Exercises for TATA55, batch 2, 2018

November 29, 2018

Solutions to the exercises below should be handed in no later than November 30.

- 1. (3p) Suppose that G is a group, A, B are subgroups of G, and that $g \in G$. Show that $gA \cap gB$ is a left coset in $A \cap B$.
- 2. (3p) Determine subgroups K, H in D₄ such that

$$\{1\} \triangleleft K \triangleleft H \triangleleft D_4$$

with all inclusions proper. Determine D_4/K and $(D_4/K)/(H/K)$.

- 3. (5p) Let G be a group.
 - (a) Suppose that $S \subseteq G$ is a subset of G such that $gsg^{-1} \in S$ for all $g \in G$ and all $s \in S$. Show that $\langle S \rangle$, the subgroup generated by S, is normal in G.
 - (b) Put $K = \langle \{xyx^{-1}y^{-1} | x, y \in G \} \rangle$. Show that $K \triangleleft G$.
 - (c) Show that G/K is abelian.
 - (d) If $N \triangleleft G$ and G/N is abelian, show that $K \subseteq N$.
 - (e) If $K \subseteq H \leq G$, show that $H \triangleleft G$.
- 4. (3p) Let $G \subseteq S_{\mathbb{R}}$ be given by all affine maps $\phi_{a,b}$, $a,b \in \mathbb{R}$, $a \neq 0$, $\phi_{a,b}(x) = ax + b$.
 - (a) Show that G is a subgroup. Is it normal?
 - (b) Let $N = \{ \phi_{1,b} | b \in \mathbb{R} \}$. Show that $N \triangleleft G$.
 - (c) Determine G/N.
- 5. (4p) Let $[5] = \{1, 2, 3, 4, 5\}$, and let $X = {[5] \choose 3}$, the set of unordered triplets of [5].
 - (a) S_5 acts naturally on [5]. Show that the induced action $\phi \cdot \{a, b, c\} = \{\phi(a), \phi(b), \phi(c)\}$ indeed determines an action of S_5 on X.
 - (b) Determine the number of orbits of this action.
 - (c) Let $H = \langle (1, 2, 3, 4, 5) \rangle$ act on X as above. Determine the number of orbits.

- (d) Same question for $K = \langle (1,2) \rangle$.
- (e) Partial credits if you solve the above questions for S_4 acting on $\binom{[4]}{2}$ instead.
- 6. (5p) Show that the number of conjugacy classes in a finite group G is given by

$$\frac{1}{|G|}\sum_{g\in G}|C_G(g)|, \qquad C_G(g)=\{\,h\in G\,|\,gh=hg\,\}.$$

Determine the number of conjugacy classes in D_8 and D_9 .

- 7. (1p+2p) Let $\mathbf{u}=(u_1,u_2)^t$ and $\mathbf{v}=(v_1,v_2)^t$ be two linearly independent vectors in \mathbb{R}^2 , and let $B=\begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix}$. Put $L=\{\, \alpha \mathbf{u}+b\mathbf{v}\,|\, \alpha,b\in\mathbb{Z}\,\}$. This is called the lattice spanned by \mathbf{u} and \mathbf{v} .
 - (a) Show that $L \leq \mathbb{R}^2$, and that $\mathbb{R}^2/L \simeq (\mathbb{R}/\mathbb{Z}) \times (\mathbb{R}/\mathbb{Z})$.
 - (b) If \mathbf{f} , \mathbf{g} are two other linearly independent vectors in \mathbb{R}^2 , with associated lattice M and matrix C, show that L = M if and only if B = CU for some two-by-two matrix U with integral entries, and determinant ± 1 .
- 8. (4p) Denote by K the hypercube $K = \{(x_1, x_2, x_3, x_4) | 0 \le x_1, x_2, x_3, x_4 \le 1\}$, and let $V = \{(x_1, x_2, x_3, x_4) | x_1, x_2, x_3, x_4 \in \{0, 1\}\}$ be the set of its vertices. Let $\mathbf{e}_1 = (1, 0, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0, 0)$, $\mathbf{e}_3 = (0, 0, 1, 0)$, $\mathbf{e}_4 = (0, 0, 0, 1)$. Let $\Delta = \text{conv}(\mathbf{0}, \mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4)$.

Let $\sigma \in S_4$ act on K by $\sigma.(x_1, x_2, x_3, x_4) = (x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}).$

- (a) What are the sizes of the orbits?
- (b) Put $\Delta_{\sigma} = \{ \sigma.(x_1, x_2, x_3, x_4) | (x_1, x_2, x_3, x_4) \in \Delta \}$. Determine the volume of this simplex, and show that

$$K = \bigcup_{\sigma \in S_4} \Delta_{\sigma}$$

with $\Delta_{\sigma} \cap \Delta_{\tau}$ a simplex of dimension < 4, hence of volume zero, for $\sigma \neq \tau$.

(c) Partial credit if you solve the corresponding questions for n = 3, even more partial if you look at n = 2.