F -algebras are semisimple, and Maschke’s theorem shows that the group
algebra F ŒG� is semisimple when the order of G is not divisible by the characteristic of F
(see 7.9).

EXAMPLE 7.31 Let A be a finite product of simple F -algebras. Then every minimal left
ideal of a simple factor of A is a simple A-submodule ofAA. Therefore,AA is a direct sum
of simple A-modules, and so is semisimple. Since every A-module is a quotient of a direct
sum of copies ofAA, this shows that A is semisimple.

Before stating the main result of this section, we recall some elementary module theory.

7.32 Let A be an F -algebra, and consider modules

M DM1˚�� �˚Mn

N DN1˚�� �˚Nm:

Let ˛ be an A-linear map M !N . For xj 2Mj , let

˛.0; : : : ;0;xj ;0; : : : ;0/D .y1; : : : ;ym/:

Then xj 7! yi is an A-linear map Mj !Ni , which we denote ˛ij . Thus, ˛ defines an m�n
matrix whose ij th coefficient is an A-linear map Mj !Ni . Conversely, every such matrix
.˛ij / defines an A-linear map M !N , namely,0BBBBBB@

x1
:::

xj
:::

xn

1CCCCCCA 7!
0BBBBBB@
˛11 � � � ˛1j � � � ˛1n
:::

:::
:::

˛i1 � � � ˛ij � � � j̨n
:::

:::
:::

˛m1 � � � ˛mj � � � ˛mn

1CCCCCCA

0BBBBBB@
x1
:::

xj
:::

xn

1CCCCCCA
def
D

0BBBBBB@
˛11.x1/C�� �C˛1n.xn/

:::

˛i1.x1/C�� �C˛in.xn/
:::

˛m1.x1/C�� �C˛mn.xn/

1CCCCCCA :

Thus, we see
HomA.M;N /'

�
HomA.Mj ;Ni /

�
1�j�n, 1�i�m (30)

1The tensor product D˝F D0 of two central simple algebras over F is again a central simple algebra, and
hence is isomorphic to Mr .D00/ for some central simple algebra D00. Define

ŒD�ŒD0�D ŒD00�:

This product is associative because of the associativity of tensor products, the isomorphism class of F is an
identity element, and ŒDopp� is an inverse for ŒD�.
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(isomorphism of F -vector spaces). When M D N , this becomes an isomorphism of F -
algebras. For example, if M is a direct sum of m copies of M0, then

EndA.M/'Mm.EndA.M0// (31)

(m�m matrices with coefficients in the ring EndA.M0/).

THEOREM 7.33 Let V be a finite dimensional F -vector space, and letA be an F -subalgebra
of EndF .V /. If V is semisimple as an A-module, then the centralizer of A in EndF .V / is a
product of simple F -algebras (hence it is a semisimple F -algebra).

PROOF. By assumption, we can write V �
L
i riSi where the Si are simple A-modules, no

two of which are isomorphic. The centralizer of A in EndF .V / is EndA.V /, and EndA.V /�
EndA.

L
i riSi /. Because HomA.Sj ;Si /D 0 for i ¤ j ,

EndA.
M

riSi /'
Y

i
EndA.riSi / by (30)

'

Y
i
Mri

.Di / by (31)

where Di D EndA.Si /. According to Schur’s lemma (7.24), Di is a division algebra, and
therefore Mri

.Di / is a simple F -algebra (see 7.16). 2

THEOREM 7.34 Every semisimple F -algebra is isomorphic to a product of simple F -
algebras.

PROOF. Choose an A-module V on which A acts faithfully, for example, V DAA. Then A
is equal to its double centralizer C.C.A// in EndF .V / (see 7.21). According to Theorem
7.33, C.A/ is semisimple, and so C.C.A// is a product of simple algebras. 2

Modules over a semisimple F -algebra

Let AD B �C be a product of F -algebras. A B-module M becomes an A-module with the
action

.b;c/mD bm:

THEOREM 7.35 Let A be a semisimple F -algebra, say, A D A1 � � � � �At with the Ai
simple. For each Ai , let Si be a simple Ai -module (cf. 7.27).

(a) Each Si is a simple A-module, and every simple A-module is isomorphic to exactly
of the Si .

(b) Every A-module is isomorphic to
L
riSi for some ri 2 N, and two modules

L
riSi

and
L
r 0iSi are isomorphic if and only if ri D r 0i for all i .

PROOF. (a) It is obvious that each Si is simple when regarded as an A-module, and that no
two of them are isomorphic. It follows from (7.25) thatAA�

L
riSi for some ri 2N. Let S

be a simple A-module, and let x be a nonzero element of S . Then the map a 7! axWAA! S

is surjective, and so its restriction to some Si inAA is nonzero, and hence an isomorphism.
(b) The first part follows from (a) and the definition of a semisimple ring, and the second

part follows from (7.11). 2
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The representations of G

PROPOSITION 7.36 The dimension of the centre of F ŒG� as an F -vector space is the
number of conjugacy classes in G.

PROOF. Let C1; : : : ;Ct be the conjugacy classes in G, and, for each i , let ci be the elementP
a2Ci

a in F ŒG�. We shall prove the stronger statement:

centre of F ŒG�D Fc1˚�� �˚Fct (32)

As c1; : : : ; ct are obviously linearly independent, it suffices to show that they span the centre.
For any g 2G and

P
a2Gmaa 2 F ŒG�,

g
�X

a2G
maa

�
g�1 D

X
a2G

magag
�1:

The coefficient of a in the right hand sum is mg�1ag , and so

g
�X

a2G
maa

�
g�1 D

X
a2G

mg�1aga:

This shows that
P
a2Gmaa lies in the centre of F ŒG� if and only if the function a 7!ma is

constant on conjugacy classes, i.e., if and only if
P
a2Gmaa 2

P
i Fci . 2

REMARK 7.37 An element
P
a2Gmaa of F ŒG� can be regarded as a map a 7!maWG!F .

In this way, F ŒG� ' Map.G;F /. The action of G on F ŒG� corresponds to the action
.gf /.a/ D f .g�1a/ of g 2 G on f WG ! F . In the above proof, we showed that the
elements of the centre of F ŒG� correspond exactly to the functions f WG ! F that are
constant on each conjugacy class. Such functions are called class functions.

In the remainder of this chapter, we assume that F is an algebraically closed field of
characteristic zero (e.g., C)

PROPOSITION 7.38 The group algebra F ŒG� is isomorphic to a product of matrix algebras
over F .

PROOF. Recall that, when F has characteristic zero, Maschke’s theorem (7.9) implies that
F ŒG� is semisimple, and so is a product of simple algebras (7.35). Each of these is a matrix
algebra over a division algebra (7.23), but the only division algebra over an algebraically
closed field is the field itself (7.29). 2

The representation G! GL.F ŒG�F ŒG�/ is called the regular representation.

