
Solutions to Exercises for TATA55, batch 3

January 30, 2017

1. Let R be a commutative, unitary ring, and I an ideal in R. Suppose that all elements outside
I are invertible. Show that I is the unique maximal ideal in R. 2 p

Solution: Any ideal containing a unit is the whole ring, so every proper ideal is contained
in I. This shows both that I is a maximal ideal, and that there are no other maximal ideals.

2. Let R = C[[t]], the ring of formal power series in t with complex coefficients.

(a) By inductively solving an infinite system of equations, show that
∑

`≥0 a`t
` is invertible

iff a0 6= 0. Conclude that (t) is the unique maximal ideal in R. 1 p

(b) Show that any f ∈ R (should be non-zero f) can be uniquely written as a product
f = utm, where m is a non-negative integer and u ∈ R is a unit. 1 p

(c) List all ideals in R. 2 p

(d) We say that fn → f ∈ R as n→∞ if, for all m, there is some N(m) so that n > N(m)
implies that f − fn ∈ (t)m = (tm). Take any f ∈ R \ (t) and write it as c(1 − g) with
g ∈ (t). Show that (1− g)(1 + g + g2 + · · ·+ gn)→ 1 as n→∞. Hence, the inverse of
1− g is

∑
`≥0 g

`, and the inverse of f is c−1
∑

`≥0 g
`. 1 p

Solution: : Make the Ansatz that the putative inverse is
∑

`≥0 b`t
`. Then

1 =
∑
`≥0

a`t
`
∑
`≥0

a`t
`

gives, by comparing coefficients for powers of t, that

1 = a0b0

0 = a0b1 + a1b0

0 = a0b2 + a1b1 + a2b0

...

0 = a0bk + a1bk−1 + . . . ak−1b1 + akb0

...

The first equation has the unique solution b0 = 1/a0 (provided that a0 6= 0). By induction,
if b0, b1, . . . , bk−1 are determined, then

bk = −(a1bk−1 + · · ·+ akb0)/a0.

Now apply the previous exercise.

For the (non-zero) f =
∑

`≥0 a`t
` ∈ R, define the order of f as the d such that ad 6= 0 but

ai = 0 for i < d. Then f = td
∑∞

j=d ajt
j−d = td

∑∞
`=0 a`+dt

d, as required.

Put I = (t). We have shown that I is the unique maximal ideal in R. In fact, the set of
ideals are precisely Ik for k ≥ 0. To see this, let J be an ideal in R, and let d be the smallest
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positive order of an element in J , and let f ∈ J have order d. By the above, we have that
f = tdg, where g is invertible (hence has order zero). So td = g−1f ∈ J , hence (td) ⊆ J .
However, if h ∈ J \ {0}, then h = tru with r ≥ d, u invertible, so h ∈ (td).

We have that (1− g)(1 + g + g2 + · · ·+ gn) = gn+1 ∈ (t)n+1, which tends to zero.

3. Let R = C[x, y] and let M =
{

(a, b) ∈ Z2 a, b ≥ 0
}

. Then R is a commutative, unitary ring,

andM is a monoid under componentwise addition. PutX =
{
xayb a, b ∈ Z, a, b ≥ 0

}
. Then

X is a C-basis for R. For f ∈ R, we write

f =
∑

(a,b)∈M

ca,bx
ayb =

∑
xayb∈X

ca,bx
ayb,

and put Supp(f) = { (a, b) ∈M ca,b 6= 0 }. Note that this set is finite.

(a) We say that an ideal I ⊆ R is a monomial ideal if

f ∈ I =⇒ xayb ∈ I for all (a, b) ∈ Supp(f).

Show that an ideal is a monomial ideal if and only if it is generated by monomials. 2 p

(b) A subset J ⊂ M is called a monoid ideal if (a, b) ∈ J =⇒ (a, b) + (c, d) ∈ J for all
(c, d) ∈M . Show that the exponential mapping

M 3 (a, b) 7→ xayb ∈ X ⊂ R

induces a bijection between the set of monomial ideals in R and the set of monoid ideals
in M . 1 p

(c) Show that, under this bijection, union of monoid ideals (which is again a monoid ideal)
correspond to sums of monomial ideals. Show furthermore that intersections correspond
to intersections. 1 p

(d) Draw a figure (by shading lattice points in the positive quadrant) of I = (x2, y3) and
of I2, and of J = (x2, xy). Calculate (i.e. give generators for) I2 + J , I2 ∩ J and I2J .
2 p

(e) For all the above ideals, the quotient ring is a vector space over C. Give vector space
bases for these spaces! 2 p

Solution: An ideal generated by monomials is clearly a monomial ideal, and a monomial
ideal is generated by all monomials that occur in the support of elements in the ideal.

