
Solutions to Exercises for TATA55, batch 1, 2018

October 18, 2018

1. Determine all positive integer solutions to 5x+ 11y = 999.

Solution: The extended Euclidean algorithm shows that gcd(5, 11) = 1 and that
1 = 5∗ (−2)+11∗1. It follows that xp = −2∗999, yp = 1∗999 is one integer solution
to the original equation, and that

x = −2 ∗ 999 + 11n

y = 1 ∗ 999− 5 ∗ n

with n ∈ Z, constitue all integer solutions.

Now we want to find the positive integer solutions. Then

−2 ∗ 99 + 11n > 0

1 ∗ 999− 5n > 0

so
2 ∗ 999

11
= 181 +

7

11
< n <

999

5
= 199 +

4

5
whence 182 ≤ n ≤ 199.

2. Find all integer x such that x = 13q1 + 5 = 17q2 + 7, q1, q2 ∈ Z.

Solution: In other words, we want all x such that

x ≡ 5 mod 13

x ≡ 7 mod 17

Since gcd(13, 17) = 1, this is doable, and the solution will be unique mod 13 ∗ 17.
Since

x = 13q1 + 5 ≡ 7 mod 17

we have that
13q1 ≡ 2 mod 17

Since
1 = gcd(13, 17) = 13 ∗ 4 + 17 ∗ (−3)
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we have that
13 ∗ 4 ≡ 1 mod 17,

so
q1 ≡ 4 ∗ 2 = 8 mod 17.

Thus
x ≡ 13 ∗ 8 + 5 = 109 mod 13 ∗ 17.

3. Let G be a group, and let H ⊆ G, such that e ∈ H and HH ⊆ H.

(a) Show that HH = H.

(b) If |G| <∞, show that H ≤ G.

(c) Is it enough that |H| <∞?

Solution:

(a) eh = h.

(b) We need only to show that H−1 ⊆ H. Pick h ∈ H. Consider the map

φh : H → H

φh(x) = hx

This map is injective: if φh(x) = φh(y) then hx = hy so x = y by cancellation.
However, since H is finite (beeing a subset of the finite set G), any injective
map from H to itself is in fact bijective! Thus, e ∈ φh(H), that is to say, there
is some x ∈ h with e = φh(x) = hx. Thus h has a right inverse x, which, by
group laws, is also a left inverse.

(c) Yes.

4. Let A be a finite set with n elements, and let f : A→ A be a map. Define a digraph
G with vertex set A, and with a directed edge a→ b iff f(a) = b.

(a) For n = 5, draw the graph associated to

f =

[
1 2 3 4 5
2 3 4 1 1

]
and g =

[
1 2 3 4 5
2 1 4 3 3

]
(b) Show that every vertex in G has outdegree 1. Show that f is invertible iff every

vertex in G has indegree 1.

(c) Pick a ∈ A. Show that the sequence f (k)(a), k = 0, 1, 2, . . . is eventually periodic.
Is f (k), k = 0, 1, 2, . . . eventually periodic?

Solution:
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(a)

(b) The vertex a has the unique outgoing arrow a→ f(a). The inverse image f−1(b)
of a vertex is the set of all vertices c such that c → b. The map f is invertible
iff each such inverse image has cardinality one.

(c) Since A is finite, by the pigeon-hole principle there is some smallest 1 ≤ i < j ≤
|A| + 1 such that f (i)(a) = f (j)(a) =: b. Then f (i+1)(a) = f (j+1)(a) = f(b), and
so on.

Now let X = AA be the set of all maps from A to A. Given f , define

Ff : X → X

Ff (g) = f ◦ g

Since X is finite, we apply our previous result to show that F is eventually
periodic.

5. Let T denote the group of complex numbers of unit modulus, under multiplication.

(a) Find all elements of order 2, order 3, and order 4.

(b) Find all elements of finite order n.

(c) Find all finite subgroups of T .

Solution:

(a) The elements that have order dividing n are all roots of the polynomial zn − 1.
We see that −1 is the unique element of order 2, that ± exp(2

3
πi) are the ones

with order 3, and that ±i are the ones with order 4.

(b) We can furthermore see that the zeroes of zn − 1 form a cyclic group of or-
der n, with g = exp( 2

n
πi) as a generator, and all generators given by gk with

gcd(k, n) = 1. These elements have order n. Note that the other solutions to
zn − 1 = 0 have order dividing n.