THEOREM 7.39 (a) The number of isomorphism classes of simple F ŒG�-modules is equal
to the number of conjugacy classes in G.

(b) The multiplicity of any simple representation S in the regular representation is equal
to its degree dimF S .

(c) Let S1; : : : ;St be a set of representatives for the isomorphism classes of simple
FG-modules, and let fi D dimF Si . ThenX

1�i�t
f 2i D jGj:
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PROOF. (a) Under our hypothesis, F ŒG� � Mf1
.F /� � � � �Mft

.F / for some integers
f1; : : : ;ft . According to Theorem 7.35, the number of isomorphism classes of simple
F ŒG�-modules is the number of factors t . The centre of a product of F -algebras is the
product of their centres, and so the centre of F ŒG� is isomorphic to tF . Therefore t is the
dimension of the centre of F , which we know equals the number of conjugacy classes of G.

(b) With the notations of (7.15), Mf .F /' L.1/˚�� �˚L.f /.
(c) The equality is simply the statementX

1�i�t
dimF Mfi

.F /D dimF F ŒG�:
2

The characters of G

Recall that the trace TrV .˛/ of an endomorphism ˛WV ! V of a vector space V is
P
ai i

where .aij / is the matrix of ˛ with respect to some basis for V . It is independent of the
choice of the basis (the traces of conjugate matrices are equal).

From each representation of g 7! gV WG! GL.V /, we obtain a function �V on G;

�V .g/D TrV .gV /;

called the character of �. Note that �V depends only on the isomorphism class of the
F ŒG�-module V , and that �V is a class function. The character � is said to be simple (or
irreducible) if it is defined by a simple FG-module. The principal character �1 is that
defined by the trivial representation of G (so �1.g/ D 1 for all g 2 G), and the regular
character �reg is that defined by the regular representation. On computing �reg.g/ by using
the elements of G as a basis for F ŒG�, one see that �reg.g/ is the number of elements a of
G such that gaD a, and so

�reg.g/D

�
jGj if g D e
0 otherwise.

When V has dimension 1, the character �V of � is said to be linear. In this case, GL.V /'
F �, and so �V .g/ D �.g/. Therefore, �V is a homomorphism G ! F �, and so this
definition of “linear character” essentially agrees with the earlier one.

LEMMA 7.40 For any G-modules V and V 0,

�V˚V 0 D �V C�V 0 :

PROOF. Compute the matrix of gL with respect to a basis of V ˚ V 0 that is made by
combining a basis for V with a basis for V 0. 2

Let S1; : : : ;St be a set of representatives for the isomorphism classes of simple FG-
modules with S1 chosen to be the trivial representation, and let �1; : : : ;�t be the correspond-
ing characters.

PROPOSITION 7.41 The functions �1; : : : ;�t are linearly independent over F , i.e., if
c1; : : : ; ct 2 F are such that

P
i ci�i .g/D 0 for all g 2G, then the ci are all zero.
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PROOF. Write F ŒG��Mf1
.F /� � � ��Mft

.F /, and let ej D .0; : : : ;0;1;0; : : : ;0/. Then ej
acts as 1 on Sj and as 0 on Sj for i ¤ j , and so

�i .ej /D

�
fj D dimF Sj if i D j

0 otherwise.
(33)

Therefore, X
i
ci�i .ej /D cjfj ,

from which the claim follows. 2

PROPOSITION 7.42 Two F ŒG�-modules are isomorphic if and only if their characters are
equal.

PROOF. We have already observed that the character of a representation depends only
on its isomorphism class. Conversely, if V D

L
1�i�t ciSi , ci 2 N, then its character is

�V D
P
1�i�t ci�i , and (33) shows that ci D �V .ei /=fi . Therefore �V determines the

multiplicity with which each Si occurs in V , and hence it determines the isomorphism class
of V . 2

ASIDE 7.43 The proposition is false if F is allowed to have characteristic p ¤ 0. For example,
the representation � i 7!

�
1 i
0 1

�
WCp! GL2.F / of (7.1c) is not trivial, but it has the same character

as the trivial representation. The proposition is false even when the characteristic of F doesn’t
divide the order of the group, because, for any representation G ! GL.V /, the character of the
representation of G on pV is identically zero. However, a theorem of Brauer and Nesbitt says that,
for finite-dimensional representations �1 and �2 of an F -algebra A, if �1.a/ and �2.a/ have the same
characteristic polynomials for all a 2 A, then the representations are isomorphic (cf. mo6560).

Any function G! F that can be expressed as a Z-linear combination of characters is
called a virtual character.2

PROPOSITION 7.44 The simple characters of G form a Z-basis for the virtual characters of
G.

PROOF. Let �1; : : : ;�t be the simple characters of G. Then the characters of G are exactly
the class functions that can be expressed in the form

P
mi�i , mi 2 N, and so the virtual

characters are exactly the class functions that can be expressed
P
mi�i , mi 2 Z. Therefore

the simple characters certainly generate the Z-module of virtual characters, and Proposition
7.41 shows that they are linearly independent over Z (even over F ). 2

PROPOSITION 7.45 The simple characters of G form an F -basis for the class functions on
G.

PROOF. The class functions are the functions from the set of conjugacy classes in G to
F . As this set has t elements, they form an F -vector space of dimension t . As the simple
characters are a set of t linearly independent elements of this vector space, they must form a
basis. 2

2Some authors call it a generalized character, but this is to be avoided: there is more than one way to
generalize the notion of a character.
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We now assume that F is a subfield of C stable under complex conjugation c 7! Nc.
For class functions f1 and f2 on G, define

.f1jf2/D
1

jGj

X
a2G

f1.a/f2.a/:

LEMMA 7.46 The pairing . j / is an inner product on the F -space of class functions on G.

PROOF. We have to check:

˘ .f1Cf2jf /D .f1jf /C .f2jf / for all class functions f1;f2;f ;
˘ .cf1jf2/D c.f1;f2/ for c 2 F and class functions f1;f2;
˘ .f2jf1/D .f1jf2/ for all class functions f1;f2;
˘ .f jf / > 0 for all nonzero class functions f .

All of these are obvious from the definition. 2

For an F ŒG�-module V , V G denotes the submodule of elements fixed by G:

V G D fv 2 V j gv D v for all g 2Gg

LEMMA 7.47 Let � be the element 1
jGj

P
a2G a of F ŒG�. For any F ŒG�-module V , �V is

a projector with image V G .