The bijection mentioned in (b) maps induces the following bijection between monomail ideals
iand monoid ideals:

map a monomial ideal I to the set of Supp(I) of exponents occuring in the union of the
supports of elements in I. This is a monoid ideal. The inverse maps a monoid ideal to the
monomial ideal generated by all xayb for which (a, b) belongs to the monoid ideal.

Next, we will show that the above bijection maps sums to sums and intersections to in-
tersections. Let I, J be monomial ideals, then any f ∈ I ∩ J has the property that any
monomial in its support belongs to I ∩ J . So I ∩ J is a monomial ideal, and Supp(I ∩ J) =
Supp(I) ∩ Supp(J). If f ∈ I + J then f = g + h with g ∈ I, h ∈ J . We have that

Supp(f) ⊆ Supp(g) ∪ Supp(h) ⊆ Supp(I) ∪ Supp(J),

so Supp(I + J) ⊆ Supp(I) ∪ Supp(J). Conversely, since I ⊆ I + J we have that Supp(I) ⊆
Supp(I + J), and similarly for J , so Supp(I + J) = Supp(I) ∪ Supp(J). It is now clear that
any monomial (with exponents) in Supp(f) belongs to I + J , which hence is a monomial
ideal.

We have that I2 = (x4, x2y3, y6), I2 + J = (x4, x2y3, y6, x2, xy) = (x2, xy, y6), I2 ∩ J =
(x4, x2y3, xy6), I2J = (xy7, x2y6, x3y4, x4y3, x5y, x6).
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4. Consider the complex square matrix

C =


3 1 1 1

0 3 0 0

0 0 3 0

0 0 0 3

 .

Find the characteristic polynomial of C. Calculate C2, and show that the set {I, C,C2}
is linearly dependent. Use this to show that the minimal polynomial has degree 2, and
calculate it. 3 p

Let R be the C-algebra generated by C. Show that is isomorphic to C[x]/(x2). 2 p

Solution: The characteristic polynomial of C is (t−3)4, since the only non-zero term in the
determinant of C− tI is the diagonal. Hence, by the Cayley-Hamilton theorem, the minimal
polynomial is some divisor of that. We calculate that C2−6C+9I is the zero matrix, hence,
since I, C are linearly independent, the minial polynomial has degree > 1, so it is (t− 3)2.

Let R be the C-algebra generated (inside Mat(C, 4, 4)) by C. It is the set

{0} ∪
{
a0 + a1C + . . . aNC

N ai ∈ C, N ≥ 0
}
.

Since the different powers of C commute, this is a commutative C-subalgebra of the non-
commutative C-algebra Mat(C, 4, 4). In fact, since C2 = 6C − 9I, the algebra generated by
C is spanned, as a vector space, by I and C. However, the relation

(C − 3I)(C − 3I) = 0

shows that this algebra has zero-divisors, hence it is not a domain, and certainly not a field!

Consider the map
C[t] 3 f(t) 7→ f(C) ∈ Mat(C, 4, 4).

The image is the C-algebra R generated by C.

The kernel of the map is (t− 3)2, so by the first isomorphism theorem R ' C[t]/((t− 3)2).

For any a ∈ C, the map
C[t] 3 g(t) 7→ g(t+ a) ∈ C[t]

is a C-algebra automorphism. If I is an ideal in C[t], the map

C[t] 3 g(t) 7→ g(t+ a) + I ∈ C[t]/I

is surjective, and has kernel Ia = { g(t− a) g(t) ∈ I }, so we get that

C[t]/Ia ' C[t]/I.

This shows that
C[t]/((t− 3)2) ' C[t]/((t)2).

5. Let f(x) = x3 + x+ 1 ∈ Z2[x], g(x) = x3 + x2 + 1 ∈ Z2[x].

(a) Show that E1 = Z2[x]/(f(x)) is a field, and find an inverse to x+ 1 + (f(x)). 2 p

(b) Show that E2 = Z2[x]/(g(x)) is a field, and find all generators to its multiplicative
group. 2 p

(c) Show that Z2[x]/(f(x)g(x)) is isomorphic to the product of two fields. 1 p

(d) Find the splitting fields of f(x) and of g(x). 1 p

(e) Find the splitting fields of f(x)g(x). 1 p
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Solution: f(x), which has degree 3, has no zero in Z2, hence it is irreducible, and its
corresponding quotient is a field. Since

x3 + x+ 1 = (x+ 1)(x2 + x) + 1 ∈ Z2[x]

we have that x2 + x is an inverse of x+ 1 in the quotient.

g(x) is irreducible since it lacks zeroes. The quotient field has 23 = 8 elements, so the
multiplicative group has 7 elements, meaning that every element except for the identity is a
generator.

We check that f(x) and g(x) are relatively prime, so the Chinese Remainder theorem shows
that Z2[x]/(f(x)g(x)) ' Z2[x]/(f(x))× Z2[x]/(g(x)).