(c) The element exp(a
b
2πi), with a, b integers, have finite order (dividing b). The

elements exp(r2πi), with r irrational, have infinite order. If H is a finite sub-
group, it can thus not contain any exp(r2πi), with r irrational. Hence, H ={

exp(
aj
bj

2πi) 1 ≤ j ≤ N
}

. Now note first that we can assume that gcd(aj, bj) =

1, and secondly, that if we put B = lcm(b1, . . . , bN) then H ≤
〈
exp( 1

B
2πi)

〉
. In

fact, equality holds!

Thus, all finite subgroups are cyclic, and of the form described in the previous
subexercise.

Another proof of this fact goes as follows. Suppose that H is a finite subgroup of
the cycle group. Then there is some smallest positive t such that g = exp(t2πi) ∈
H. Clearly, 〈g〉 ≤ H. In fact, equality holds: if w = exp(s2πi) ∈ H \ 〈g〉, then
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s is not an integer multiple of t. Write s = bs/tct + {s/t} = mt + α, using
the integer part and the fractional part of s/t. Since exp(mt2πi) = gm ∈ H, it
follows that exp(α2πi) ∈ H, as well. But 0 < α < t, a contradiction.

Thus H = 〈g〉.

6. Find all possible orders of permutations on 5 letters.

Solution: The order of conjugate elements are the same, thus we check the different
cycle types in S5; these cycle types are represented by numerical partitions of 5.

• 5=5: 5-cycles have order 5.

• 5=4+1: 4-cycles have order 4.

• 5=3+2: (abc)(de) has order 3 ∗ 2 = 6.

• 5=3+1+1: 3-cycles have order 3.

• 5=2+2+1: (ab)(cd) has order 2.

• 5=2+1+1+1: 2-cycles have order 2.

• 5=1+1+1+1+1: The identity has order 1.

7. Let X = Z, and let G = SX . Give an explicit element in G with infinite order.

Solution: The simplest example is probably x 7→ x+ 1. Another example is

σ = (0)(1,−1)(2,−2, 3,−3)(4,−4, 5,−5, 6,−6)(7,−7, 8,−8, 9,−9, 10,−10) · · ·

8. Describe the subgroups of Sn generated by the n-cycles.

Solution: To clarify, for each integer n ≥ 2, we want the smallest subgroup of Sn

the contains all n-cycles.

We note that

(1, 2, 3, 4, . . . , n)(2, 1, 3, 4, . . . , n)−1 = (1, 3, 2) = (1, 2, 3)−1,

and that thus every 3-cycle is a product of two n-cycles. We can thus generate all
3-cycles. The alternating group An ≤ Sn consisting of the even permutations is
generated by 3-cycles (see the textbook) so we can generate at least An. If n is odd,
all n-cycles are even, and lie in An, and generate An,thus they generate precisely An.
If n is even, the subgroup generated by the n-cycles consists of all of An, and some
more permutations; but since An has index 2 in Sn, we must necessarily get all of
Sn-

9. Let G be a group, and let x, y ∈ G, with xy = yx. Suppose that o(x) = n < ∞,
o(y) = m <∞. What is o(xy)?

Solution: Since (xy)n = xnyn, we have that o(xy) |lcm(n,m) . However, taking
n = m with y = x−1 shows that the order of xy can be much smaller than lcm(n,m).
In the special case that 〈x〉 ∩ 〈y〉 = {1} we can easily see that o(xy) = lcm(n,m).
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10. If G is a group, A,B ≤ G. Show that AB ≤ G iff AB = BA.

Solution: Suppose that AB = BA. Take h ∈ AB, h = ab with a ∈ A, b ∈ B.
Then 3 h−1 = b−1a−1 ∈ BA = AB. Take furthermore k = cd,c ∈ A, d ∈ b. Then
hk = abcd = a(bc)d. Since bc ∈ BA = AB there exists r ∈ A, s ∈ B with bc = rs.
Thus hk = a(rs)d = (ar)(sd) ∈ AB.

Conversely, suppose that AB ≤ G. Take a ∈ A, b ∈ b, and put h = ab. Then
h−1 ∈ AB. But h−1 = b−1a−1 ∈ BA. Since every k ∈ AB is (k−1)

−1
, the result

follows.
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