PROOF. For any g 2G,

g� D
1

jGj

X
a2G

gaD
1

jGj

X
a2G

aD �; (34)

from which it follows that �� D � (in the F -algebra F ŒG�). Therefore, for any F ŒG�-
module V , �2V D �V and so �V is a projector. If v is in its image, say v D �v0, then

gv D g�v0
.34/
D �v0 D v

and so v lies in V G . Conversely, if v 2 V G , the obviously �v D 1
jGj

P
a2G av D v, and so

v is in the image of � . 2

PROPOSITION 7.48 For any F ŒG�-module V ,

dimF V G D
1

jGj

X
a2G

�V .a/:

PROOF. Let � be as in Lemma 7.47. Because �V is a projector, V is the direct sum of
its 0-eigenspace and its 1-eigenspace, and we showed that the latter is V G . Therefore,
TrV .�V /D dimF V G . On the other hand, because the trace is a linear function,

TrV .�V /D
1

jGj

X
a2G

TrV .aV /D
1

jGj

X
a2G

�V .a/:
2

THEOREM 7.49 For any F ŒG�-modules V and W;

dimF HomF ŒG�.V;W /D .�V j�W /.
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PROOF. The group G acts on the space HomF .V;W / of F -linear maps V ! W by the
rule,

.g'/.v/D g.'.gv//; g 2G; ' 2 HomF .V;W /; v 2 V;

and HomF .V;W /G D HomFG.V;W /. 2

COROLLARY 7.50 If � and �0 are simple characters, then

.�j�0/D

�
1 if �D �0

0 otherwise.

Therefore the simple characters form an orthonormal basis for the space of class functions
on G.

The character table of a group

To be written.

Examples

To be written.

Exercises

7-1 Let C be an n� r matrix with coefficients in a field F . Show that

fM 2Mn.F / jMC D 0g

is a left ideal in Mn.F /, and that every left ideal is of this form for some C .

7-2 This exercise shows how to recover a finite groupG from its category of representations
over a field k. Let S be a finite set, and let A be the set of maps S ! k.

(a) Show that A becomes a commutative ring with the product

.f1f2/.g/D f1.g/f2.g/; f1, f2 2 A; g 2G:

Moreover, when we identify c 2 k with the constant function, A becomes a k-algebra.
(b) Show that

A'
Y

s2S
ks (product of copies of k indexed by the elements of S );

and that the ks are exactly the minimal k-subalgebras ofA. Deduce that Endk-alg.A/'

Sym.S/.
(c) Let .f1;f2/ 2 A�A act on S �S by .f1;f2/.s1; s2/D f1.s1/f2.s2/; show that this

defines a bijection A˝A'Map.S �S;k/. Now take S DG.
(d) Show that the map rAWG! Endk-linear.A/,

.rA.g/f /.g
0/D f .gg0/; f 2 A; g;g0 2G

is a representation of G (this is the regular representation).
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(e) Define �WA! A˝A by �.f /.g1;g2/D f .g1g2/. Show that, for any homomor-
phism ˛WA!A of k-algebras such .1˝˛/ı�D�ı˛, there exists a unique element
g 2G such that ˛.f /D gf for all f 2 A. [Hint: Deduce from (b) that there exists a
bijection �WG!G such that . f̨ / .g/D f .�g/ for all g 2G. From the hypothesis
on ˛, deduce that �.g1g2/D g1 ��.g2/ for all g1;g2 2G.R/. Hence �.g/D g ��.e/
for all g 2G. Deduce that ˛.f /D �.e/f for all f 2 A.]

(f) Show that the following maps are G-equivariant

eWk! A (trivial representation on k; rA on A/

mWA˝A! A (rA˝ rA on A˝A; rA on A/

�WA! A˝A (rA on A; 1˝ rA on A˝A/:

(g) Suppose that we are given, for each finite dimensional representation .V;rV /, a k-
linear map �V . If the family .�V / satisfies the conditions

i) for all representations V , W , �V˝W D �V ˝�W I
ii) for k with its trivial representation, �k D idk;

iii) for all G-equivariant maps ˛WV !W , �W ı˛ D ˛ ı�V I

then there exists a unique g 2G.R/ such that �V D rV .g/ for all V . [Hint: show that
�A satisfies the conditions of (d).]

NOTES For a historical account of the representation theory of finite groups, emphasizing the work
of “the four principal contributors to the theory in its formative stages: Ferdinand Georg Frobenius,
William Burnside, Issai Schur, and Richard Brauer”, see Curtis 1999.

At a time when many physicists were considering giving up on even the possibility of
developing an understanding of particle physics using the techniques that had worked
so well with QED, Gell-Mann, in 1961, discovered the importance of group theory,
which gave him a mathematical tool to classify the plethora of new elementary particles
according to their symmetry properties.. . . In Gell-Mann’s scheme . . . , the different
particles fell into sets of representations whose properties . . . could be graphed so that
they formed the vertices of a polyhedron, and all of the particles in each polyhedron
could then be transformed into each other by symmetries, which could effectively rotate
the polyhedron in different directions.

Lawrence Krauss, Quantum Man, p.288



APPENDIX A
Additional Exercises

34. Prove that a finite group G having just one maximal subgroup must be a cyclic p-group,
p prime.

35. Let a and b be two elements of S76. If a and b both have order 146 and ab D ba, what
are the possible orders of the product ab?

37. Suppose that the group G is generated by a set X .

(a) Show that if gxg�1 2X for all x 2X; g 2G, then the commutator subgroup of G is
generated by the set of all elements xyx�1y�1 for x;y 2X .

(b) Show that if x2 D 1 for all x 2X , then the subgroup H of G generated by the set of
all elements xy for x;y 2X has index 1 or 2.

38. Suppose p � 3 and 2p�1 are both prime numbers (e.g., p D 3;7;19;31; : : :/. Prove, or
disprove by example, that every group of order p.2p�1/ is commutative.

39. Let H be a subgroup of a group G. Prove or disprove the following:

(a) If G is finite and P is a Sylow p-subgroup, then H \P is a Sylow p-subgroup of H .
(b) If G is finite, P is a Sylow p-subgroup, and H �NG.P /, then NG.H/DH .
(c) If g is an element of G such that gHg�1 �H , then g 2NG.H/.

40. Prove that there is no simple group of order 616.

41. Let n and k be integers 1 � k � n. Let H be the subgroup of Sn generated by the
cycle .a1 : : :ak/. Find the order of the centralizer of H in Sn. Then find the order of the
normalizer of H in Sn. [The centralizer of H is the set of g 2 G such ghg�1 D h for all
h 2H . It is again a subgroup of G.]

42. Prove or disprove the following statement: if H is a subgroup of an infinite group G,
then for all x 2G, xHx�1 �H H) x�1Hx �H .

43. Let H be a finite normal subgroup of a group G, and let g be an element of G. Suppose
that g has order n and that the only element of H that commutes with g is 1. Show that:

(a) the mapping h 7! g�1h�1gh is a bijection from H to H ;
(b) the coset gH consists of elements of G of order n.

117
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44. Show that if a permutation in a subgroup G of Sn maps x to y, then the normalizers of
the stabilizers Stab.x/ and Stab.y/ of x and y have the same order.

45. Prove that if all Sylow subgroups of a finite group G are normal and abelian, then the
group is abelian.

46. A group is generated by two elements a and b satisfying the relations: a3 D b2, am D 1,
bn D 1 where m and n are positive integers. For what values of m and n can G be infinite.