Let α be the image of x in E1). Then α is a zero of f in E1, hence x−α is a factor; in fact,

f(x) = (x+ α)(x+ α2)(x+ α+ α2) ∈ E1

so f(x) splits in E1, which is the splitting field of f(x).

Let similarly β be the image of x in E2. We have that

g(x) = (x+ β)(x+ β2)(x+ β2 + β + 1) ∈ E2,

so g(x)splits in E2, which is its splitting field.

Finally, viewing g(x) as a polynomial in E1[x], it has the distinct zeroes 1 + α, 1 + α2, and
1 + α+ α2, hence

g(x) = (x+ 1 + α)(x+ 1 + α2)(x+ 1 + α+ α2)

splits in E1 as well as in E2. So E1 is the splitting field for f(x)(g(x).

6. Find the splitting fields for the following rational polynomials. Give the dimensions, as well
as vector space bases, as well as primitive element for the extension.

(a) x3 − 11, 3 p

(b) x4 + x2 + 1. 3 p

Solution: The first case is similar to x3 − 2, which we did in class, and which is treated in
the textbook. The splitting field is Q(111/3, ω) with α = 111/3, and ω = exp(2πi/3). The
degree of the extension is 2 ∗ 3 = 6. One checks that ω + α is a primitive element (it has
neither degree 2 nor degree 3).

We have that x4 +x2 +1 = (x2 +x+1)(x2−x+1) = (x−ω)(x−ω2)(x+ω)(x+ω2). Hence,
the splitting field is Q(ω), and the extension has degree 2. Clearly, ω is a primitive element.

7. Consider the recurrence equation

st + st−3 + st−5 = 0, s0 = 1, s1 = 0, s2 = 0, s3 = 0, s4 = 0 ∈ Z2.

Let f(x) = x5 + x2 + 1, and let g(x) = 1
x5 f(x).

(a) Show that f(x) and g(x) are irreducible. 1 p

(b) Put R1 = Z2[x]/(f(x)) and R2 = Z2[x]/(g(x)). Denote by φ1 the linear map on R1

given by multiplication with the image of x. Determine its matrix A1 w.r.t. the basis
[1, x, x2, x3, x4], and calculate the smallest n1 such that An1

1 = I. Use this to determine
the order of the image of x in the multiplicative group of R1. Do the same for g. 1 p

(c) Calculate the smallest positive integer m1 such that xm − 1 is divisible by f(x). 1 p

(d) Give an explicit formula for cj for all j ≥ 0. 2 p

4



Solution: f(x) and g(x) has no zeroes in Z2, and one can show that neither can be writted
as a product of a quadratic and a qubic factor.

In R1, we have the relation x5 = x2 + 1, so

x ∗ 1 = x

x ∗ x = x2

x ∗ x2 = x3

x ∗ x3 = x4

x ∗ x4 = x5 = x2 + 1

and the matrix for multiplication by x is

A =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


Since the cyclic group R∗1 has 31 elements, x has order 31, so A31 = I.

From an exercise in the textbook we know that x32 − x factors into the product of all
irreducible polynomials of degree 1 or 5; hence f(x) divides this polynomial, so it also
divides x31 − 1. It is easy to see that it can divide no xs − 1 for smaller s.

To give an explicit formula, we either calculate the 31 first values (after which the sequence
repeats), or we find the roots of f(x) in its splitting field. In fact, the splitting field is
E = Z2/(f(x)), and if we denote by γ the image of x in the quotient, we have that the
zeroes are

γ, γ2, γ4, γ8, γ16.

Since γ5 = γ2 + 1 thses zeroes can also be expressed as

γ, γ2, γ4, γ3 + γ2 + 1, γ4 + γ3 + γ + 1.

So the general formula is

sn = a1γ
n + a2γ

2n + a3γ
4n + a4γ

8n + a5γ
16n,

where the coefficients ai ∈ E are uniquely determined from initial conditions, by solving the
system of 5 linear equations

1 = s0 = a1 + a2 + a3 + a4 + a5

0 = s1 = a1γ
1 + a2γ

2 + a3γ
4 + a4γ

8 + a5γ
16

0 = s2 = a1γ
2 + a2γ

4 + a3γ
8 + a4γ

16 + a5γ
32

0 = s3 = a1γ
3 + a2γ

6 + a3γ
12 + a4γ

24 + a5γ
48

0 = s4 = a1γ
4 + a2γ

8 + a3γ
16 + a4γ

32 + a5γ
64

This yields

a1 = 1 + γ + γ2 + γ4

a2 = γ3 + γ4

a3 = 1 + γ + γ2

a4 = 1 + γ2 + γ4

a5 = γ2 + γ3 + γ4
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