47. Show that the group G generated by elements x and y with defining relations x2 D
y3 D .xy/4 D 1 is a finite solvable group, and find the order of G and its successive derived
subgroups G0, G00, G000.

48. A group G is generated by a normal set X of elements of order 2. Show that the
commutator subgroup G0 of G is generated by all squares of products xy of pairs of
elements of X .

49. Determine the normalizer N in GLn.F / of the subgroup H of diagonal matrices, and
prove that N=H is isomorphic to the symmetric group Sn.

50. Let G be a group with generators x and y and defining relations x2, y5, .xy/4. What is
the index in G of the commutator group G0 of G.

51. Let G be a finite group, and H the subgroup generated by the elements of odd order.
Show that H is normal, and that the order of G=H is a power of 2.

52. Let G be a finite group, and P a Sylow p-subgroup. Show that if H is a subgroup of G
such that NG.P /�H �G, then

(a) the normalizer of H in G is H ;
(b) .G WH/� 1 (mod p).

53. Let G be a group of order 33 �25. Show that G is solvable. (Hint: A first step is to find a
normal subgroup of order 11 using the Sylow theorems.)

54. Suppose that ˛ is an endomorphism of the group G that maps G onto G and commutes
with all inner automorphisms of G. Show that if G is its own commutator subgroup, then
˛x D x for all x in G.

55. Let G be a finite group with generators s and t each of order 2. Let nD .G W 1/=2.

(a) Show that G has a cyclic subgroup of order n. Now assume n odd.
(b) Describe all conjugacy classes of G.
(c) Describe all subgroups of G of the form C.x/D fy 2Gjxy D yxg, x 2G.
(d) Describe all cyclic subgroups of G.
(e) Describe all subgroups of G in terms of (b) and (d).
(f) Verify that any two p-subgroups of G are conjugate .p prime).

56. Let G act transitively on a set X . Let N be a normal subgroup of G, and let Y be the set
of orbits of N in X . Prove that:

(a) There is a natural action of G on Y which is transitive and shows that every orbit of
N on X has the same cardinality.

(b) Show by example that if N is not normal then its orbits need not have the same
cardinality.
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57. Prove that every maximal subgroup of a finite p-group is normal of prime index .p is
prime).

58. A group G is metacyclic if it has a cyclic normal subgroup N with cyclic quotient G=N .
Prove that subgroups and quotient groups of metacyclic groups are metacyclic. Prove or
disprove that direct products of metacyclic groups are metacylic.

59. Let G be a group acting doubly transitively on X , and let x 2X . Prove that:

(a) The stabilizer Gx of x is a maximal subgroup of G.
(b) If N is a normal subgroup of G, then either N is contained in Gx or it acts transitively

on X .

60. Let x;y be elements of a group G such that xyx�1 D y5, x has order 3, and y ¤ 1 has
odd order. Find (with proof) the order of y.

61. Let H be a maximal subgroup of G, and let A be a normal subgroup of H and such that
the conjugates of A in G generate it.

(a) Prove that if N is a normal subgroup of G, then either N �H or G DNA.
(b) Let M be the intersection of the conjugates of H in G. Prove that if G is equal to its

commutator subgroup and A is abelian, then G=M is a simple group.

62. (a) Prove that the centre of a nonabelian group of order p3, p prime, has order p.
(b) Exhibit a nonabelian group of order 16 whose centre is not cyclic.

63. Show that the group with generators ˛ and ˇ and defining relations

˛2 D ˇ2 D .˛ˇ/3 D 1

is isomorphic with the symmetric group S3 of degree 3 by giving, with proof, an explicit
isomorphism.

64. Prove or give a counter-example:

(a) Every group of order 30 has a normal subgroup of order 15.
(b) Every group of order 30 is nilpotent.

65. Let t 2Z, and letG be the group with generators x;y and relations xyx�1D yt , x3D 1.

(a) Find necessary and sufficient conditions on t for G to be finite.
(b) In case G is finite, determine its order.

66. Let G be a group of order pq, p ¤ q primes.

(a) Prove G is solvable.
(b) Prove that G is nilpotent ” G is abelian ” G is cyclic.
(c) Is G always nilpotent? (Prove or find a counterexample.)

67. Let X be a set with pn elements, p prime, and let G be a finite group acting transitively
on X . Prove that every Sylow p-subgroup of G acts transitively on X .

68. Let G D ha;b;c j bc D cb, a4 D b2 D c2 D 1; aca�1 D c, aba�1 D bci. Determine
the order of G and find the derived series of G.

69. LetN be a nontrivial normal subgroup of a nilpotent groupG. Prove thatN \Z.G/¤ 1.

70. Do not assume Sylow’s theorems in this problem.
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(a) Let H be a subgroup of a finite group G, and P a Sylow p-subgroup of G. Prove that
there exists an x 2G such that xPx�1\H is a Sylow p-subgroup of H .

(b) Prove that the group of n� n matrices

0BB@
1 � : : :

0 1 � � �

: : :

0 1

1CCA is a Sylow p-subgroup of

GLn.Fp/.
(c) Indicate how (a) and (b) can be used to prove that any finite group has a Sylow

p-subgroup.

71. Suppose H is a normal subgroup of a finite group G such that G=H is cyclic of order n,
where n is relatively prime to .G W 1/. Prove that G is equal to the semidirect product H ÌS
with S a cyclic subgroup of G of order n.

72. Let H be a minimal normal subgroup of a finite solvable group G. Prove that H is
isomorphic to a direct sum of cyclic groups of order p for some prime p.

73. (a) Prove that subgroups A and B of a group G are of finite index in G if and only if
A\B is of finite index in G.
(b) An element x of a group G is said to be an FC-element if its centralizer CG.x/ has finite
index in G. Prove that the set of all FC elements in G is a normal.

74. Let G be a group of order p2q2 for primes p > q. Prove that G has a normal subgroup
of order pn for some n� 1.

75. (a) Let K be a finite nilpotent group, and let L be a subgroup of K such that L �ıK DK,
where ıK is the derived subgroup. Prove that LDK. [You may assume that a finite group
is nilpotent if and only if every maximal subgroup is normal.]
(b) LetG be a finite group. IfG has a subgroupH such that bothG=ıH andH are nilpotent,
prove that G is nilpotent.

76. Let G be a finite noncyclic p-group. Prove that the following are equivalent:

(a) .G WZ.G//� p2.
(b) Every maximal subgroup of G is abelian.
(c) There exist at least two maximal subgroups that are abelian.

77. Prove that every groupG of order 56 can be written (nontrivially) as a semidirect product.
Find (with proofs) two non-isomorphic non-abelian groups of order 56.

78. Let G be a finite group and ' WG!G a homomorphism.

(a) Prove that there is an integer n� 0 such that 'n.G/D 'm.G/ for all integers m� n.
Let ˛ D 'n.

(b) Prove that G is the semi-direct product of the subgroups Ker˛ and Im˛.
(c) Prove that Im˛ is normal in G or give a counterexample.

79. Let S be a set of representatives for the conjugacy classes in a finite group G and let H
be a subgroup of G. Show that S �H H) H DG.

80. Let G be a finite group.

(a) Prove that there is a unique normal subgroup K of G such that (i) G=K is solvable
and (ii) if N is a normal subgroup and G=N is solvable, then N �K.

(b) Show that K is characteristic.
(c) Prove that K D ŒK;K� and that K D 1 or K is nonsolvable.



APPENDIX B
Solutions to the Exercises

These solutions fall somewhere between hints and complete solutions. Students were expected
to write out complete solutions.

1-1 By inspection, the only element of order 2 is c D a2 D b2. Since gcg�1 also has order
2, it must equal c, i.e., gcg�1 D c for all g 2Q. Thus c commutes with all elements of Q,
and f1;cg is a normal subgroup of Q. The remaining subgroups have orders 1, 4, or 8, and
are automatically normal (see 1.36a).

1-2 The product ab D
�
1 1

0 1

�
, and

�
1 1

0 1

�n
D

�
1 n

0 1

�
.

1-3 Consider the subsets fg;g�1g of G. Each set has exactly 2 elements unless g has order
1 or 2, in which case it has 1 element. Since G is a disjoint union of these sets, there must be
a (nonzero) even number of sets with 1 element, and hence at least one element of order 2.

1-4 The symmetric group Sn contains a subgroup that is a direct product of subgroups Sn1
,

. . . , Snr
.

1-5 Because the group G=N has order n, .gN /n D 1 for every g 2 G (see 1.27). But
.gN /n D gnN , and so gn 2N . For the second statement, consider the subgroup f1;sg of
D3. It has index 3 in D3, but the element t has order 2, and so t3 D t … f1;sg.

1-6 (a) Let a;b 2G. We are given that a2 D b2 D .ab/2 D e. In particular, abab D e. On
multiplying this on right by ba, we find that ab D ba. (b) Show by induction that0@1 a b

0 1 c

0 0 1

1An D
0@1 na nbC n.n�1/

2
ac

0 1 nc

0 0 1

1A :
1-7 Commensurability is obviously reflexive and symmetric, and so it suffices to prove
transitivity. We shall use that if a subgroupH of a groupG has finite index inG, thenH \G0

has finite index inG0 for any subgroupG0 ofG (because the natural mapG0=H \G0!G=H

is injective). Using this, it follows that if H1 and H3 are both commensurable with H2, then
H1\H2\H3 is of finite index in H1\H2 and in H2\H3 (and therefore also in H1 and
H3). As H1\H3 �H1\H2\H3, it also has finite index in each of H1 and H3.
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1-8 By assumption, the setG is nonempty, so let a 2G. BecauseG satisfies the cancellation
law, the map x 7! axWG!G is a permutuation of G, and some power of this permutation
is the identity permutation. Therefore, for some n� 1, anx D x for all x 2G, and so an is
a left neutral element. By counting, one sees that every element has a left inverse, and so we
can apply (1.10a).

1-9 Let b be such that the right multiplication x 7! xb is injective. Let a0 2 G; there is
a unique e 2 G such that a0e D a0. Then a0eb D a0b, which implies that eb D b. Then
aeb D ab for all a 2 A, which implies that ae D a. Therefore e is a right neutral element.
For each a 2G, there is a unique a0 such that aa0 D e. Therefore G also has right inverses,
and so it is a group (1.10a).

Let G be a set, and consider the binary operation a;b 7! b on G. This is associative, and
all left multiplications are bijective (in fact, the identity map), but G is not a group if it has
at least two elements.

2-1 The key point is that hai D ha2i� hani. Apply (1.50) to see that D2n breaks up as a
product.

2-2 Note first that any group generated by a commuting set of elements must be commu-
tative, and so the group G in the problem is commutative. According to (2.8), any map
fa1; : : : ;ang ! A with A commutative extends uniquely to homomorphism G! A, and so
G has the universal property that characterizes the free abelian group on the generators ai .

2-3 (a) If a¤ b, then the word a � � �ab�1 � � �b�1 is reduced and¤ 1. Therefore, if anb�nD 1,
then aD b. (b) is similar. (c) The reduced form of xn, x ¤ 1, has length at least n.

2-4 (a) Universality. (b) C1�C1 is commutative, and the only commutative free groups
are 1 and C1. (c) Suppose a is a nonempty reduced word in x1; : : : ;xn, say aD xi � � � (or
x�1i � � � ). For j ¤ i , the reduced form of Œxj ;a�

def
D xjax

�1
j a�1 can’t be empty, and so a and

xj don’t commute.

2-5 The unique element of order 2 is b2. Since gb2g�1 also has order 2 for any g 2Qn,
we see that gb2g�1 D b2, and so b2 lies in the centre. [Check that it is the full centre.]
The quotient group Qn=hb2i has generators a and b, and relations a2

n�2

D 1, b2 D 1,
bab�1 D a�1, which is a presentation for D2n�2 (see 2.9).

2-6 (a) A comparison of the presentation Dn D hr;s j rn; s2; srsr D 1i with that for G
suggests putting r D ab and s D a. Check (using 2.8) that there are homomorphisms:

Dn!G; r 7! ab; s 7! a; G!Dn; a 7! s; b 7! s�1r .

The composites Dn ! G ! Dn and G ! Dn ! G are the both the identity map on
generating elements, and therefore (2.8 again) are identity maps. (b) Omit.

2-7 The hint gives ab3a�1 D bc3b�1. But b3 D 1. So c3 D 1. Since c4 D 1, this forces
c D 1. From acac�1 D 1 this gives a2 D 1. But a3 D 1. So aD 1. The final relation then
gives b D 1.
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2-8 The elements x2, xy, y2 lie in the kernel, and it is easy to see that hx;yjx2;xy;y2i has
order (at most) 2, and so they must generate the kernel (at least as a normal group — the
problem is unclear). One can prove directly that these elements are free, or else apply the
Nielsen-Schreier theorem (2.6). Note that the formula on p. 34 (correctly) predicts that the
kernel is free of rank 2 �2�2C1D 3

2-9 We have to show that if s and t are elements of a finite group satisfying t�1s3t D s5,
then the given element g is equal to 1. Because the group is finite, sn D 1 for some n. If 3jn,
the proof is easy, and so we suppose that gcd.3;n/D 1. But then

3rCnr 0 D 1, some r;r 0 2 Z;

and so s3r D s. Hence

t�1st D t�1s3r t D .t�1s3t /r D s5r :

Now,
g D s�1.t�1s�1t /s.t�1st/D s�1s�5rss5r D 1;

as required. [In such a question, look for a pattern. Note that g has two conjugates in it, as
does the relation for G, and so it is natural to try to relate them.]

3-1 Let N be the unique subgroup of order 2 in G. Then G=N has order 4, but there is no
subgroup Q � G of order 4 with Q\N D 1 (because every group of order 4 contains a
group of order 2), and so G ¤N ÌQ for any Q. A similar argument applies to subgroups
N of order 4.

3-2 For any g 2 G, gMg�1 is a subgroup of order m, and therefore equals M . Thus M
(similarly N ) is normal in G, and MN is a subgroup of G. The order of any element of
M \N divides gcd.m;n/ D 1, and so equals 1. Now (1.51) shows that M �N �MN ,
which therefore has order mn, and so equals G.

3-3 Show that GL2.F2/ permutes the 3 nonzero vectors in F2�F2 (2-dimensional vector
space over F2).

3-4 The following solutions were suggested by readers. We write the quaternion group as

QD f˙1;˙i;˙j;˙kg:

(A) Take a cube. Write the six elements of Q of order 4 on the six faces with i opposite �i ,
etc.. Each rotation of the cube induces an automorphism of Q, and Aut.Q/ is the symmetry
group of the cube, S4. (B) The group Q has one element of order 2, namely �1, and six
elements of order 4, namely,˙i ,˙j ,˙k. Any automorphism ˛ ofQ must map �1 to itself
and permute the elements of order 4. Note that ij D k, jk D i , ki D j , so ˛ must send the
circularly ordered set i;j;k to a similar set, i.e., to one of the eight sets in the following
table:

i j k �i �j k

i �j �k �i j �k

i k �j �i �k �j

i �k j �i k j

Because ˛.�1/D�1, ˛ must permute the rows of the table, and it is not difficult to see that
all permutations are possible.
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3-5 The pair

N D

8<:
0@1 0 b

0 1 c

0 0 1

1A9=; and QD

8<:
0@a 0 0

0 a 0

0 0 d

1A9=;
satisfies the conditions (i), (ii), (iii) of (3.8). For example, for (i) (Maple says that)0@a 0 b

0 a c

0 0 d

1A0@1 0 b

0 1 c

0 0 1

1A0@a 0 b

0 a c

0 0 d

1A�1 D
0@1 0 � b

d
C
1
d
.bCab/

0 1 � c
d
C
1
d
.cCac/

0 0 1

1A
It is not a direct product of the two groups because it is not commutative.

3-6 Let g generate C1. Then the only other generator is g�1, and the only nontrivial
automorphism is g 7! g�1. Hence Aut.C1/D f˙1g. The homomorphism S3! Aut.S3/
is injective because Z.S3/D 1, but S3 has exactly 3 elements a1;a2;a3 of order 2 and 2
elements b;b2 of order 3. The elements a1;b generate S3, and there are only 6 possibilities
for ˛.a1/, ˛.b/, and so S3! Aut.S3/ is also onto.

3-7 (a) The element go.q/ 2 N , and so has order dividing jN j. (c) The element g D
.1;4;3/.2;5/, and so this is obvious. (d) By the first part, ..1;0; : : : ;0/;q/p D ..1; : : : ;1/;1/,
and .1; : : : ;1/ has order p in .Cp/p. (e) We have .n;q/.n;q/D .nn�1;qq/D .1;1/:

3-8 Let n �q 2Z.G/. Then

.n �q/.1 �q0/ D n �qq0

.1 �q0/.n �q/ D q0nq0�1 �q0q
all q0 2Q

�
H)

n 2 CN .Q/

q 2Z.Q/

and
.n �q/.n0 �1/ D nqn0q�1 �q

.n0 �1/.n �q/ D n0n �q
n0 2N

�
H) n�1n0nD qn0q�1:

The converse and the remaining statements are easy.

4-1 Let 'WG=H1 ! G=H2 be a G-map, and let '.H1/ D gH2. For a 2 G, '.aH1/ D
a'.H1/D agH2. When a 2H1, '.aH1/D gH2, and so agH2D gH2; hence g�1ag 2H2,
and so a 2 gH2g�1. We have shownH1� gH2g�1. Conversely, if g satisfies this condition,
the aH1 7! agH2 is a well-defined map of G-sets.

4-2 (a) Let H be a proper subgroup of G, and let N DNG.H/. The number of conjugates
of H is .G WN/� .G WH/ (see 4.8). Since each conjugate of H has .H W 1/ elements and
the conjugates overlap (at least) in f1g, we see thatˇ̌̌[

gHg�1
ˇ̌̌
< .G WH/.H W 1/D .G W 1/:

(b) Use that the action of G on the left cosets ofH defines a homomorphism 'WG! Sn,
and look at the finite group G=Ker.'/.

(c) LetGDGLn.k/with k an algebraically closed field. Every element ofG is conjugate
to an upper triangular matrix (its Jordan form). Therefore G is equal to the union of the
conjugates of the subgroup of upper triangular matrices.

(d) Choose S to be a set of representatives for the conjugacy classes.
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4-3 Let H be a subgroup of a finite group G, and assume that H contains at least one
element from each conjugacy class of G. Then G is the union of the conjugates of H , and
so we can apply Exercise 4-2. (According to Serre 2003, this result goes back to Jordan in
the 1870s.)

4-4 According to 4.17, 4.18, there is a normal subgroup N of order p2, which is commuta-
tive. Now show that G has an element c of order p not in N , and deduce that G DN Ì hci,
etc..

4-5 Let H be a subgroup of index p, and let N be the kernel of G! Sym.G=H/ — it is
the largest normal subgroup of G contained in H (see 4.22). If N ¤H , then .H W N/ is
divisible by a prime q � p, and .G W N/ is divisible by pq. But pq doesn’t divide pŠ —
contradiction.

4-6 Embed G into S2m, and let N D A2m\G. Then G=N ,! S2m=A2m D C2, and so
.G WN/� 2. Let a be an element of order 2 in G, and let b1; : : : ;bm be a set of right coset
representatives for hai in G, so that G D fb1;ab1; : : : ;bm;abmg. The image of a in S2m is
the product of them transpositions .b1;ab1/; : : : ; .bm;abm/, and sincem is odd, this implies
that a …N .

4-7 The set X of k-cycles in Sn is normal, and so the group it generates is normal (1.38).
But, when n � 5, the only nontrivial normal subgroups of Sn are An and Sn itself. If k is
odd, then X is contained in An, and if k is even, then it isn’t.

4-8 (a) The number of possible first rows is 23� 1; of second rows 23� 2; of third rows
23�22; whence .G W 1/D 7�6�4D 168. (b) Let V D F32. Then jV j D 23 D 8. Each line
through the origin contains exactly one point¤ origin, and so jX j D 7. (c) We make a list
of possible characteristic and minimal polynomials:

Characteristic poly. Min’l poly. Size Order of element in class
1 X3CX2CXC1 XC1 1 1

2 X3CX2CXC1 .XC1/2 21 2

3 X3CX2CXC1 .XC1/3 42 4

4 X3C1D .XC1/.X2CXC1/ Same 56 3

5 X3CXC1 (irreducible) Same 24 7

6 X3CX2C1 (irreducible) Same 24 7

Here size denotes the number of elements in the conjugacy class. Case 5: Let ˛ be
an endomorphism with characteristic polynomial X3CX C 1. Check from its minimal
polynomial that ˛7 D 1, and so ˛ has order 7. Note that V is a free F2Œ˛�-module of rank
one, and so the centralizer of ˛ in G is F2Œ˛�\G D h˛i. Thus jCG.˛/j D 7, and the number
of elements in the conjugacy class of ˛ is 168=7D 24. Case 6: Exactly the same as Case 5.
Case 4: Here V D V1˚V2 as an F2Œ˛�-module, and

EndF2Œ˛�.V /D EndF2Œ˛�.V1/˚EndF2Œ˛�.V2/:

Deduce that jCG.˛/j D 3, and so the number of conjugates of ˛ is 168
3
D 56. Case 3: Here

CG.˛/ D F2Œ˛�\G D h˛i, which has order 4. Case 1: Here ˛ is the identity element.
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Case 2: Here V D V1˚V2 as an F2Œ˛�-module, where ˛ acts as 1 on V1 and has minimal
polynomial X2C1 on V2. Either analyse, or simply note that this conjugacy class contains
all the remaining elements. (d) Since 168D 23�3�7, a proper nontrivial subgroup H of
G will have order

2;4;8;3;6;12;24;7;14;28;56;21;24, or 84:

If H is normal, it will be a disjoint union of f1g and some other conjugacy classes, and so
.N W 1/D 1C

P
ci with ci equal to 21, 24, 42, or 56, but this doesn’t happen.

4-9 Since G=Z.G/ ,! Aut.G/, we see that G=Z.G/ is cyclic, and so by (4.19) that G is
commutative. If G is finite and not cyclic, it has a factor Cpr �Cps etc..

4-10 Clearly .ij /D .1j /.1i/.1j /. Hence any subgroup containing .12/; .13/; : : : contains
all transpositions, and we know Sn is generated by transpositions.

4-11 Note that CG.x/\H D CH .x/, and soH=CH .x/�H �CG.x/=CG.x//. Prove each
class has the same number c of elements. Then

jKj D .G W CG.x//D .G WH �CG.x//.H �CG.x/ W CG.x//D kc:

4-12 (a) The first equivalence follows from the preceding problem. For the second, note that
� commutes with all cycles in its decomposition, and so they must be even (i.e., have odd
length); if two cycles have the same odd length k, one can find a product of k transpositions
which interchanges them, and commutes with � ; conversely, show that if the partition of n
defined by � consists of distinct integers, then � commutes only with the group generated by
the cycles in its cycle decomposition. (b) List of conjugacy classes in S7, their size, parity,
and (when the parity is even) whether it splits in A7.

Cycle Size Parity Splits in A7‹ C7.�/ contains
1 .1/ 1 E N

2 .12/ 21 O

3 .123/ 70 E N .67/

4 .1234/ 210 O

5 .12345/ 504 E N .67/

6 .123456/ 840 O

7 .1234567/ 720 E Y 720 doesn’t divide 2520
8 .12/.34/ 105 E N .67/

9 .12/.345/ 420 O

10 .12/.3456/ 630 E N .12/

11 .12/.3456/ 504 O

12 .123/.456/ 280 E N .14/.25/.36/

13 .123/.4567/ 420 O

14 .12/.34/.56/ 105 O

15 .12/.34/.567/ 210 E N .12/

4-13 According to GAP, nD 6, a 7! .13/.26/.45/, b 7! .12/.34/.56/.



127

4-14 Since Stab.gx0/D gStab.x0/g�1, if H � Stab.x0/ then H � Stab.x/ for all x, and
so H D 1, contrary to hypothesis. Now Stab.x0/ is maximal, and so H �Stab.x0/ D G,
which shows that H acts transitively.

5-1 Let p be a prime dividing jGj and let P be a Sylow p-subgroup, of order pm say. The
elements of P all have order dividing pm, and it has at most

1CpC�� �Cpm�1 D
pm�1

p�1
< pm

elements of order dividing pm�1; therefore P must have an element of order pm, and so it
is cyclic. Each Sylow p-subgroup has exactly pm elements of order dividing pm, and so
there can be only one. Now (5.9) shows that G is a product of its Sylow subgroups.

6-2 No, D4 and the quaternion group have isomorphic commutator subgroups and quotient
groups but are not isomorphic. Similarly, Sn and An�C2 are not isomorphic when n� 5.





APPENDIX C
Two-Hour Examination

1. Which of the following statements are true (give brief justifications for each of (a), (b),
(c), (d); give a correct set of implications for (e)).

(a) If a and b are elements of a group, then a2 D 1; b3 D 1 H) .ab/6 D 1.
(b) The following two elements are conjugate in S7:�

1 2 3 4 5 6 7

3 4 5 6 7 2 1

�
;

�
1 2 3 4 5 6 7

2 3 1 5 6 7 4

�
:

(c) If G and H are finite groups and G�A594 �H �A594; then G �H .
(d) The only subgroup of A5 containing .123/ is A5 itself.
(e) Nilpotent H) cyclic H) commutative H) solvable (for a finite group).

2. How many Sylow 11-subgroups can a group of order 110D 2 �5 �11 have? Classify the
groups of order 110 containing a subgroup of order 10. Must every group of order 110
contain a subgroup of order 10?

3. Let G be a finite nilpotent group. Show that if every commutative quotient of G is cyclic,
then G itself is cyclic. Is the statement true for nonnilpotent groups?

4. (a) LetG be a subgroup of Sym.X/, whereX is a set with n elements. IfG is commutative
and acts transitively on X , show that each element g ¤ 1 of G moves every element of X .
Deduce that .G W 1/� n.
(b) For each m� 1, find a commutative subgroup of S3m of order 3m.
(c) Show that a commutative subgroup of Sn has order � 3

n
3 .

5. Let H be a normal subgroup of a group G, and let P be a subgroup of H . Assume that
every automorphism of H is inner. Prove that G DH �NG.P /.

6. (a) Describe the group with generators x and y and defining relation yxy�1 D x�1.
(b) Describe the group with generators x and y and defining relations yxy�1 D x�1,
xyx�1 D y�1.

You may use results proved in class or in the notes, but you should indicate clearly what you
are using.
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SOLUTIONS

1. (a) False: in ha;bja2;b3i, ab has infinite order.
(b) True, the cycle decompositions are (1357)(246), (123)(4567).
(c) True, use the Krull-Schmidt theorem.
(d) False, the group it generates is proper.
(e) Cyclic H) commutative H) nilpotent H) solvable.

2. The number of Sylow 11-subgroups s11 D 1;12; : : : and divides 10. Hence there is only
one Sylow 11-subgroup P . Have

G D P Ì� H; P D C11; H D C10 or D5:

Now have to look at the maps � WH ! Aut.C11/D C10. Yes, by the Schur-Zassenhaus
lemma.

3. Suppose G has class > 1. Then G has quotient H of class 2. Consider

1!Z.H/!H !H=Z.H/! 1:

Then H is commutative by (4.17), which is a contradiction. Therefore G is commutative,
and hence cyclic.

Alternatively, by induction, which shows that G=Z.G/ is cyclic.
No! In fact, it’s not even true for solvable groups (e.g., S3).

4. (a) If gx D x, then ghx D hgx D hx. Hence g fixes every element of X , and so g D 1.
Fix an x 2 X ; then g 7! gx W G! X is injective. [Note that Cayley’s theorem gives an
embedding G ,! Sn, nD .G W 1/.]

(b) Partition the set into subsets of order 3, and let G DG1� � � ��Gm.
(c) Let O1; : : : ;Or be the orbits of G, and let Gi be the image of G in Sym.Oi /. Then

G ,!G1� � � ��Gr , and so (by induction),

.G W 1/� .G1 W 1/ � � �.Gr W 1/� 3
n1
3 � � �3

nr
3 D 3

n
3 :

5. Let g 2G, and let h 2H be such that conjugation by h on H agrees with conjugation by
g. Then gPg�1 D hPh�1, and so h�1g 2NG.P /.

6. (a) It’s the group .
G D hxiÌ hyi D C1Ì� C1

with � WC1! Aut.C1/D˙1. Alternatively, the elements can be written uniquely in the
form xiyj , i;j 2 Z, and yx D x�1y.

(b) It’s the quaternion group. From the two relations get

yx D x�1y; yx D xy�1

and so x2 D y2. The second relation implies

xy2x�1 D y�2;D y2;

and so y4 D 1.
Alternatively, the Todd-Coxeter algorithm shows that it is the subgroup of S8 generated

by .1287/.3465/ and .1584/.2673/.
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SYLOW, M. L. 1872. Théorèmes sur les groupes de substitutions. Math. Ann. 5:584–594.

WILD, M. 2005. The groups of order sixteen made easy. Amer. Math. Monthly 112:20–31.



Index

action
doubly transitive, 59
effective, 57
faithful, 57
free, 59
imprimitive, 72
k-fold transitive, 59
left, 57
linear, 100
primitive, 72
right, 58
transitive, 59
trivial, 57

algebra
division, 105
group, 103
quaternion, 105
semisimple, 109
simple, 105

algorithm
Todd-Coxeter, 38, 70

An, 65
automorphism

inner, 43
of a bilinear form, 10
of a group, 43
outer, 43

basis
for a commutative group, 25

block, 72

centralizer
of element, 59
of subgroup, 117

centralizer, of a subalgebra, 106
centre

of a group, 12
class

nilpotency, 91
class equation

class, 62
Cm, 9

commutator, 24, 35
composition factors, 87
conjugacy class, 58
coset

left, 17
right, 17

Coxeter system, 38
cycle, 66

dimension, 106
disjoint cycles

disjoint, 66
Dn, 13

element
neutral, 8

elementary divisors, 26
equivariant map, 58
exact sequence, 50
exponent

of a group, 30, 37
extension

central, 50
isomorphic, 50
split, 50

extension, of groups, 50

faithful representation, 99
flag

full, 79
Frattini’s argument, 93

G-map, 58
G-set, 57
generates, 13
generators

of a group, 35
GLn.F /, 10
group, 7

4-, 14
A-, 94
abelian, 9
additive, 7
alternating, 65
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Burnside, 38
commutative, 9
complete, 44
Coxeter, 38
cyclic, 13
dihedral, 13
finite reflection, 39
finitely presented, 37
free, 33
free abelian, 35
general linear, 10
indecomposable, 96
isotropy, 59
metabelian, 91
metacyclic, 119
multiplicative, 7
nilpotent, 91
of rigid motions, 58
of symmetries, 9
orthogonal, 10
p, 8
permutation, 9
primitive, 72
quaternion, 14

generalized, 35
quotient, 21
reflection, 39
simple, 19
soluble, 88
solvable, 70, 88
special linear, 20
symplectic, 10
with operators, 94

group.
factor, 21

groups
of order 12, 81
of order 2mpn, m� 3., 82
of order 2p, 62
of order 30, 80
of order 60, 82
of order 99, 80
of order p, 18
of order p2, 63
of order p3, 81
of order pq, 80
of small order, 15

homogeneous, 59
homomorphism

admissible, 94
normal, 54
of groups, 16

index

of a subgroup, 17
invariant factors, 26
inverse, 8
inversion, of a permutation, 64
isomorphism

of G-sets, 58
of groups, 8, 16

kernel, 20
Klein Viergruppe, 14

length
of a subnormal series, 85
solvable, 90

length of a cycle, 66

map, of G-sets, 58
module

semisimple, 99
simple, 99

monoid
free, 31

negative, 8
normalizer

of a subgroup, 60

opposite algebra, 99
orbit, 58
order

of a group, 8
of an element, 9

partition
of a natural number, 67
stabilized, 71

permutation
even, 64
odd, 64

presentation
of a group, 35

problem
Burnside, 37
restricted Burnside, 38
word, 37

product
direct, 9, 23
knit, 50
semidirect, 46
Zappa-Szép, 50

projector, 102

quotients, of a normal series
of a normal series, 85

rank
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of a commutative group, 26
of a Coxeter system, 38
of a free group, 34

reduced form
of a word, 32

reflection, 39
relations, 35

defining, 35
representation

linear, 100
matrix, 99

series
admissible subnormal, 95
ascending central, 91
composition, 85
derived, 90
normal, 85
solvable, 88
subnormal, 85
without repetitions, 85

signature, 64
skew field, 105
Sn, 9, 14
stabilizer

of a subset, 60
of an element, 59

stable subset
stable, 58

subgroup, 12
A-invariant, 94
admissible, 94
characteristic, 45
commutator, 89
first derived, 89
generated by a set, 13
normal, 18
normal generated by a set, 20
second derived, 90
Sylow p-, 75
torsion, 10

subset
normal, 20

support
of a cycle, 66

table
multiplication, 11

theorem
Cauchy, 62
Cayley, 16
centre of a p-group, 63
commutative groups have bases, 25
correspondence, 22

double centralizer, 107
factorization of homomorphisms, 22
Feit-Thompson, 88
Galois, 69
isomorphism, 22
Jordan-Hölder, 86
Krull-Schmidt, 96
Lagrange, 17
Maschke, 101
Nielsen-Schreier, 34
nilpotency condition, 93
primitivity condition, 72
Schur-Zassenhaus, 51
structure of commutative groups, 26
structure of Coxeter groups, 39
Sylow I, 76
Sylow II, 77
Sylow subgroups of subgroups, 79

transposition, 14

word, 31
reduced, 32

words
equivalent, 33
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